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Abstract: This paper presents an adaptive Gauss Hermite filter for nonlinear signal models in the situation when the 
measurement noise statistics is unknown. The proposed nonlinear filter, based on the Gauss Hermite 
quadrature rule, can ensure satisfactory estimation performance despite the problem of unknown 
measurement noise statistics by online adaptation. Results of Monte Carlo Simulation demonstrate the 
efficacy of the proposed filter for joint estimation of parameters and states using an object tracking problem. 

1 INTRODUCTION 

Optimal filtering and estimation require knowledge 
about the covariances of process and measurement 
noise (Simon, 2006). Estimation performance is 
known to deteriorate when such noise covariances 
are unknown. One solution to overcome the above 
problem is to use adaptive estimators. In this paper, 
an yet unreported adaptive sigma point filter has 
been proposed for nonlinear systems where the 
measurement noise covariance is unknown. 

The estimator proposed here is based on the 
Gauss Hermite quadrature rule (Ito, 2000; 
Arasaratnam, 2007) and belongs to the family of 
sigma point filters. Sigma point filters (Lefebvre, 
2004) are derivative free filters and had been widely 
reported in literature on nonlinear estimation as 
these filters overcome the well known shortcomings 
of the Extended Kalman Filter (EKF). Despite the 
extensive computation effort Gauss Hermite filters 
(GHF) stand out in certain situations in comparison 
to Unscented Kalman filters (UKF), Central 
Difference filter (CDF) (Ito, 2000) and simulation 
based filters like Particle filters (Arasaratnam, 
2007). 

Even this sophisticated filtering algorithm fails 
to provide accurate estimation results in the face of 
unknown noise covariances as discussed before. 
This paper attempts to overcome this limitation 
proposing an adaptive Gauss Hermite quadrature 
filter which has been developed by incorporating 
adaptation steps in the framework of Gauss Hermite 

quadrature filter. The adaptation steps in the 
proposed filter employ “covariance matching 
method” as inspired from the adaptive linear filters 
(Mehra, 1972; Maybeck, 1982; Myer, 1976). Like 
the cited previous work the proposed method also 
makes use of the statistics of ‘innovation’ (defined 
as the difference between the a priori estimate of 
measurement and the actual measurement) sequence 
for adaptation. Unlike (Myer, 1976), in the work of 
(Mehra, 1972; Maybeck, 1982) the algorithm has 
been made computationally more efficient by 
eliminating the need to use previous history of a 
priori error covariance.  

Adaptive nonlinear filters like adaptive EKF 
(Busse, 2003), adaptive UKF (Das, 2013) or other 
adaptive derivative free sigma point filters like 
adaptive Divided Difference filter (adaptive DDF) 
(Karlgaard, 2011) are also reported in the literature.  

In general, adaptive filters are categorized into 
two classes depending on the adaptation of the 
process noise covariance (Q-adaptive filter), or the 
measurement noise covariance (R-adaptive filter). 
As the present work is based on measurement noise 
adaptation (R-adaptation) the literature review 
focuses on R adaptive nonlinear filters. The R 
adaptive UKF based on innovation sequence by 
(Das, 2013) reports direct adaptation of R while R 
adaptive UKF by (Hajiyev, 2014) prefers scaling 
factor based adaptation, an equally accepted method 
of adaptation. A Robust adaptive DDF presented in 
(Karlgaard, 2011) emphasizes on robustness in 
presence of outliers and also adapts the unknown 
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noise covariances using the innovation based Q and 
R adaptation. 

The proposed filter uses Gauss Hermite 
quadrature rule for evaluation of the integrals 
encountered in nonlinear Bayesian filtering problem 
(Ito, 2000) and also incorporates the steps for R 
adaptation. Only the R adaptive version of adaptive 
GHF based on innovation sequence is reported here. 
The Q adaptive version (addresses the 
complementary problem of R adaptation) was 
proposed by the present authors in (Dey, 2014) for 
joint estimation of states and parameters.  

The adaptive GHF, which has not yet been 
reported in the recent literature to the best 
knowledge of the authors, has the following 
advantages: 
(i) Like other derivative free filters the proposed 
filter replaces computation of Jacobian and Hessian 
matrices by some functional evaluations, (ii) It has 
been demonstrated in (Ito, 2000) that Gauss Hermite 
quadrature filters provide better estimation 
performance compared to UKF and CDF for certain 
nonlinear systems and such advantages are expected 
to be inherited by its adaptive version. It has also 
been reported in (Arasaratnam, 2007) that in certain 
situations Gauss Hermite quadrature filters can 
ensure estimation accuracy comparable to that of 
much more computationally intensive simulation 
based filters like Particle filters, (iii) Being a direct 
quadrature formula, the proposed filter does not 
need the discerning choice of tuning parameters like 
the UKF. 

