
Reuse of Semantic Business Process Patterns

Lobna Makni1, Nahla Zaaboub1 and Hanene Ben-Abdallah2

1Mir@cl Laboratory, Faculty of Economic Sciences and Management, Sfax University, Sfax, Tunisia
2Faculty of Computing and Information Technology, King Abdullaziz University, Jeddah, K.S.A.

Keywords: Reuse, SB2P Repository, Search Method, Business Object, Instantiation Operator.

Abstract: Reusing business process artefacts, in business process modelling, can accelerate the design activity and im-
prove the quality of the resulting products. Among the variety of reusable artefact types proposed during the
last decade, Semantic Business Process Pattern (SB2P) offers business patterns that encapsulate knowledge
and expertise in a particular domain. The reuse of a SB2P provides for the adoption of commonly used prac-
tices while offering guidance on possible variations. This paper proposes a reuse method that assists a business
process designer, first, in retrieving an appropriate SB2P from a repository, and then adapting it through a set
of instantiation operators to meet its specific requirements. The retrieval method relies on both semantic and
behavioural information encapsulated in the SB2P. In addition, the instantiation operators ensure the deriva-
tion of a business process design that respects a set of quality metrics. The reuse method is illustrated through
an example.

1 INTRODUCTION

The advent of reuse oriented modelling in BPM led
to the proposition of several reusable artefact types.
The various reusable artefacts (Haddar et al., 2012)
rely on proven practices and solutions to provide for
assistance in designing high quality business process
models while reducing the designer costs.

The benefits of reuse in PAISs (Process Aware In-
formation Systems) are widely accepted in theory and
practice (Fettke and Loos, 2003). In fact, designing
high quality process models from scratch is often time
consuming, error-prone and costly (Indulska et al.,
2009). In the last decade, a variety of reusable arte-
facts are proposed in the literature. Recently, (Makni
et al., 2011) propose a new pattern concept called Se-
mantic Business Process Pattern (SB2P). A SB2P is a
pattern synthesized from a set of process models be-
longing to the same business domain. It is composed
of process fragments that are semantically common
among this set of process models. A SB2P is intended
to accelerate the design process by providing the de-
signer with a business process model skeleton con-
taining all mandatory activities and some configurable
ones (Haddar et al., 2012). It is automatically gener-
ated from a reduced set of business process models
belonging to the same domain. SB2Ps are stored in
a pattern repository organized according to business

domains. The size of the SB2P repository can be im-
portant since many SB2Ps may be generated for the
same domain.

Given a repository of SB2Ps, a designer would
need a means, first, to retrieve the SB2P that cov-
ers his/her business requirements and, secondly, to in-
stantiate a retrieved pattern to model his/her business
needs in order to accelerate the design process and
ameliorate the quality of the resulting process mod-
els. Existing business process retrieval methods use
query languages (Awad, 2007), (Choi et al., 2007),
(Jin et al., 2010) based on the control-flow perspec-
tive; the remaining aspects of a business process like
data is, however, ignored. In addition, querying re-
quires a good knowledge of the querying language.
Furthermore, the so-far proposed instantiation opera-
tors (La Rosa et al., 2013), like add/remove a node,
are generic operators intended for model evolution,
and they do not explicitly analyse their effects on the
model quality.

In this work, we contribute to business process
modelling by assisting in the reuse of SB2Ps. More
specifically, we propose a retrieval method for query-
ing SB2Ps based on the data of business processes.
In addition, we propose a set of instantiation opera-
tors applicable under constraints that accounts for the
quality of the derived business process model.
The rest of the paper is organized as follows: Section

36 Makni L., Zaaboub N. and Ben-Abdallah H..
Reuse of Semantic Business Process Patterns.
DOI: 10.5220/0005003500360047
In Proceedings of the 9th International Conference on Software Engineering and Applications (ICSOFT-EA-2014), pages 36-47
ISBN: 978-989-758-036-9
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)

2 positions our research in the light of related works.
Section 3 reviews the SB2P concept through an ex-
ample. Section 4 presents a SB2P retrieval method
based on the data aspect. Section 5 presents a set of
instantiation operators to adapt a SB2P to meet a de-
signer’s requirements. Section 6 summarizes the pre-
sented work and highlights its extensions.

2 RELATED WORK

Several solutions have been investigated to support
the reuse of business process models. We classify
these solutions into two categories: (i) reusable busi-
ness process artefact retrieval and (ii) adaptation of
reusable artefacts.

2.1 Reusable Business Process Artefact
Retrieval

Mindful of the importance of query languages for
business process models, the Business Process Man-
agement Initiative (BPMI) proposed to define a stan-
dard business process model query language in 2004.
However, no standard has been published so far. Sev-
eral approaches were proposed to express and execute
queries over a collection of business process models
(Beeri et al., 2008), (Awad and Sakr, 2012), (Jin et al.,
2011), (ter Hofstede et al., 2013). They are classi-
fied into two main categories. The first category en-
ables the formulation of a query as a business process
model fragment (Jin et al., 2010), (Choi et al., 2007),
(Jin et al., 2011), (ter Hofstede et al., 2013). Its aim is
to identify all models in a repository, that contain the
query fragment by detecting similar activity labels us-
ing only the equivalence semantic relation.

