
Automatic and Graceful Repairing of Data Inconsistencies Resulting
from Retroactive Updates in Temporal Xml Databases

Hind Hamrouni, Zouhaier Brahmia and Rafik Bouaziz
Department of Computer Science, Faculty of Economics and Management, University of Sfax, Sfax, Tunisia

Keywords: Temporal XML Databases, Retroactive Update, Data Inconsistency, Inconsistency Periods, Repairing an
Inconsistency, Side Effect, Side Effects Recovery.

Abstract: In temporal XML databases, a retroactive update (i.e., modifying or deleting a past element) due to a
detected error means that the database has included erroneous information during some period and,
therefore, its consistency should be restored by correcting all errors and inconsistencies that have occurred
in the past. Indeed, all processing that have been carried out during the inconsistency period and have used
erroneous information have normally produced erroneous information. In this paper, we propose an
approach which preserves data consistency in temporal XML databases. More precisely, after any
retroactive update, the proposed approach allows (i) detecting and analyzing periods of database
inconsistency, which result from that update, and (ii) repairing of all inconsistencies and recovery of all side
effects.

1 INTRODUCTION

Nowadays, supporting the temporal aspect is a
requirement for most computer applications,
including processing of scientific and census data,
banking and financial transactions, record-keeping
and scheduling applications. In fact, these
applications need to store and manipulate data while
taking into account the time dimension; this has led to
the appearance of temporal databases (Etzion et al.,
1998, Grandi, 2014) which retain data evolution over
transaction-time dimension and/or valid-time
dimension (Jensen et al., 1998):
 The valid-time of a datum is the time when a

datum is true in the real world; each time-varying
datum is timestamped with a validity start time
(VST) and a validity end time (VET).

 The transaction-time of a datum is the time when a
datum is current in the database; each time-varying
datum is timestamped with a transaction start time
(TST) and a transaction end time (TET).
In temporal databases, there are three types of

updates concerned with the time when updates are
made: retroactive, proactive (Etzion et al., 1994), and
real-time (or on-time) updates.
 A retroactive update is done after the change

occurred in reality (i.e., the TST of the datum is
superior to its VST).

 A proactive update is done before the change
occurs in reality (i.e., the TST of the datum is
inferior to its VST).

 A real-time update is done when the change occurs
in reality (i.e., the TST of the datum is equal to its
VST).
Retroactive and proactive updates occur naturally

in many applications. For example, a salary increase
may be retroactive to some past date, and a postdated
check is a proactive update.

On the other hand, currently, XML databases
(Bourret, 2005) are widely used, especially on the
web. The introduction of temporal (Dyreson et al.,
2009) aspects in such databases gave rise to temporal
XML databases (Brahmia et al., 2014). In these
databases, any temporal XML document can store
transaction-time, valid-time and bi-temporal XML
elements. Moreover, these databases are very useful
for several domains (e.g., managing evolution of legal
texts in e-government systems, online management of
patients’ medical records...). Notice that temporal
XML databases are richer than temporal relational
databases at structure and textual content levels.
Moreover, temporal XML data are presented with
temporally grouped data models. Indeed, each time-
varying XML element evolves individually over time.

However, although temporal XML databases
allow end users/applications to perform retroactive

243Hamrouni H., Brahmia Z. and Bouaziz R..
Automatic and Graceful Repairing of Data Inconsistencies Resulting from Retroactive Updates in Temporal Xml Databases.
DOI: 10.5220/0005004102430250
In Proceedings of 3rd International Conference on Data Management Technologies and Applications (DATA-2014), pages 243-250
ISBN: 978-989-758-035-2
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)

updates on stored data, such updates are not always
performed safely since they could have a harmful
effect on the consistency of the database. Let’s take
the example of correcting a past banking interest rate
in a bank, which was applied during the period going
from 2013-01-01 to 2013-12-31. All existing data
(e.g., interest bank accounts, balances of bank
accounts, scheduled payment amounts) that have been
obtained using the erroneous past banking interest
rate are consequently erroneous and should be
corrected. The database was inconsistent during the
period where this interest rate was effective.