The proposed filter is evaluated with the help of 
two case studies. The case studies which use a 
benchmark nonlinear estimation problem and a well 
known ballistic object tracking problem demonstrate 
that the proposed filter is capable of joint estimation 
of parameters and states. 

2 ADAPTIVE GAUSS HERMITE 
FILTER 

2.1 Problem Statement 

We consider nonlinear dynamic equations of a 
system as given below 

  kkk xfx  1     (1) 

  kkk xgy      (2) 

where n
k Rx  is a state vector, m

k Ry  is 

output vector. The zero mean process and 

measurement noises (assumed Gaussian) are denoted 

as  QRn
k ,0~ ,  k

m
k RR ,0~ .The process 

noise covariance is a known constant matrix. 
However, the measurement noise covariance being 
unknown it is to be adapted at every time instants.  

2.2 Filter Algorithm 

For the above described estimation problem, the 
algorithm of Adaptive Gauss Hermite filter is 
presented below. 

kx is a priori estimate, 
kP is a priori error 

covariance, kx̂ is a posteriori estimate, 
kP  is a 

posteriori error covariance. 
Step (i) Initialization: 

000
ˆ,,,ˆ RQPx 

 
Step (ii) Computation of Quadrature Points and 
corresponding weights: 
 Compute J, a symmetric tri-diagonal, defined 

as
0, iiJ

 and 21,
i

iiJ   for 
11  Ni with N-quadrature points. 

 The quadrature points are chosen as 

ii xq 2 where ix are the eigen values of  J 
matrix. 

 The corresponding weight ( iw ) of iq  is 

computed as 
  2

1iv
where

 1iv
is the first 

element of the ith normalized eigenvector of 
J. 

Step (iii) Gauss Hermite Quadrature Rule: 
Following Gauss Hermite Quadrature Rule, 
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In order to evaluate NI  for nth order system, Nn 

number of quadrature points and weights are 
required. 
Step (iv) Time update step: 
Compute the Cholesky Factor 

 


  1)1( kx PctorCholeskyFakS   (4) 

Select quadrature points as 

  1ˆ1 
  kixi xqkSχ       (5) 
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Step (v) Measurement update step: 
Compute the Cholesky Factor  

     kx PFactorCholeskykS     (8) 

Select sigma points as   kixi xqkS      (9) 

A priori estimate of measurement becomes 


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i
iik whz

1

)(              (10) 

The following covariance can be computed as - 

  


 
N

i
i

T
kiki

xz
k wzgxP

1

)(            (11) 

  


 
N

i
i

T
kiki

zz
k wzgzgP

1

)()(            (12) 

Step (vi) R – Adaptation: 
Compute the innovation sequence as  

kkk zy                (13) 

The estimated innovation covariance can be 
computed from a sliding window of epoch length L. 
using (14) 





k

Lkj

T
k (j)j

L
C

1

 )(
1ˆ              (14) 

The adapted R is computed using (15) 

zz
kkk PCR  ˆˆ             (15) 

Step (vii) step for computation of filter gain and a 
posteriori estimates: 

  1ˆ 
 k

zz
k

xy
kk RPPK           (16) 

kkkk Kxx ˆ            (17) 

  T
kk

zz
kkkk KRPKPP ˆ            (18) 

Step (viii) Recursion: 
Starting from k=1 the steps from (i) to (vii) are 
repeated for subsequent time instants. 

2.3 Notes on the Algorithm 

 Though the proposed algorithm considers the 
additive noise, the extension to the more 
general cases is straight forward. 

 The adaptation step is executed before 
computation of filter gain so that adapted 

kR̂ of current instant can be incorporated for 

computation of filter gain, a posteriori state 
estimate and a posteriori error covariance. 

 It is to be noted that the innovation sequence 
from a sliding window has been employed for 
computation of estimated innovation 
covariance, which subsequently computes the 
adapted R. 

 The window length or epoch length is a 
parameter which needs experimentation. A 
large choice of window size smoothens the 
estimate of R at the cost of computational 
burden and low tractability. A small choice of 
window length is appropriate to track the 
short term variation in R but makes the filter 
prone to divergence. 

 It is to be also noted that until the step index k 
is less than epoch length L, the adapted R is 
computed based on available size of 
innovation sequence (length k). Afterwards R 
is adapted from sliding window as given in 
(14). 

3 CASE STUDY-1 

State estimation of a single dimensional system with 
a considerably strong nonlinearity has been chosen 
in this section. The nonlinear system possesses two 
stable equilibrium points at 1, –1 and an unstable 
equilibrium point at 0. The measurement equation, 
having a weak bi-modal tendency, fails to 
distinguish between the stable equilibrium points 
decisively. The problem is well known for its ability 
to detect the limitation of estimators if any. Improper 
tuning of the filter because of unknown noise 
statistics may consequently enforce the estimates to 
settle at the wrong equilibrium point. In context of 
this problem, the comparison of the adaptive and the 
non adaptive Gauss Hermite is justified when the 
measurement noise covariance is unknown. 