On the other hand, the second category pro-
vides specific constructs for expressing process model
queries like existence or absence of paths between
activities (Beeri et al., 2008), (Awad and Sakr,
2012). We cite, for example, the graphical query lan-
guage called BPMN-Q (Business Process Modelling
Notation-Query) proposed by (Awad and Sakr, 2012).
It is a visual and graphical query language which can
be used for querying a repository of process models
modelled with BPMN standard. It extends BPMN
notation with seven additional constructs e.g., generic
join to present the query purpose. It allows represent-
ing a structural BPMN queries and specifies whether
a given process model is syntactically similar to a
query (Awad, 2007), (Awad et al., 2008). In addition,
queries can be formulated using control-flow aspect
of process model in (Awad and Sakr, 2012), (Choi
et al., 2007) (Jin et al., 2010), (Jin et al., 2011). Other

aspects are treated, only in (Choi et al., 2007), like re-
sources, process goal.

The execution of a query on a collection of pro-
cess models can be handled in one of two ways: 1) by
translating the query to SQL (Awad, 2007) or XML
standard (Choi et al., 2007), (Beeri et al., 2008) or 2)
by using the sub-graph isomorphism algorithms (Jin
et al., 2010). In this second case, indexes can also
be used to speed up the query execution (Jin et al.,
2013).

Note that there are other techniques available, in
the literature, which can be useful for querying pro-
cess model repositories like VisTrails and WISE sys-
tems. The VisTrails system (Scheidegger et al., 2008)
allows users to query workflow by example and to re-
fine workflows by analogies. The workflow engine
WISE (Shao et al., 2009) returns the most specific
workflow hierarchies containing matching keywords.

Overall, the proposed query languages proposed
in the literature focus only on control-flow aspect of
business process and ignores other process aspect like
data. In this paper, we propose a new method to
retrieve a SB2P like BPMN process model from a
repository of patterns using the semantic (business
object), behavioural (causality and concurrency rela-
tions) and hybrid (combination of semantic and be-
havioural) criteria on the basis of textual query.

2.2 Adaptation of Reusable Artefacts

When creating business process models, one of the
fundamental challenges the process designer faces is
to cope with the adaptation of reusable artefacts which
are complex and of coarse granularity such as refer-
ence models. Indeed, a reference model has a recom-
mending character, covers a family of process mod-
els, and can be customized in different ways accord-
ing to the designer requirements. Several approaches
have been proposed in the literature to adapt reference
models through configuration (Rosa, 2009), (Rose-
mann and van der Aalst, 2007), (Gottschalk et al.,
2008). They are classified into two main categories.
The first category is based on behaviour by extending
the existing process modelling language. In this con-
text, configurable process models have been devel-
oped to make reuse of reference process models with
managing business process variability (Rosa et al.,
2009), (Rosa, 2009). For example, Configurable-
Event Process Chain (C-EPC) provides a support to
customize reference models where EPC functions can
be annotated. The annotation provides the informa-
tion that these functions are mandatory or optional
(Rosemann and van der Aalst, 2007), (Rosa et al.,
2007).

Reuse�of�Semantic�Business�Process�Patterns

37

In addition, (Gottschalk et al., 2008) propose an
approach for configuring workflow models by en-
abling, hiding or blocking some configurable work-
flow elements. These approaches allow to define re-
quirements over the configuration alternative that may
be chosen. They neither are allowed to move or
add model elements nor to adapt element attributes
when configuring a variant. So, requirements do not
prescribe mandatory constraints, but serve as recom-
mendations (i.e., two activities either may have to be
deleted together from the reference process or none
of them). The second category of approaches is based
on structure through adaptation patterns. The adap-
tation depends on concrete designer requirements by
applying a set of change operations. Weber et al. (We-
ber et al., 2008) provide a comprehensive overview
of possible adaptation patterns that can occur when
process models are modified. An adaptation pattern
represent generic operations which can be applied on
any process model. It enables structural changes of
process schemes. For example, AP1 (AP2) allows
inserting (deleting) a process fragment in a process
model. The Provop proposal follows this approach
(Hallerbach et al., 2010). It provides advanced tool
support for adapting a base process and for ensuring
syntactical and semantical correctness of derived pro-
cess variants (Hallerbach et al., 2010).

3 OVERVIEW OF THE SB2P
CONCEPT

A SB2P is a pattern synthesized from a set of business
process models belonging to the same business do-
main (Makni et al., 2010). Informally, it is composed
of process fragments semantically common among
the source models.

These fragments may have different structural
and/or behavioural representations in the original
models; the SB2P factorizes these constructs into
a form that preserves the semantics of these frag-
ments. It is intended to accelerate the design pro-
cess by providing the designer with a business pro-
cess model skeleton containing all mandatory activi-
ties and some configurable ones. Mandatory activities
are recurrent and equivalent activities shared between
the source models (e.g., ”revaluation at actual price”,
”WIP calculation”). Together with their associated
control-flow, they constitute the backbone of the pat-
tern and have to be present in any business process
model derived from this SB2P. For this reason, they
are coloured pink to highlight their importance to the
designer in the sense when removing one of these ac-
tivities from the pattern it may change its semantics

and corrupt the process behaviour. Also, they play
the role of milestones, between which there are vari-
ation points. We illustrate the SB2P concept by the
example of figure 1-a which shows a pattern automat-
ically constructed from two business process models
choosen among the SAP reference models (Keller and
Teufel, 1998). These models are from the domain of
cost accounting which computes the costs incurred
in the production of company activities (e.g., inter-
nally manufactured materials) in order to make com-
plex cost analysis.