In this paper, we focus on the impacts of
retroactive updates on the consistency of the database
and we propose an approach that allows the temporal
XML database management system (DBMS) (i) to
detect any database inconsistency that happens due to
a retroactive update, and (ii) to perform automatically
the necessary processings, in a transparent way, in
order to repair the detected inconsistencies.

The rest of this paper is organized as follows: the
next section motivates the need for a new approach
for preserving the consistency of temporal XML
databases; Section 3 describes data inconsistencies
resulting from retroactive updates in such databases;
Section 4 presents our approach for an automatic and
graceful repairing of data inconsistencies that occur
due to retroactive updates; Section 5 discusses related
work; Section 6 concludes the paper.

2 MOTIVATION

In this section, we first present an example that
illustrates how maintaining consistency in temporal
XML databases after a retroactive update is a
complicated task that could not be achieved using
existing supports provided by DBMSs. Then we show
the need for systems providing supports for
preserving consistency of temporal XML databases.

2.1 Motivating Example

Suppose that on 2014-03-25, the auditor detects an
error that has occurred on 2014-01-05: the bank
employee saved a deposit transaction which adds an
amount of 550 TND (the erroneous value) instead of
500 TND (the correct value), to the account of a
customer; thus, an amount of 50 TND was stored in
the database but really was not provided by the
customer. Obviously, this error was propagated to all
other financial transactions that have been done on
this account between 2014-01-05 and 2014-03- 25;

there was always an amount of 50 TND which should
be subtracted from the balance.

The semantics of existing data update operations
(Brahmia et al., 2009), which should be used to
correct both the deposited amount and the balance
account on 2014-01-05, does not support the
correction of the impact of this error (i.e., to correct
each balance of this account, related to each
transaction performed after 2014-01-05). Such an
operation corrects only the details of the financial
transaction (i.e., the deposited amount and the
balance of the account at the end of the transaction)
done on 2014-01-05. To restore the database
consistency, the database administrator should
proceed in an ad hoc manner: first, he/she should
determine the list of all transactions that were
performed on this account going from the transaction
during which the error has occurred until the last one.
Then, he/she should update all erroneous data by
writing an appropriate XML update (Tatarinov et al.,
2001; W3C, 2011; Hamrouni, 2012).

2.2 Need for New DBMS Supports

The consistency of a temporal XML database could
not be ensured easily, since (i) all temporal
dimensions are supported (i.e., data can evolve over
transaction time and/or valid time), and (ii) a data
management operation that is originally devoted to
insert, delete, or update an XML element could
involve several other XML elements (e.g., when the
temporal interval of a new element that modifies an
existing one overlaps, completely or partially,
temporal intervals of other existing XML elements).
Furthermore, since the database administrator lacks
methods and tools needed to automate the activity of
detecting and repairing data inconsistencies in
temporal XML databases, such an activity remains an
error-prone and time-consuming undertaking.

Thus, the challenges described above show that
end users/applications, using temporal XML
databases, need DBMSs with built-in support for
detecting and repairing automatically inconsistencies
which result from retroactive updates.

3 DATA INCONSISTENCIES
RESULTING FROM
RETROACTIVE UPDATES

In (Bouaziz et al., 1998), the authors defined an
inconsistency period resulting from a retroactive
update of data as the temporal interval which delimits

DATA�2014�-�3rd�International�Conference�on�Data�Management�Technologies�and�Applications

244

the scope of side effects that are expected to be
generated by this update. Such an inconsistency
period could be of one of the following three types:
“Wrong Absence of Data”, “Wrong Presence of
Data”, or “Errors in Data”.
 Wrong Absence of Data: the inconsistency is due

to the absence of a datum that had to be present in
the database during this period;

 Wrong Presence of Data: the inconsistency comes
from the presence of a datum that had to be absent
in the database during this period;

 Errors in Data: the inconsistency results from the
existence of some data with erroneous values
during this period.
An inconsistency period, resulting from a

retroactive update can be divided into several sub-
periods; each one of these sub-periods should be
interpreted according to the nature (i.e., insertion,
deletion, or correction) of the retroactive update. In
the following, we study periods of inconsistency, and
their sub-periods.

