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Abstract: Autonomous robots can be equipped to detect potential threats of fire and find out the source while avoiding 
the obstacles during navigation. The proposed system uses Voting Logic Fusion to approach and declare a 
potential fire source autonomously. The robot follows the increasing gradient of light and heat to identify 
the threat and approach source.  

1 INTRODUCTION 

Industrial fires are a leading cause of injuries at 
industrial workplaces. According to NFPA (National 
Fire Protection Agency, USA) 2012 statistics: 
 1,375,000 fires were reported in the U.S during 

2012. 
 $12.4billion in property damage 
 480,500 of these fires were structure fires.  
The current safety systems mainly consist of smoke 
detectors at various locations in a factory, sensing 
the smoke in the air and activating a sprinkler 
system but there are certain scenarios when a fire 
does not emit smoke.  

The proposed system in this paper consists of an 
autonomous mobile robot using modified voting 
logic fusion to monitor and approach the fire source 
in an industrial environment, minimizing the losses 
and not disrupting the production processes at other 
locations. It navigates on a sinusoidal path to 
increase the area of vision of the sensors such that to 
detect targets that are not necessarily on the way.  

2 LITERATURE REVIEW 

E. Zervas et al, 2011, discuss the forest fire detection 
by using the fusion of temperature, humidity and 
vision sensors. A belief of fire probability is 
established for each resultant node and then this data 
is fused with the data from vision sensors that 
monitor the same geographical area.  

Khoon et al., 2012, proposed a new design of an 

autonomous robot dedicated to fire fighting. This 
robot, called Autonomous Fire Fighting Mobile 
Platform or AFFPM, has a flame sensor and obstacle 
avoidance systems. The AFFPM follows a preset 
path through the building. At some points, it will 
leave its track and go toward the identified fire 
source reaching within 30 cm of the flame. It then 
engages a fire extinguisher that is mounted on the 
platform. After it has extinguished the fire 
completely, it returns to its guiding track to carry on 
with its further investigation of any other fire source. 

Viswanathan et al, 1997, discuss series and 
parallel architectures and the governing decision 
rules to be implemented. An optimization based on 
Neyman-Pearson criterion and Bayes formulation 
for conditionally independent sensor observations is 
proposed.  The review of sensor fusion methods 
were done in a paper by (Sasiadek, 2002). 

Lilenthal et al., 2006, discuss the detection 
strategy of a silkworm to reach the elevated levels of 
heat. Sinusoidal movement, adopted also in this 
paper, is used to increase the possibility of detecting 
other potentially stronger sources. 

3 DIFFERENTIALLY DRIVEN 
MOBILE ROBOT 

In this paper a differentially driven mobile robot, 
shown in Fig. 1, was used for experimentation and 
testing. The two driving wheels are at the front. A 
line bisecting them crosses the centre of gravity of 
the robot.  

The angular velocities of these wheels are 
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denoted by ωl and ωr.  

 

Figure 1: Differentially driven mobile robot. 

The nomenclature is: 

Vl = Velocity of the left wheel, 
Vr= Velocity of the right wheel, 
V = velocity of the assembly, 
ω = Angular velocity of the center point of the 
vehicle, 
2b = Distance between front wheels, 
R = Wheel radius, 
φr(t) = Rotation angle of the right wheel 
φl(t) = Rotation angle of the left wheel 

The following equations show the relations 
between velocities 
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The configuration of the robot can be described by: 
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Where, x and y are the two coordinates of the center 
of mass and θ is the orientation angle of the robot. 

The kinematic model of the robot is given by 
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The differentially driven robot is able to change 
its direction by controlling the speed of its driving 
motors. The robot used for illustration in this paper,  
NXT 2.0TM, has four available sensor inputs and 
three available outputs for motors. The four sensors 
are connected to the inputs, namely to the two light 
sensors, one TIR (Thermal Infrared Sensor) and one 
ultrasonic sensor for obstacle avoidance.  

The input ports are named 1, 2, 3 and 4. The 
sensors connected to the input ports are as follows: 

 Sensor A, Thermal Infrared Sensor, 

connected to the input port 1, 
 Sensors B and C, light sensors connected to 

the input ports 2 and 3, respectively,  
 Sensor S, a Sonar Sensor (Ultrasonic Sensor), 

connected to the input port 4 
Motion control is based on an open loop approach 
providing commands to the two output ports that are 
in use for this robot and are connected to motors “B” 
and “C”, such that: 

 If Motor B and C run at the same speed, the 
robot will move forward or backwards, 

 If Motor B is running forward and Motor C is 
stopped the robot would turn LEFT (or 
rotate in anticlockwise direction) with the 
center of radius as the left wheel,  

 If Motor C is running forward and Motor B is 
stopped the robot would turn RIGHT (or 
clockwise direction) with the center of 
radius as the right wheel,  

 If Motor C is running forward and Motor B is 
running backwards, the robot will rotate 
clockwise at that particular spot, and vice 
versa. 