In a SB2P, there are also variation points. A varia-
tion point is a precise position within a SB2P that ad-
mits different structural representations in the source
models. For example, we can found a unit of work
represented in one process model by a single activ-
ity (e.g., ”manufacturing order overhead calculation”)
but the same unit of work is represented by a pro-
cess fragment composed of a collection of activities
(e.g., ”cost object overhead calculation” and ”product
cost collector overhead calculation”) in the other pro-
cess model. These structural differences are extracted
from the source models during the SB2P construction
process. They are stored in a database and are linked
to their corresponding variation point. So, a variation
point have multiple variants and a decision needs to be
taken on which variant to use when instantiating the
SB2P. For example, in figure 1-a the variation point
C can be instantiated with one of the two fragments
PF1 and PF2 of figure 1-b. PF1 and PF2 were ex-
tracted from the source models during the SB2P con-
struction process. Once all the variation points have
been treated, the SB2P becomes a derived business
process model.

In a SB2P, a variation point can be a:

� Refined Activity: It stands for a unit of work
which may be represented by a process fragment
which subsumes and refines it. In the pattern, the
refined activity is represented as an annotated and
empty sub-process. The annotation contains a list
of refining fragments. When instantiating the pat-
tern, the designer can either keep the activity as a
single unit, or refine it into one of its annotating
process fragments.

� Decomposable Activity: It stands for a unit of
work which may be represented by a process frag-
ment which partly-corresponds and decomposes
the decomposable activity. In a SB2P, the decom-
posable activity is represented as an annotated and
empty sub-process. The annotation contains a list
of component fragments. When instantiating the
pattern, the designer can either keep the activity
as a single unit, or decompose it into one of its
annotating process fragments.

ICSOFT-EA�2014�-�9th�International�Conference�on�Software�Engineering�and�Applications

38

Figure 1: An example of SB2P for the cost accounting process.

� Skipped Activity: It is a silent activity without
added value. In the pattern, it is an optional ac-
tivity and is represented as an annotated empty
activity. When instantiating the pattern, the de-
signer can insert into or delete a skipped activity,
or insert in it one of its annotating process frag-
ments.

� Configurable Connector: It is a generic connec-
tor. It subsumes possible build time connectors
that are less or equally expressive. It is anno-
tated (e.g. configurable OR, AND or XOR) and
coloured black to differentiate it from other con-
nectors in the pattern. It can have several variants
(AND, XOR, OR) depending on its type.

As a SB2P resembles a business process model,
its formal definition is also close to that of business
process models. However , to consider variation
points, we add a fourth one, the configurable con-
nector. Also, we define the function Fre f which
assigns process fragments to refinable activities.
Fdecomp is a function that assigns process fragments
to decomposable activities. Fskip is a function that
assigns process fragments to skipped activities.

To give a formal definition of a SB2P, we start
with defining a process fragment.

Definition 1 (Process-fragment): A process frag-
ment is a tuple (O;A;G;F) where:

� O is a set of objects partitioned into a disjoint sets
A of non-empty activities (task or sub-process)
and gateways G.

� F � O�O is the control-flow relation between
objects.

Definition 2 (SB2P): A SB2P is a tuple
(O;A;E;G;F;Fre f ;Fdecomp;Fskip) where:

� O = A[E [G is a set of objects partitioned into
disjoint sets of activities A, events E, and gate-
ways G; A = AM [AS [S is the set of activities
partitioned into a non-empty set of mandatory ac-
tivities AM , AS a set of skipped activities and a set
of sub-processes S; G = GF [GJ [GX [GM [GC
is a set of gateways partitioned into disjoint sets of
parallel fork gateways GF , parallel join gateways
GJ , XOR decision gateways GX , XOR merge
gateways GM and configurable gateways GC.

� F � O�O is the control-flow relation used to
define process fragments, i.e., a set of sequence
flows connecting objects.

� Fre f : S! P (T [Fg) where S is the set of sub-
processes and P (T [Fg) denotes the power-set
of tasks T and process fragments F. For sp 2 S
and t 2 P (T [Fg), Fre f (sp) = t means that each
element of t refines sp.

� Fdecomp : S ! P (T [Fg). For sp 2 S and t 2
P (T [Fg), Fdecomp(sp) = t means that each el-
ement of t is a component of sp.

� Fskip : AS! P (T [Fg). For each sk 2 AS and t 2
P (T [Fg), Fskip(sk) = t means that each element
of t can replace sk.

Reuse�of�Semantic�Business�Process�Patterns

39

4 SB2P RETRIEVAL METHOD

As mentioned in Section 2, the various query lan-
guages to search for reusable business process arte-
facts (Awad and Sakr, 2012), (Beeri et al., 2008), (Jin
et al., 2011), (ter Hofstede et al., 2013) do not ac-
count for the data aspect. To overcome this shortage,
we propose a search method that exploits the business
objects which model the data aspect. Before introduc-
ing our method, we first define the SB2P repository
structure.

4.1 SB2P Repository

Figure 2 shows the conceptual model of a SB2P
repository which is an extension of the UML meta-
model of BPMN (OMG, 2013). Note that SB2Ps
(class Pattern) and BPMN business processes (class
Process) are quite similar because both are composed
of activities, events and gateways which are related by
sequence flows. So, the extending elements concern
the domain and the variation points. In fact, SB2Ps
are organized by domain. Each SB2P is composed of
a set of nodes. A node can be an event, a gateway
or an activity. A gateway may be ”OR”, ”AND” or
”XOR”. An activity is characterized by a label and
acts on an data object. We also characterise an activ-
ity by its type. Indeed, an activity, in a SB2P, is either
mandatory or configurable. A configurable activity
is a variation point in a SB2P on which the designer
can introduce some modifications (i.e. by applying
instantiation operators (see section 5) to imitate the
pattern according to his/her requirements. It can be
refined, extended (have additional dependency) or de-
composed. An activity, in a SB2P, is related to one
or more activities. The type of behavioural relation-
ship is either causal (means that an activity follows
the other) or parallel.