3.1 Data Inconsistencies Resulting from
a Retroactive Insertion of Data

The insertion of an XML element with retroactive
effect generates an inconsistency period of “Wrong
Absence of Data” type: the inserted element, which
was absent before its transaction start time, should be
normally present in the temporal database since its
validity start time. Fig. 1 illustrates such a period of
inconsistency. In the following, we use CT to denote
the “current time”.

Figure 1: The inconsistency period resulting from a
retroactive insertion of data.

As shown by Fig. 1, the period of inconsistency,
which is delimited by the VST (period beginning) and
the TST (period ending) of ei, can be divided into two
sub-periods:
 [VSTi – VETi]: the interval during which the

consequent side effects concern all processings
that had to use the element ei while it had to be a
current element;

]VETi – TSTi]: the interval during which the
generated side effects concern all processings that
had to use the element ei while it had to be a past
element.

3.2 Data Inconsistencies Resulting from
a Retroactive Deletion of Data

The removal of an XML element with retroactive
effect generates an inconsistency period of “Wrong
Presence of Data” type: the deleted element, which
was present before the instant of its deletion (i.e.,
before the TST of the deletion element (Brahmia et
al., 2009) which is used to perform this deletion),
should not normally exist in the temporal database
since its validity start time. Fig. 2 illustrates such a
period of inconsistency.

Figure 2: The inconsistency period resulting from a
retroactive deletion of data.

As shown by Fig. 2, the period of inconsistency,
which is delimited by the VST of ei (period
beginning) and the TST of ej (period ending), can be
divided into two sub-periods:
 [VSTj - VETi]: the interval during which the

resulting side effects concern all processings that
had used the element ei while it was a current
element;

]VETi - TSTj]: the interval during which the
consequent side effects concern all processings
that had used the element ei while it was a past
element.

3.3 Data Inconsistencies Resulting from
a Retroactive Correction of Data

Retroactive correction operations could be done only
on valid-time and bitemporal data. In this paper, we
deal only with retroactive correction of bitemporal
data, since we think that it is more complex and, thus,
it requires much attention.

The correction of a bitemporal element is
performed by inserting a new element containing the
correct values, called the element of correction
(Brahmia et al., 2009). A correction operation can
affect (i) the contents of the corrected element, (ii)
values of non-temporal attributes (i.e., attributes
different of VST, VET, TST, and TET attributes) of
the corrected element, and/or (iii) the valid-time
interval of the corrected element (i.e., values of VST
and VET attributes); obviously, the transaction-time

Automatic�and�Graceful�Repairing�of�Data�Inconsistencies�Resulting�from�Retroactive�Updates�in�Temporal�Xml�Databases

245

interval (i.e., values of TST and TET attributes) of
any element cannot be modified owing to the
definition of transaction time. In the first and/or the
second case (i.e., points (i) and (ii)), the correction
operation generates an inconsistency period of type
“Errors in Data”. However, in the third case (i.e.,
point (iii)), it generates an inconsistency period which
can be divided into several sub-periods each one of
them has a different type.

In the following, we deal with inconsistencies
resulting from a retroactive correction operation that
updates the contents and/or the values of non-
temporal attributes of a bitemporal element; it
modifies neither the VST attribute, nor the VET
attribute. This correction generates an inconsistency
period of type “Errors in Data”: it means that the
corrected element had an erroneous value. Fig. 3
illustrates such a period of inconsistency.

When the valid-time interval of a bitemporal
element is modified, we distinguish ten cases
according to Allen's interval algebra (Allen, 1983)
and all possible relations between the valid-time
interval of the correction element (ej) and that of the
corrected element (ei); more details on all these cases
can be found in (Hamrouni et al., 2014).

Figure 3: The inconsistency period resulting from a
retroactive correction operation which does not modify the
valid-time interval of a bitemporal element.

As shown by Fig. 3, the period of inconsistency,
which is delimited by the VST of ei (period
beginning) and the TST of ej (period ending), can be
divided into two sub-periods:
 [VSTi - VETi]: the interval during which the

generated side effects concern all processings that
had used the element ei while it was a current
element;

]VETi - TSTj]: the interval during which the
consequent side effects concern all processings
that had used the element ei while it was a past
element.