3.1 System Dynamics 

The system dynamics and the measurement 
equations are presented in this  section.  The  system 
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dynamics, taken from (Ito, 2000), is given below. 

  kkk xx   1             (19) 

   215 xxxx              (20) 

k is an additive Gaussian noise, 

  2,0~ bNk
.The measurement equation presented 

in (Sadhu, 2007) has been considered as it has 
weaker bimodal tendency compared to (Ito, 2000). 

  kkk xy              (21) 

   xxx 5.01            (22) 

k is an additive measurement noise(Gaussian), 

  2,0~ dNk . The parameters used to generate the 

true state trajectory have the values as given below. 
01.0 sec, 2.00 x , 5.0b , 1.0d . For the 

filter, the initial values are chosen as 8.0ˆ0 x , 

20 P , 25.0Q . However, measurement noise 

covariance is unknown to the filter. We initialize 
both the filters assigning an arbitrary choice of 
measurement noise which is thousand times greater 
than the truth value to induce sufficient uncertainty. 
The window length is considered to be 100. 

3.2 Simulation Results 

 The tracking performance of both adaptive 
and non adaptive Gauss Hermite filter (both 
of them have 5 quadrature points) for a 
representative run is presented by Figure 1. It 
is observed that, although initialized with an 
arbitrary initial choice of measurement noise 
covariance with large error, the proposed 
AGHF can track the true trajectory. The non 
adaptive GHF, however, loses the track and 
get settled at the wrong equilibrium point. 

 The error settling performance of both the 
filter is compared from the results of Monte 
Carlo study with 10,000 runs. The RMS 
errors of both the filters are represented by 
Figure 2. The results indicate that the RMS 
error of AGHF is much lower than that of the 
non adaptive GHF. This also signifies 
numerous occurrence of track loss in case of 
non adaptive GHF. 

 Figure 3 illustrates the adapted R obtained 
from the adaptive GHF for a representative 
run. It is observed that the adapted R 
converges and successfully tracks the truth 

value the truth value for subsequent time 
instants. 
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Figure 1: Performance comparison of Adaptive and Non 
adaptive GHF for a representative run. 
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Figure 2: RMS error plot of Adaptive and Non adaptive 
GHF for 10,000 MC runs. 
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Figure 3: Plot of estimated measurement noise covariance 
(R) for a representative run. 

4 CASE STUDY-2 

Suitability of the AGHF for joint estimation of 
parameters and states is demonstrated with the help 
of a well known problem of ballistic object tracking 
during re-entry. The object is considered to be 
tracked by a radar with range only measurement. 
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Figure 4: Radar Tracking of a ballistic object during re-
entry: A schematic diagram. 

4.1 System Dynamics 

This section presents the dynamic model of the 
object during re-entry. As the drag force becomes 
pronounced during endo-atmospheric phase the 
dynamics becomes highly nonlinear. The effect of 
gravity is assumed to be negligible compared to drag 
force as reported in (Athans, 1968). 

The dynamic model is given by 

Vh             (23) 

m

VhAC
V D

2

)( 2
           (24) 

Below are given the details of the symbols often 
encountered in this particular section: 

h :altitude of the object (ft), V : object velocity 
(ft/sec), DC : drag coefficient (dimensionless), A : 

reference area for drag evaluation (sq. ft),  :air 

density(slug/ft3), m : mass of ballistic object(slug) 
Air density varies exponentially with altitude 

following a model heh   0)(  

with -15 ft 105  . On contrary of the ballistic 

coefficient, a ballistic parameter 
m
ACD

2
0


 , 

reportedly defined in (Athans, 1968), is considered 
as a parameter to estimate. However, the ballistic 

coefficient is usually defined as 
AC

mg

D
  and 

related with the ballistic parameter as 

2

0 g . 

For estimation of ballistic parameter, it is 
augmented with state vector and modelled as a 
constant. The differential equation of object 
dynamics is modified as given below: 

Vh               (25) 

 2VeV h            (26) 

0              (27) 

Using Euler’s approximation with a sampling 
time  the corresponding discrete state space model 
of object is obtained (Ristic, 2003).The kinematic 
states of the ballistic object and the ballistic 
parameter are perturbed with additive process noise 

kw  (Gaussian). 

The discrete time model is given by: 

kkk w)f(xx  1            (28) 

)f(xk 1 indicates the discrete nonlinear model for 

system dynamics. 