To improve the efficiency of SB2Ps retrieval
within the repository, we define two inverted indexes,
namely, the activity index ActIndex and the busi-
ness object index BOIndex. The business object in-
dex implements the association between the classes
Pattern Acitivity and DataObject in the UML meta-
model of figure 2. The business object index takes
the form of set of pairs (business object; activity list)
where business object denotes the object appearing in
some activity labels and activity list denotes the set
of these activities. When a new pattern is added to
the SB2P repository, all the activity labels can be ex-
tracted, and then the business object index can be up-
dated.

On the other hand, the activity index implements
the association between the classes Pattern Acitivity

and Activity in the UML meta-model of figure 2. The
activity index takes the form of set of pairs (activity;
pattern list) where activity denotes an activity occur-
ring in some patterns and pattern list denotes the set
of these patterns. Given a pattern, we first extract all
its activities. The extraction algorithm takes linear
time in terms of the number of activities of the pat-
tern. Then, the mapping between the activities and
the patterns is updated in the activity index.

4.2 Search Methods

Our search method is based on three criteria which are
the semantic, the behavioural and the hybrid (combi-
nation of the two cited criteria) one.

4.2.1 Semantic Search

The SB2P semantics is coded in its activities’ labels.
The label of an activity defines the role of the activity
in the process pattern and the type of business objects
on which they act. Thus, we propose to exploit ac-
tivity labels and especially business objects to make
semantic search. Indeed, a business object refers to
a concept from the enterprise business domain. It
describes an entity manipulated by the activities and
therefore by the business actors. Therefore, a search
method based on business objects allows an accurate
query of the SB2Ps repository according to semantic
criteria.

Our method extracts patterns which contain ac-
tivities acting on business objects whose names are
introduced by the designer in the query. A query is
a predicate composed of business objects and semi-
colons which replace the logical operator ’and’.

Semantic criteria based on business objects can
improve research results. In fact, they allow the de-
tection of all activities acting on the business object
without the need to make neither calculi of similar-
ity between activity labels nor thresholds to compare
results. Moreover, we can detect not only equivalent
business objects but also other semantic relationships
like hyponymy and hypernymy in order to enlarge our
research results. In addition, using business objects
as search criteria accelerates the search process be-
cause the number of business objects is smaller than
the number of activities in the organization. In addi-
tion, the use of indexes on business objects accelerates
and make the search ore efficient.

To compare business objects, we need a business
domain specific ontology. In our study, we construct
a Business Object ONtology (BOON) which offers
a reference terminology that defines semantic corre-
spondences between business objects. The BOON
has a WordNet like conceptual schema an a logical

ICSOFT-EA�2014�-�9th�International�Conference�on�Software�Engineering�and�Applications

40

Figure 2: Conceptual model of SB2P repository.

reasoning. But, it is domain specific and it takes
into consideration synonymy, hyponymy, hypernymy,
meronymy and holonymy relations. Further, unlike
WordNet, it accepts composed nouns like ”manufac-
turing order”. For example, using the BOON, we
can detect that in the manufacturing domain the busi-
ness object ”manufacturing order” is equivalent to the
business object ”Order”.

The query is answered via a set of resolution
phases. The first phase consists in scanning the busi-
ness object index to check whether the in-putted BO
name is associated with any SB2P. If the search leads
to one or more SB2P(s) in the result, we show the de-
tected patterns to the designer. Otherwise, we carry
on with the search within the business objects derived
from the in-putted one using synonymy, subsumption
and part-of semantic relationships. If all phases fail,
the query processing is terminated with no match.

Procedure SemanticSearch (Pattern[] SB2Ps,
DataObject BO, Pattern[] ResultP)

i, j, k: integer
SynBO, SubBO, PartBO: DataObject[]
Begin
if (BO in BOIndex) then
ResultP = list of patterns associated to BO
else
SynBO <- getSynonym(BO)
For i=1 to |SynBO|
{
if (SynBO(i) in BOIndex) then
ResultP=list of patterns associated to BO

}
SubBO <- getSubsumption(BO)
For j=1 to |SubBO|
{
if (SubBO(j) in BOIndex) then
ResultP=list of patterns associated to BO

}
PartBO <- getMeronym(BO)
For k=1 to |PartBO|
{
if (PartBO(k) in BOIndex) then
ResultP=list of patterns associated to BO

}
EndIf

End.

We have developed a tool, called ’SB2P Reuse
Tool’, which automates our SB2P search method.
’SB2P Reuse Tool’ is a plug-in integrated in the Oryx
platform (Oryx-Editor, 2010). To search for a pattern,
the user starts with entering the domain of the pat-
tern. Then, he gives a key word like query by spec-
ifying a list of business objects separated by semi-
colons. Figure 3 represents the result of the execu-
tion of the query ”manufacturing order” in the man-
ufacturing domain. In this figure, we see that there
are four patterns (oryx-canvas 120, oryx-canvas 103,
etc.) in the repository which use the ”manufacturing
order” business object. The designer clicks on the but-
ton ’Show’ in front of each pattern to show it.

Semantic search using business objects is efficient
and not complex, because the number of business ob-
jects of a given domain is not high. Moreover, it is of
great help for the designer since he/she can put a syn-
onym, a subsuming or a component business object in
the query. Using business objects as search criterion
can be also adopted for searching for specific models
within repositories of business process models.