4 DETECTING AND REPAIRING
DATA INCONSISTENCIES
RESULTING FROM
RETROACTIVE UPDATES IN
TEMPORAL XML DATABASES

In this section, we propose an approach that allows
restoring automatically the database consistency after
a retroactive update of temporal XML data. First, we
describe the process of detecting and repairing
automatically database inconsistencies. Then, we
present the architecture of a native temporal XML
DBMS which provides supports for an automatic
detection and repair of data inconsistencies after a
retroactive update.

4.1 Process of Detecting and Repairing
Automatically Data Inconsistencies

When an end user or an application submits to the
temporal XML DBMS a retroactive update of
temporal XML data, the DBMS performs the
following sequence of tasks:
Task 1: it updates the database as required by the end

user or the application (obviously after checking the
update syntactically).

Task 2: it determines automatically the period of
inconsistency resulting from the retroactive update
of data, and its sub-periods.

Task 3: it determines automatically the list of
transactions that were executed during each sub-
period of inconsistency and had used erroneous past
data (in case that the corresponding sub-period of
inconsistency is of type “Wrong Presence of Data”
or “Errors in Data”) or had to use new data (in case
that the corresponding sub-period of inconsistency
is of type “Wrong Presence of Data” or “Errors in
Data”); for each concerned transaction, it should
provide its commit time, all its elementary
operations (for the sake of simplicity, we suppose
that a transaction is composed of a single operation,
i.e., a single insert, delete, or update operation), and
all data that were written and read by this
transaction.

Task 4: it re-executes in a provisory workspace the
list of corresponding transactions during each sub-
period of inconsistency either (a) without using the
corresponding past data, if this sub-period is of type
“Wrong Presence of Data”, or (b) while using (b.1)
the correct values of past data, if this sub-period is
of type “Errors in Data”, or (b.2) the specified past
data, if this sub-period is of type “Wrong Absence
of Data”.

DATA�2014�-�3rd�International�Conference�on�Data�Management�Technologies�and�Applications

246

Task 5: it compares the old results of determined
transactions (i.e., results already stored in the
database, as written data by these transactions) with
the new results of them (i.e., the new data that are
written by these transactions in the provisory
workspace).

Task 6: it replaces every old result with the
corresponding new result when there is a difference
between them.

In the following, we provide main requirements of
some tasks presented above:
 Task 1 requires that the DBMS supports

management of temporal XML data under schema
versioning; we have studied this aspect in our
previous work (Hamrouni, 2012).

 Task 3 requires beforehand keeping track of all
transactions which are executed: all operations
which compose each transaction, all written and
read data, and its commit time;

 Task 4 requires that the provisory workspace
should be a copy of the database (schema and
instances) during the inconsistency period, before
the execution of the retroactive update operation.

 Task 6 requires that replacing old data with new
data should be performed logically and not
physically (i.e., in a destructive manner); each
existing erroneous data is logically corrected by a
new correct data. After restoring the database
consistency, only correct data must be used by the
DBMS to answer user/application queries;
erroneous data could be vacuumed later (Skyt et
al., 2003) by the database administrator.

4.2 Architecture of a DBMS Supporting
Detection and Repair of Data
Inconsistencies

Owing to the general architecture of a DBMS
(Hellerstein et al., 2007), the transaction manager is
the component which is devoted to managing
transactions resulting from user/applications queries
and updates submitted to the database. Therefore, if
we would like to have an automatic restoring of the
database consistency after any retroactive update of
temporal XML data, we think that (i) the transaction
manager of a temporal XML DBMS should be
extended by four new components: “Retroactive
Update Checker”, “Inconsistency Period Manager”,
“Side Effect Recovery Manager” and “Optimizer”,
and (ii) the temporal XML DBMS itself should
include a “Transaction Catalog Manager”, a
“Transaction Catalog”, and a “Provisory Workspace”.
The new general architecture of a temporal XML
DBMS is depicted in Fig. 4.