)]G[D(xxφ)f(x kkk 111        (29) 

Here,


















100

010

01 
 ,  Tkkk Vh x 111   1k  and 

 TτG 00 . The drag experienced by the 

objectis defined by 

 31
2

21111 exp ex)e)(xexγ()D(x T
k

T
k

T
kk     (30) 

where ie denotes the ith  unit vector. 

The process noise covariance of kw is considered 

as


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
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
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
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00

02/

02/3/

q

qq

qq

Q
 where 1q  and 2q  are 

parameters for describing the process noise as given 
in (Ristic, 2003). kw  is independent of measurement 

noise kv . 

The range measured by the radar has a nonlinear 
measurement equation. The interval of measurement 
is same as sampling interval, i.e.,  sec. For this 
problem is considered to be equal to 0.1sec. 

k
T
kk vHexMy  2

1
2 )(      (31) 

Here,  Te 0011  , represents the unit vector. 

H is the altitude of radar and M is the shortest 
horizontal distance from the path of the ballistic 
object during re-entry as shown in the Figure 4. 

kv indicates zero mean Gaussian noise with an 

unknown noise covariance kR . 

To generate the true state trajectories of object, 
the truth value of initial kinematic states and truth 
value of the ballistic parameter are chosen following 
(Norgaard, 2000) as specified in Table 1. As for the 

Adaptive�Gauss�Hermite�Filter�for�Parameter�and�State�Estimation�of�Nonlinear�Systems

587



 

filter necessary parameters are also provided in the 
same table. The truth value of kR  being unknown to 

the filter, it is deliberately assigned with an arbitrary 
value which has wide range of uncertainty 
( filterR = trueR ×100). 

4.2 Simulation Results 

A comparative study between the adaptive and the 
non adaptive GHF is carried out using Monte Carlo 
simulation in the situation with unknown 
measurement noise statistics. Both the filters are 
initialized with an arbitrary choice of R which is 
hundred times higher than the value of true R. 
However, knowledge of process noise covariance, 
Q, is considered to be known to both the filters. The 
performance is evaluated analysing the RMS errors 
obtained from both adaptive and non adaptive GHF. 
From Figure 5, Figure 6 and Figure 7 it has been 
observed that, for all the states and the parameter, 
RMS errors of the adaptive GHF converged quickly 
to a lower value compared to the non adaptive GHF.  

Table 1: Numerical values and description of the 
parameters used in simulation. 

Symbols Value Description 

0x  [300000 20000 10-3]T 
Initial value for 
true trajectories

1q  5 ft2s−3 
A parameter of 
true Q 

2q  10-12ft −2s−1 
A parameter of 
true Q 

M  100000 ft 

Horizontal 
distance of 
object from 
radar 

H  100000 ft 
Height of the 
radar 

trueR  1002 ft2 
Measurement 
noise 
covariance 


0P  diag (106, 4×106, 10-4) 

Initial a 
posteriori error 
covariance 

0x̂  N( 0x , 
0P ) 

Initialization of 
filter estimates.

L  100 
Actual window 
length 

 
This indicates that the AGHF can adapt the 

unknown measurement noise covariance and 
produces more reliable estimation than non adaptive 
GHF in case of the joint estimation of parameters 
and states. 
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Figure 5: Comparison of RMS error (altitude estimation) 
of AGHF & GHF for 1000 MC runs. 
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Figure 6: Comparison of RMS error (velocity estimation) 
of AGHF & GHF for 1000 MC runs. 
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Figure 7: Comparison of percentage of RMS error 
(ballistic parameter estimation) of AGHF & GHF for 1000 
MC runs. 

5 CONCLUDING DISCUSSIONS 

An adaptive Gauss Hermite filter has been proposed 
and evaluated with different bench mark nonlinear 
estimation problems. It can be inferred from the 
results of the Monte Carlo simulation that the 
adaptive GHF can successfully adapt the unknown 
measurement noise covariance and presents 
substantially improved estimation performance over 
the non adaptive filter for a wide range of initial 
choice of measurement noise covariance. The 
suitability of the proposed filter for joint estimation 
of parameters and states of nonlinear systems is also 
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demonstrated using a well known object tracking 
problem.  

As the non adaptive GHF reportedly excels other 
non adaptive sigma point filters like UKF and CDF, 
the performance of the proposed adaptive GHF has 
been compared with its non adaptive version. 

In the absence of analytical proof of 
convergence, each adaptive nonlinear filter, 
including the proposed one, are to be thoroughly 
evaluated with the help of extensive simulation 
studies or real time experiments in several fields of 
application before such filtering techniques may be 
widely applied in practice with confidence. 

However, the proposed filter may be 
recommended for state and parameter estimation of 
nonlinear systems because of its improved 
estimation performance, good convergence, simple 
adaptation rule, capacity to accommodate wide 
uncertainty in the initial choice of measurement 
noise covariance. 
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