However, a query restricted to expressing business
objects is not always sufficient. In fact, one may need
to express behavioural relationships between activi-
ties in a query like causality or concurrency to de-
fine the context within which some activities should
be performed in the desired pattern. For this reason,
we add in the next section behavioural criteria to our
search method.

4.2.2 Behavioural Search

The SB2P notation presents a behavioural description
of business processes through control-flow represen-
tation. A SB2P can be regarded as a graph. So, it
represents the order in which activities are performed
during the execution of the process. When we search

Reuse�of�Semantic�Business�Process�Patterns

41

Figure 3: Semantic search.

for a SB2P in the repository, we sometimes want to
express a behavioural relationship between activities
like causality or concurrency. In this paper, we con-
centrate on these two relationships because these are
the most important behavioural operators. So, we
start with defining them:

� Causality: Two activities A and B in a SB2P are in
causal relation, if the graph of the SB2P contains
a path with at least one arc leading from A to B
(A precedes B).

� Concurrency: Two activities A and B are in con-
currency relation, if they are not causally related
and they have a common ancestor which must be
a parallel connector (A is in parallel with B).

These basic behavioural operators are sufficient to
express behavioural search criteria. In fact, the SB2P
subsumes the behaviour of a great number of mod-
els. So, we don’t need to express sharp behavioural
queries. To answer a behavioural query, we define the
function behavSearch() which takes as input two ac-
tivity labels and a behavioural criterion (0 for Causal-
ity and 1 for Concurrency). It returns an array of
all patterns of the repository satisfying the in-putted
query.

On the other hand, we adopt the approach pro-
posed by (Jin et al., 2011) to detect behavioural re-
lations between activities. This approach is based on
two phases: extraction of behavioural relations and
building indexes on behavioural relationships. We
can check whether a task can be executed (parallel
or causal) by traversing all the transitions in the pat-
tern. We develop the following algorithm ExtC to
detect causal relations between pairs of activities in
the SB2P. This algorithm consists in a procedure that

takes as input the SB2P pattern and its activities. The
purpose of this procedure is to extract behavioural
causal relationships between each pair of activities in
a SB2P.

Procedure ExtC (Pattern p, Pattern_Activity[]a)
i: integer
NodeSucc: Pattern_Activity

Begin
For{i = 1 to |a|}{
NodeSucc <- getSucc(a[i])
Causality(p,a[i] ,NodeSucc)

}
End.

Then, we can update the inverted index ActIndex.
Every entry of the index is composed of a pair of
activities, a character that indicates the type of be-
havioural relation between them and the list of pattern
where the activities appear and satisfy the indicated
relationship. We choose the character ’S’ for causal-
ity and ’C’ for concurrency. The following algorithm
of the procedure Causality stores the causality (’S’)
behavioural relationship.

Procedure Causality(Pattern p,Pattern_Activity
node, Pattern_Activity
succNode)

i, j: integer
NodeSucc: Pattern_Activity[]
Begin
If(node ofType Activity)
{
If(succNode ofType Activity)
{

updateActIndex((node, succNode,’S’),p)
}

else
{

NodeSucc <- getSucc(succNode)
For(j = 1 to |NodeSucc|){
Causality(p,node,NodeSucc[j])

}
}

}
End.

The complexity of the algorithm ExtC is calcu-
lated in the worst case on the basis of the loop and
the nested recursive call of the procedure causality().
Thus, the complexity of the algorithm is O(n2).

To detect concurrency relationships between ac-
tivities in the SB2P, we define the procedure
ExtConcurrency. This latter detects all pairs of ac-
tivities in the pattern which have a parallel connector
(AND) as a common ancestor.

Procedure ExtConcurrency (Pattern p,
Pattern_Activity[] a)

i, j: integer
Begin
For(i = 1 to |a|-1)

ICSOFT-EA�2014�-�9th�International�Conference�on�Software�Engineering�and�Applications

42

{
For{j = i+1 to |a|)
{
If(a[i]!=a[j])
{
If(commonAncestor(a[i], a[j],p)
{
updateActIndex((a[i], a[j],’C’),p)

}
}

}
}

End.

When a new pattern is added to the repository, all
behavioural relations are extracted and inserted into
the index. It is easy to see that the index can be up-
dated incrementally. When a pattern is deleted from
the repository, we delete it from all inverted index en-
tries.

4.2.3 Hybrid Search

The hybrid search combines the semantic and be-
havioural search methods. It is conducted according
to the following algorithm:
Function Hybrid (String label1, String label2,

integer behavRel):Pattern[]
p: Pattern[]
DLabel1, DLabel2: String[]
Begin
p <- behavSearch (label1,
label2, behavRel)
If (p is not null)
Then return p
Else {
DLabel1 <- getSyn(label1)+
getSub(label1)+getPart(label1)
D2Label2 <- getSyn(label2)+
getSub(label2)+getPart(label2)
For i = 1 to |DLabel1| {
For j = 1 to |DLabel2|{
p <- behavSearch(DLabel1[i],
DLabel2[j], behavRel)

If (p is not null)
Then return p

}
}

}
return p

End.

The idea behind this algorithm is to enlarge our
search by deriving behavioural queries from the in-
troduced one. The function Hybrid takes as input a
pair of activity labels label1 and label2 and the be-
havioural relation behaveRel between them and re-
turns the list of patterns containing these activities
related by the in-putted behavioural relationship or
other derived relationships. First, it checks if the be-
havioural search BehavSearch leads to one or more

Figure 4: Hybrid search.

results. If not, it calls the functions getSyn() to get
synonyms, getsub() to derive hypernyms, hyponyms
and getPart() to have holonyms and meronyms from
label1 and label2. The derived labels are obtained by
applying the Semantic rules proposed in (Makni et al.,
2012). They are based on the comparison of actions
and business objects of the activity labels.