The “Retroactive Update Checker” checks that
the Temporal XML Update submitted by the end
user/application is an update operation with
retroactive effect (i.e., this operations adds, deletes, or
modifies past data). Notice that a past data has a
valid-time interval which ends before the current time
(i.e., VET < CT).

The “Inconsistency Period Manager”, which is
invoked by the “Retroactive Update Checker” in case
it detects a retroactive update, determines
automatically the period of inconsistency which
results from a retroactive update of data, and its sub-
periods with their types. Suppose that an erroneous
past element “ee” is corrected by a correct past
element “ce”. The resulting period of inconsistency is
defined by either the interval [VSTee - CT] (if VSTee
< VSTce), or [VSTce - CT] (if VSTce < VSTee). The
sub-periods of inconsistency related to this period are
identified according to the study presented in the
subsection 3.3.

After determining all sub-periods of
inconsistency, the “Inconsistency Period Manager”
(i) invokes the “Transaction Catalog Manager” in
order to retrieve from the “Transaction Catalog” the
list of transactions that were executed during each
one of these sub-periods, and (ii) sends all retrieved
transactions to the “Side Effect Recovery Manager”.

The “Side Effect Recovery Manager” controls
the re-execution of transactions which have used
erroneous data (i.e., transactions executed during a
period of inconsistency of type “Wrong Presence of
Data” or “Errors in Data”) and transactions that had
to use newly added data (i.e., transactions executed
during a period of inconsistency of type “Wrong
Absence of Data”). The concerned transactions are
re-executed in a “Provisory Workspace” which is a
copy of the database during the corresponding period
of inconsistency. At the end of the re-execution of
each transaction, the “Side Effect Recovery Manager”
compares the results of determined transaction
already stored (as written data) in the database with
the results of the execution in the provisory
workspace. If there are differences between them, so
an inconsistency is detected and it should be repaired.
For that, the “Side Effect Recovery Manager”
replaces the old result with the new one.

The “Side Effect Recovery Manager” interacts
with the “Optimizer” module which implements a set
of optimization rules. Indeed, the “Optimizer”
receives a sequence of non-optimized transactions
that should be re-executed, and tries to reduce them
(if possible). In the following, we present three
examples of these optimization rules:
 Rule 1: if two successive transactions, T1 and T2,

Automatic�and�Graceful�Repairing�of�Data�Inconsistencies�Resulting�from�Retroactive�Updates�in�Temporal�Xml�Databases

247

Figure 4: General Architecture of a temporal XML DBMS supporting automatic detecting and repairing of data
inconsistencies resulting from retroactive updates.

act on the same XML element e12, such that T1
adds e12 and T2 deletes e12, then the system has
to ignore these two transactions and do not re-
execute them.

 Rule 2: if two successive transactions, T3 and T4,
act on the same XML element e34, such that T3
adds e34 and T4 updates e34, then the system has
to combine/merge the two transactions into the
first one (which is T3) and re-executing it (i.e., re-
executing T3) but with updated values provided in
the second one (which is T4): adding e34 with
updated values provided in T4.

 Rule 3: if a transaction does not include any
operation of type data insertion, deletion, or
modification, then the system has to ignore this
transaction and do not re-execute it.
The “Transaction Catalog Manager” is added in

order to have a history of transactions, which is
complete (all details of transactions) and useful (i.e.,
easy-to-use by Side Effect Recovery Manager). For
each transaction, it saves its commit time, the
specified insert, delete, or update operation (since we
suppose that each transaction include only one data
manipulation operation), data read from the database,
data written to the database, data values provided by
the user in its data manipulation operation.

5 RELATED WORK

Despite the importance of preserving consistency of
temporal databases after retroactive updates, this

issue has been considered only to a limited extent in
the current literature.

In (Samet, 1997), the author proposed the use of
temporal active rules and retroactive rules (Pissinou
et al., 1994) in order to redress side effects resulting
from a retroactive update in a temporal relational
active database. An active rule or an Event-
Condition-Action (E-C-A) rule is said to be temporal
if (1) the event is temporal, or (2) the condition is
temporal. A retroactive rule is a rule whose action
includes a retroactive update.

In (Bouaziz et al., 1998), the authors proposed a
solution for redressing side effects generated by a
retroactive update, named “correction propagation”.
This solution is defined to repair only inconsistencies
which affect cumulative attributes (i.e., attributes
which can undergo only operations of additions or
subtractions of values, like the balance of a bank
account or the turnover of a company).

Preserving the consistency of temporal databases
was studied in other works which did not consider
retroactive updates. Indeed, some of these works have
dealt with database consistency with regard to (i) the
respect of integrity constraints (Campo et al., 2006;
Svirec et al., 2012), (ii) the concurrency control of
transactions, by proposing new pessimistic (De
Castro, 1998) and optimistic algorithms (Makni et al.,
2010), or (iii) the forensic analysis of database
tampering (Pavlou et al., 2013).

Retroactive and proactive updates were studied in
temporal active databases (Etzion et al., 1994) and in
conventional (non-temporal) databases (Deng et al.,
1995). However, none of these works has dealt with

DATA�2014�-�3rd�International�Conference�on�Data�Management�Technologies�and�Applications

248

inconsistencies that could result from such updates.
In (Pardede et al., 2008), the authors propose a

generic methodology for the management of XML
data update in XML-enabled databases. However,
they did not deal with retroactive updates, and define
a data inconsistency as a data invalidity resulting
from an XML data update.

Brahmia et al. (2009) and Hamrouni (2012) have
studied data management in multi-temporal XML
databases supporting schema versioning, but none of
them have taken into account data inconsistencies
resulting from retroactive update operations.

Afrati et al. (2009) have dealt with managing
inconsistency in databases, within the framework of
database repairs (Arenas et al., 1999); a repair of an
inconsistent database is a database over the same
schema that satisfies the integrity constraints at hand
and differs from the given inconsistent database in
some minimal way.

Consistency of data, which takes into account the
violation of semantic rules defined over a set of data
items, has been also studied within the issue of data
cleansing (Mezzanzanica et al., 2013) and considered
as a data quality dimension (Batini et al., 2006).

Recently, Zellag et al. (2014) propose an
approach for detecting consistency anomalies and
automatically reducing their occurrence, in multi-tier
architectures.

6 CONCLUSION

In this paper, we proposed an approach for an
automatic and graceful repairing of data
inconsistencies in temporal XML databases, resulting
from retroactive updates. It allows the DBMS (i) to
detect any database inconsistency that happens after a
retroactive update operation, and (ii) to perform
necessary processings, in a transparent way, in order
to repair inconsistencies automatically.

We think that our approach (i) maintains
effectively the consistency of the database, and (ii)
provides a low-impact solution since it requires
neither modifications of existing temporal database,
nor extensions to existing temporal XML models
(e.g., τXSchema (Snodgrasss et al., 2008)) and query
languages (e.g., TXPath (Rizzolo et al., 2008)).

A system prototype which shows the feasibility of
our approach is under development (at the University
of Sfax), as a temporal stratum on top of the existing
XML DBMS xDB (EMC, 2014). In fact, the first
author is extending the prototype TempoXUF-Tool
(Hamrouni, 2012), developed within her master's
project for temporal XML data management under

schema versioning, to support detecting and repairing
data inconsistencies resulting from retroactive
updates. Currently, this prototype allows only
determining periods of inconsistencies when it
receives a temporal XQuery Update Facility query
with retroactive effect.

As a part of our future work, we envisage to
extend our work by (i) dealing with retroactive
updates which concern several temporal XML
elements (in our present work we have supposed that
a retroactive update consider always one temporal
XML element), and (ii) studying transactions that
include several temporal XML updates with
retroactive effect (in fact, in the current work we
supposed that a transaction include always a single
temporal XML retroactive update).

Furthermore, we also plan to study how to repair
inconsistencies resulting from on-time and proactive
updates of temporal XML databases, since the update
of a current or a future temporal XML element could
also give rise to some inconsistencies.

REFERENCES

Afrati, F. N. & Kolaitis, P. G. 2009, ‘Repair Checking in
Inconsistent Databases: Algorithms and Complexity’,
Proceedings of the 12th International Conference on
Database Theory (ICDT 2009), St. Petersburg, Russia,
23-25 March, pp. 31-41.