Figure 4 shows the result of the query defined in
the text box devoted to the query specification. This
query is composed of causally (causal behavioural
operator) related activities (”WIP calculation” and
”product cost analysis”). As shown in this figure, we
obtain one pattern (oryx-canvas 123) which contains
these two causally related activities. This corresponds
to the pattern of figure 1-a.

The complexity of the hybrid search algorithm is
calculated in the worst case on the basis of the func-
tions getSyn(), getSub() and getPart(). The complex-
ity of each one is O(n2). Therefore, the complexity of
the overall algorithm is O(n2).

4.3 Empirical Validation

We have conducted an experiment to evaluate our
search algorithms and to highlight the importance of
the semantic search. To do this, we have automat-
ically constructed a test collection of SB2Ps from
the SAP reference models (Keller and Teufel, 1998).
Then, we measured the precision and recall of our
search algorithms using only the behavioural and hy-
brid criteria (without the semantic one). The preci-
sion is the number of correctly retrieved patterns di-
vided by the number of retrieved patterns. Recall is
the number of correctly retrieved patterns by the total

Reuse�of�Semantic�Business�Process�Patterns

43

Figure 5: Precision and recall of our search algorithms.

number of patterns. Then, we compare the values of
precisions and recalls.

The histogram of figure 5 show the results of our
experiment. We see that all search algorithms give
precise results. But the recall becomes high when we
add semantics.

5 INSTANTIATION OPERATORS

An instantiation operator acts on a variation point of a
SB2P to adapt it according to the designer’s require-
ments. When all the variation points are treated by in-
stantiation operators, a SB2P becomes a regular busi-
ness process represented in BPMN. Depending on the
variation point, a set of instantiation operators may be
applicable. Each instantiation operator is subject to
pre and post conditions that ensure that the final busi-
ness process is syntactically well-formed and remains
within the semantic scope of the original SB2P. In ad-
dition, none of the instantiation operators changes the
behaviour of the SB2P’s mandatory activities: being
consensus activities among the process models of the
domain, mandatory activities must be preserved. Fur-
thermore, besides the syntactic well-formedness, se-
mantic and behavioural preservation, the instantiation
operators should guarantee the derivation of a process
model with a quality not less than the SB2P’s original
one. In the remainder of this section, we present the
five instantiation operators which are applicable to the
various types of variation points in SB2Ps:

� insert: to add a process fragment in a variation
point.

� abstract: to keep the variation point as it is with-
out making any modification.

� delete: to remove an activity from the pattern.

� rename: to alter the name of an activity.

� configure: to specify the type of configurable con-
nectors.

We will present the above operators classified ac-
cording to the variation point types. For each instanti-
ation operator, we present its pre and post conditions,
its steps and results in the SB2P elements, and its im-
pact on the mostly used business process model com-
plexity metrics calculated by the quality evaluation
tool proposed in (Makni et al., 2010). The considered
metrics are the size, the density and the Control-Flow
Complexity (CFC) metric.

The size metric counts the number of activities
in a business process model (Cardoso et al., 2006).
In addition, the CFC metric concerns the analysis of
XOR-splits, OR-splits, and AND-splits control-flow
elements. The main idea behind the metric is to eval-
uate the number of mental states that have to be con-
sidered when a designer is developing a process (Car-
doso et al., 2006). The density metric relates the num-
ber of available connections to the number of maxi-
mum connections for the given number of nodes (Car-
doso et al., 2006).

5.1 Instantiation of Decomposable or
Refined Activities

A decomposable or refined activity can be subject to
an insert or abstract instantiation operator.

5.1.1 Operator insert

- Pre-condition: The process fragment to be in-
serted is well-formed (i.e., structured block
(Nicola et al., 2010)).

- Post-condition: The SB2P is well-formed.

- Steps: Select one of the process fragments anno-
tating the decomposable or refined activity, insert
it into the variation point and eliminate the anno-
tation from this activity.

- Results: The decomposable or refined activity be-
comes a regular sub-process object encapsulating
the detailed activities selected by the designer.

- Effects on quality metrics: The size metric in-
creases. Also, the density and the CFC met-
rics increase. Consequently, the overall architec-
tural complexity of the resulting process model in-
creases.

Figure 6 shows an example of instantiating the de-
composable activity ”Manufacturing order overhead
calculation” which corresponds to the variation point
’B’ in figure 1-a. The designer chooses the process
fragment (PF1) from the set of process fragments ’B’

ICSOFT-EA�2014�-�9th�International�Conference�on�Software�Engineering�and�Applications

44

Figure 6: Instantiation of decomposable activity.

(see figure 1-b) and applies the ’insert’ instantiation
operator. As a result, the sub-process ”Manufacturing
order overhead calculation” contains the process frag-
ment composed of ”cost object overhead calculation”
and ”product cost collector overhead calculation”.

5.1.2 Operator abstract

- Pre-condition: None

- Post-condition: None

- Steps: The annotation of the decomposable activ-
ity is eliminated.

- Results: Neither semantic nor structural modifica-
tions are introduced in the pattern.

- Effects on quality metrics: No changes.

5.2 Instantiation of Skipped Activities

A skipped activity can be subject to a Delete, Rename
or Insert instantiation operator.

5.2.1 Operator delete

- Pre-condition: None.

- Post-condition: The SB2P is well-formed.

- Steps: Redirect each of the incoming edges of
the skipped activity to all the targets of its outgo-
ing edges; delete all of its outgoing edges; finally
delete the skipped activity.

- Results: No semantic modification is introduced
on the model.

- Effects on quality metrics: The size metric of
the instantiated pattern decreases and also its den-
sity declines. Consequently, the overall structural
complexity is reduced, hence, the instantiated pat-
tern will be easier to understand.

5.2.2 Operator rename

- Pre-condition: The name to be inserted respects
the syntactic pattern: action + business object
(Makni et al., 2012).

- Post-condition: None.

- Steps: Select one activity from the list annotating
the skipped activity to rename it or enter a new
label. Then, eliminate the annotation from this
activity.

- Results: No structural modification is introduced
into the model.

- Effects on quality metrics: None of the structural
metrics is affected. However, names which re-
veal the intention of the designers more clearly
improve understandability of the model and con-
sequently result in decreased costs of change and
reduced errors (Becker et al., 2000).

5.2.3 Operator insert

- Pre-condition: The process fragment to be in-
serted is well-formed (i.e., structured block)
(Nicola et al., 2010).

- Post-condition: The SB2P is well-formed.

- Steps: Select one of the process fragments an-
notating the skipped activity, insert it into the
skipped activity and eliminate its annotation, then
rename the skipped activity.

- Results: The skipped activity becomes a regular
sub-process containing the inserted process frag-
ment.

- Effects on quality metrics: The size metric in-
creases. Also, the density and the CFC met-
rics increase. Consequently, the overall architec-
tural complexity of the resulting process model in-
creases.

Figure 7: Instantiation of skipped activity.

Reuse�of�Semantic�Business�Process�Patterns

45

Figure 8: An example of instantiated SB2P for the cost accounting process.

Figure 7 shows the instantiation of the variation
point ”C” (see figure 1-a) which is a skipped activity.
in by applying the insert instantiation operator. As
a result, the empty sub-process contains the process
fragment (PF1) in the figure 1-b composed of ”pre-
liminary settlement” and ”variance calculation cumu-
lated”.

5.3 Instantiation of Configurable
Connectors

5.3.1 Operator Configure

- Pre-condition: None.

- Post-condition: None.

- Steps: A configurable OR-connector may be
mapped to a regular OR-, XOR- or AND-
connector. The configurable AND-connector may
only be mapped to a regular AND-connector with
a decision to be made by the designer as to how
many of n available process paths are to be exe-
cuted in synchronization. The configurable XOR-
connector may only be mapped to a regular XOR-
connector or to a single process sequence.

- Results: Each configurable connector will be-
comes a regular one.

- Effects on quality metrics: Evidently, gateways
affect the Control Flow Complexity (CFC) of the
pattern. The CFC is calculated by adding the CFC
of all split constructs presented in the pattern. The
greater the value of the CFC, the greater the over-
all architectural complexity of the pattern is.

Figure 8 is an example of an instantiated SB2P. We
obtained it after applying the ’insert’ instantiation
operator on the variation point ’B’ which is decom-
posable activity (see figure 1-a) and on the variation
point ’C’ which is a skipped activity (see figure 1-a).
In addition, we applied the ’delete’ instantiation

operator on the skipped activities marked by ’C’
and ’E’ in figure 1-a and the ’abstract’ instantiation
operator on the variation point decomposable activity
marked by ’A’. Finally, we applied the ’configure’
instantiation operator on the configurable connectors.
In summary, we used 6 instantiation operators
(’insert’, ’delete’, ’abstract’ and ’configure’) to adapt
the pattern.

6 CONCLUSION

In this paper, we presented a reuse method for SB2P,
which assists a designer in retrieving a SB2P from a
repository and applying a set of instantiation opera-
tors. The novelty of the proposed retrieval method is
that it is based on the business objects while at the
same time accounting for the behavioural aspect of a
business process. To our knowledge, this work is the
first in proposing this method. Besides the retrieval
method, our reuse method defines a set of instantia-
tion operators which are aware of the model quality.
In future work, we aim to apply our SB2P construc-
tion method, instantiation operators and search algo-
rithms on large and complex process models in order
to study the impact of scalability.

REFERENCES

Awad, A. (2007). Bpmn-q: A language to query business
processes. In EMISA, pages 115–128.

Awad, A., Polyvyanyy, A., and Weske, M. (2008). Semantic
querying of business process models. In Proceedings
of the 2008 12th International IEEE Enterprise Dis-
tributed Object Computing Conference, EDOC ’08,
pages 85–94, Washington, DC, USA. IEEE Computer
Society.

Awad, A. and Sakr, S. (2012). On efficient processing of
bpmn-q queries. Computers in Industry, 63(9):867–
881.

ICSOFT-EA�2014�-�9th�International�Conference�on�Software�Engineering�and�Applications

46

Becker, J., Rosemann, M., and von Uthmann, C. (2000).
Guidelines of business process modeling. In In,: Busi-
ness Process Manegement: Models, techniques and
empirical studies.eds, pages 30–49. Springer-Verlag.

Beeri, C., Eyal, A., Kamenkovich, S., and Milo, T. (2008).
Querying business processes with bp-ql. Inf. Syst.,
33(6):477–507.

Cardoso, J., Mendling, J., Neumann, G., and Reijers, H. A.
(2006). A discourse on complexity of process mod-
els. In Proceedings of the 2006 International Con-
ference on Business Process Management Workshops,
BPM’06, pages 117–128. Springer-Verlag.