Allen, J. F. 1983, ‘Maintaining Knowledge About
Temporal Intervals’, Communications of the ACM, Vol.
26, No. 11, pp. 832-843.

Arenas, M., Bertossi, L. & Chomicki, J. 1999, ‘Consistent
Query Answers in Inconsistent Databases’, Proceedings
of the 18th ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems (PODS
1999), Philadelphia, Pennsylvania, USA, 31 May – 2
June, pp. 68-79.

Batini, C. & Scannapieco M. 2006, (eds.), Data Quality:
Concepts, Methodologies and Techniques. Data-Centric
Systems and Applications. Springer, Heidelberg.

Bouaziz, R. & Moalla, M. 1998, ‘Historisation of Data and
Recovery of Side Effects’ (in french), Proceedings of
14th Journées de Bases de Données Avancées
(BDA’1998), Hammamet, Tunisia, 23-26 October, pp.
487-507.

Bourret, R. 2005, XML and Databases, available at:
<http://www.rpbourret.com/xml/XMLAndDatabases.ht
m>, last updated in September 2005.

Brahmia, Z. & Bouaziz, R. 2009, ‘Data Manipulation in
Multi-Temporal XML Databases Supporting Schema
Versioning’, Proceedings of the 4th International EDBT
Workshop on Database Technologies for Handling
XML Information on the Web (DaTaX’09), Saint-
Petersburg, Russia, 22 March.

Automatic�and�Graceful�Repairing�of�Data�Inconsistencies�Resulting�from�Retroactive�Updates�in�Temporal�Xml�Databases

249

Brahmia, Z., Grandi, F., Oliboni, B. & Bouaziz, R. (in
press, to appear during 2014), ‘Schema Change
Operations for Full Support of Schema Versioning in
the tauXSchema Framework’, International Journal of
Information Technology and Web Engineering.

Campo, M. & Vaisman, A. 2006, ‘Consistency of Temporal
XML Documents’, Proceedings of the 4th International
XML Database Symposium (XSym 2006), Seoul, Korea,
10-11 September, pp. 31–45.

De Castro, C. 1998, ‘On concurrency management in
temporal relational databases’, Proceedings of 6th

Italian Symposium on Database Systems (SEBD 1998),
Ancona, Italy, June, pp. 189-202.

Deng, M., Sistla, A. P., & Wolfson, O. 1995, ‘Temporal
Conditions with Retroactive and Proactive Updates’,
Proceedings of the 1st International Workshop on Active
and Real-Time Database Systems (ARTDB-95), Skövde,
Sweden, 9-11 June, pp. 122-141.

Dyreson, C. E., & Grandi, F. 2009, ‘Temporal XML’, in L.
Liu and M. T. Özsu (Eds.), Encyclopedia of Database
Systems. Heidelberg: Springer-Verlag, pp. 3032–3035.

EMC. 2014, Documentum xDB. Available at:
<http://www.emc.com/products/detail/software2/docum
entum-xdb.htm>

Etzion, O., Gal A. & Segev A. 1994, ‘Retroactive and
Proactive Database Processing’, Proceedings of the 4th
International Workshop on Research Issues in Data
Engineering: Active Database Systems (RIDE-ADS
1994), Houston, Texas, USA, 14-15 February, pp. 126-
131.

Etzion O., Jajodia S., Sripada S. 1998, (eds.), Temporal
Databases: Research and Practice, LNCS 1399,
Springer-Verlag.

Grandi F. (in press, to appear in July 2014), ‘Temporal
Databases’, In M. Koshrow-Pour, (Ed.), Encyclopedia
of Information Science and Technology (3rd Ed.), IGI
Global, Hershey.

Hamrouni, H. 2012, Extending XQuery Update Facility to
Temporal and Versioning Aspects, Master thesis,
Faculty of Economics and Management of Sfax,
Tunisia.

Hamrouni, H., Brahmia, Z. & Bouaziz, R. 2014, An
Efficient Approach for Detecting and Repairing Data
Inconsistencies Resulting from Retroactive Updates in
Multi-Temporal and Multi-version XML Databases,
TimeCenter Technical Report TR-97, 22 pages, 17
June.
<http://timecenter.cs.aau.dk/TimeCenterPublications/T
R-97.pdf>

Hellerstein, J. M., Stonebraker, M. & Hamilton, J. 2007,
‘Architecture of a Database System’, Foundations and
Trends® in Databases, Vol. 1, No. 2, pp. 141-259.

Jensen, C. S., Dyreson, C. E., (Eds.), et al. 1998, ‘The
Consensus Glossary of Temporal Database Concepts –
February 1998 Version’, In O. Etzion S. Jajodia, & S.
Sripada, (Eds.), Temporal Databases: Research and
Practice, LNCS 1399, pp. 367–405. Berlin: Springer-
Verlag.

Makni, A. & Bouaziz, R. 2010, ‘Performance evaluation of
an optimistic concurrency control algorithm for

temporal databases’, Proceedings of the 2nd
International Conference on Advances in Databases,
Knowledge, and Data Applications (DBKDA 2010),
Menuires, France, 11-16 April, pp. 75–81.

Mezzanzanica, M., Boselli, R., Cesarini, M., & Mercorio,
F. 2013, ‘Automatic Synthesis of Data Cleansing
Activities’, Proceedings of the 2nd International
Conference on Data Management Technologies and
Applications (DATA 2013), Reykjavík, Iceland, 29-31
July, pp. 138-149.

Pardede, E., Rahayu, J. W., & Taniar D., ‘XML data update
management in XML-enabled database’, Journal of
Computer and System Sciences, Vol. 74, No. 2, pp. 170-
195.

Pavlou, K. E., & Snodgrass, R. T. 2013, ‘Generalizing
database forensics’, ACM Transactions on Database
Systems, Vol. 38, No. 2, paper 12.

Pissinou, N., Snodgrass, R. T., Elmasri, R., Mumick, I. S.,
Özsu, M. T., Pernici, B., Segev, A., Theodoulidis, B. &
Dayal, U. 1994, ‘Towards an Infrastructure for
Temporal Databases: Report of an Invitational
ARPA/NSF Workshop’, SIGMOD Record, Vol. 23, No.
1, pp. 35-51.

Rizzolo, F. & Vaisman, A. A. 2008, ‘Temporal XML:
modeling, indexing, and query processing’, The VLDB
Journal, Vol. 17, No. 5, pp. 1179-1212.

Samet, A. 1997, Automatic Recovery of Side Effects in a
Multi-Version Environment, Master thesis, Faculty of
Science of Tunis, Tunisia.

Skyt, J., Jensen, C. S. & Mark, L. 2003, ‘A foundation for
vacuuming temporal databases’, Data and Knowledge
Engineering, Vol. 44, No. 1, pp. 1 – 29.

Snodgrass, R. T., Dyreson, C. E., Currim, F., Currim, S. &
Joshi S. 2008, ‘Validating Quicksand: Schema
Versioning in τXSchema’, Data Knowledge and
Engineering, Vol. 65, No. 2, pp. 223-242.

Svirec, M. & Mlýnková, I. 2012, ‘Efficient Detection of
XML Integrity Constraints Violation’, Proceedings of
the 4th International Conference on Networked Digital
Technologies (NDT 2012) - Part I, Dubai, UAE, 24-26
April, pp. 259-273.

Tatarinov, I., Ives, Z. G., Halevy, A. Y. & Weld, D. S.
2001, ‘Updating XML’, Proceedings of ACM SIGMOD
Conference 2001, Santa Barbara, California, USA, , pp.
413-424.

W3C. 2011, XQuery Update Facility 1.0, W3C Candidate
Recommendation, 17 March.
<http://www.w3.org/TR/2011/REC-xquery-update-10-
20110317/>

Zellag, K. & Kemme, B. 2014, ‘Consistency anomalies in
multi-tier architectures: automatic detection and
prevention’, The VLDB Journal, Vol. 23, No. 1, pp.
147-172.

DATA�2014�-�3rd�International�Conference�on�Data�Management�Technologies�and�Applications

250