Choi, I., Kim, K., and Jang, M. (2007). An xml-based pro-
cess repository and process query language for inte-
grated process management. Knowledge and Process
Management, 14(4):303–316.

Fettke, P. and Loos, P. (2003). Classification of reference
models: a methodology and its application. Inf. Syst.
E-Business Management, 1(1):35–53.

Gottschalk, F., van der Aalst, W. M. P., Jansen-Vullers,
M. H., and Rosa, M. L. (2008). Configurable work-
flow models. Int. J. Cooperative Inf. Syst., 17(2):177–
221.

Haddar, N. Z., Makni, L., and Abdallah, H. B. (2012). Lit-
erature review of reuse in business process modeling.
Software & Systems Modeling.

Hallerbach, A., Bauer, T., and Reichert, M. (2010). Captur-
ing variability in business process models: The provop
approach. Journal of Software Maintenance and Evo-
lution: Research and Practice, 22(6-7):519–546.

Indulska, M., Green, P. F., Recker, J., and Rosemann, M.
(2009). Business process modeling: Perceived ben-
efits. In Laender, A. H. F., Castano, S., Dayal, U.,
Casati, F., and de Oliveira, J. P. M., editors, ER,
volume 5829 of Lecture Notes in Computer Science,
pages 458–471. Springer.

Jin, Tao, J. W. W. N., Rosa, M. L. R., and ter Hofstede, A.
H. M. (2010). Efficient and accurate retrieval of busi-
ness process models through indexing - (short paper).
In Meersman, R., Dillon, T. S., and Herrero, P., edi-
tors, OTM Conferences (1), volume 6426 of Lecture
Notes in Computer Science, pages 402–409. Springer.

Jin, T., Jianmin, W., Nianhua, W., Marcello, L. R., and ter
Hofstede, A. H. M. (2013). Efficient querying of large
process model repositories. Computers in Industry,
64(1):41–49.

Jin, T., Wang, J., and Wen, L. (2011). Querying business
process models based on semantics. In DASFAA (2),
pages 164–178.

Keller, G. and Teufel, T. (1998). Sap R/3 Process-Oriented
Implementation: Iterative Process Prototyping. SAP
databases. Addison Wesley Professional.

La Rosa, M., Dumas, M., Uba, R., and Dijkman, R. (2013).
Business process model merging: An approach to
business process consolidation. ACM Trans. Softw.
Eng. Methodol., 22(2):11:1–11:42.

Makni, L., Haddar, N. Z., and Ben-Abdallah, H. (2011).
Semantic design patterns for business processes. In
Cuaresma, M. J. E., Shishkov, B., and Cordeiro, J.,
editors, ICSOFT (1), pages 83–87. SciTePress.

Makni, L., Haddar, N. Z., and Ben-Abdallah, H. (2012). De-
tection of semantic relations between business process
activity labels. In ICEIS (3), pages 273–277.

Makni, L., Khlif, W., Haddar, N. Z., and Ben-Abdallah, H.
(2010). A tool for evaluationg the quality of business
process models. In ISSS/BPSC, pages 230–242.

Nicola, A. D., Missikoff, M., Proietti, M., and Smith, F.
(2010). An open platform for business process mod-
eling and verification. In DEXA (1), pages 76–90.

OMG (2013). Bpmn 2.0.
http://www.omg.org/spec/BPMN/2.0.2/.

Oryx-Editor (2010). Web-based graphical business process
editor. http:// code.google.com/p/ oryx-editor/.

Rosa, M. L. (2009). Managing variability in process-aware
information systems. PhD thesis, Queensland Univer-
sity of Technology.

Rosa, M. L., Dumas, M., and ter Hofstede, A. H. (2009).
Modelling business process variability for design-time
configuration. In Cardoso, J. and van der Aalst, W. M.,
editors, Handbook of Research on Business Process
Modeling, pages 204–228. Information Science Ref-
erence (IGI Global), Hershey, PA. Access to the
author-version is currently restricted pending permis-
sion from the publisher. For more information, please
refer to the publisher’s website (see hypertext link) or
contact the author.

Rosa, M. L., Lux, J., Seidel, S., Dumas, M., and ter Hof-
stede, A. H. M. (2007). Questionnaire-driven config-
uration of reference process models. In Krogstie, J.,
Opdahl, A. L., and Sindre, G., editors, CAiSE, volume
4495 of Lecture Notes in Computer Science, pages
424–438. Springer.

Rosemann, M. and van der Aalst, W. M. P. (2007). A
configurable reference modelling language. Inf. Syst.,
32(1):1–23.

Scheidegger, C. E., Vo, H. T., Koop, D., Freire, J., and
Silva, C. T. (2008). Querying and re-using work-
flows with vstrails. In Proceedings of the 2008 ACM
SIGMOD International Conference on Management
of Data, SIGMOD ’08, pages 1251–1254, New York,
NY, USA. ACM.

Shao, Q., Sun, P., and Chen, Y. (2009). Wise: A workflow
information search engine. In Ioannidis, Y. E., Lee,
D. L., and Ng, R. T., editors, ICDE, pages 1491–1494.
IEEE.

ter Hofstede, A. H. M., Ouyang, C., Rosa, M. L., Song,
L., Wang, J., and Polyvyanyy, A. (2013). Apql: A
process-model query language. In AP-BPM, pages
23–38.

Weber, B., Reichert, M., and Rinderle-Ma, S. (2008).
Change patterns and change support features - enhanc-
ing flexibility in process-aware information systems.
Data Knowl. Eng., 66(3):438–466.

Reuse�of�Semantic�Business�Process�Patterns

47