The speed of these two motors can be modified 
to have different values of the motor singular speeds. 
The controller for the motors is programmed in 
LabVIEW® for Mindstorms robots.  

4 NAVIGATION STRATEGY  

Since the sensors are fixed on the robot and the 
movement of robot determines the direction of these 
sensors, the vision of these sensors is limited to 45˚. 
The sinusoidal movement, used for the navigation 
strategy, turns the robot either 45˚ to the right or 45˚ 
to the left while searching for increasing levels of 
light or heat. Control of this sinusoidal movement, 
shown in Fig. 2, requires sensors with peripheral 
vision of 180˚ in the direction of motion of the robot.  

 

Figure 2: The visible range of sensors in a sinusoidal 
movement. 

ω 

V 

Vr 

Vl 

2b 

θ

X 

Z 

DIRECTION OF MOTION 

Fire�Detection�Robot�Navigation�Using�Modified�Voting�Logic

141



In order to cover 180˚ in the direction of motion it 
was chosen to use a scanning approach such that, as 
the robot travels in a straight line, the sensors cover 
the area surrounding it.  

The speed of the robot is 0.3 m/s at 100% 
voltage input. The voltage can be modified in the 
range from 0% to 200% to change speeds. The 
sampling rate for the sensors is 10 times a second. A 
sine wave, of given amplitude, had to be selected to 
optimize the distance traveled, area scanned and 
time elapsed to complete one cycle (Fig. 3).  

The distance covered by the robot is directly 
proportional to the amplitude of the sine curve path 
chosen by the programmer. In a sine curve with 
amplitude of 1, the length of a sine curve is 2.63π. 
Depending on the requirements, the amplitude and 
frequency can be chosen by the programmer. If there 
is a need to scan a wider area, the amplitude can be 
changed to a different value. 

 
Figure 3: LabVIEW Virtual Instrument (VI) for sinusoidal 
movement of the robot ending as a given high level of 
light intensity is reached. 

5 VOTING LOGIC APPROACH 

5.1 Confidence Level 

Confidence level is defined as the degree of 
matching of the input signal to the features of an 
ideal target, signal to interference ratio or number of 
predefined features that are matched to the sensor 
reading with the input signal. Here  A1 is denoted as 
low confidence, A2 and A3 are denoted as medium 
and high confidence levels for the sensor A, 
respectively.  

The number of confidence levels required for a 
sensor is function of the number of sensors in the 
system and the ease with which it is possible to 
correlate target recognition features, extracted from 
the sensor data, with distinct confidence levels. If 
more confidence levels are available, the easier it is 

to develop combinations of detection modes that 
meet system detection and false-alarm probability 
requirements under wide-ranging operating 
conditions. 

5.2 Voting Logic Sensor Fusion 

As evident from the name, voting logic fusion fuses 
the data of multiple sensors and based on the 
information and confidence levels of these inputs 
from the sensors, decision making is carried out 
(Fig. 4). Voting logic fusion has many advantages 
over single sensor based readings, used in series or 
parallel. It provides a great deterrence against false 
alarms, not compromising on the ability to detect 
suppressed targets in a noisy environment. It may be 
preferable technique to detect, classify and track 
objects when multiple sensors are used. 

Since one sensor, the ultrasonic sensor, is mainly 
used for detection and avoidance of obstacles, it 
does not need to be part of voting logic to declare 
the presence of a fire (Fig. 5).Rather it would work 
independently of the other sensors (Fig. 4). The 
priority level for the sensor output is very high. As 
the obstacle avoidance is very important to keep the 
robot moving, the increasing gradient direction is 
used for this purpose. 

5.3 Modified Voting Logic 

A fire declaration is only possible in the current 
circumstances when the light readings above 
threshold and the temperature above a certain level 
are available. The probability of fire diminishes if 
the light sensors are providing a reading that is 
higher but the robot does not detect elevated 
temperatures (Fig. 6). The robot may reach close to 
the target where, due to robot geometry, the light 
sensors may not give a reading that falls in any 
confidence level given that the robot reached the 
source. At that instance, the sensor A will give the 
highest confidence level due to the temperature 
present but, since the other sensors are not able to 
sense it, voting logic will not declare a target based 
on the output of just one sensor. At this point the 
reading from the other sensors becomes irrelevant. 

Normal voting logic does not keep this scenario 
into account. In order to reach the point of interest 
the robot has to follow any lead of increased light 
only and will not declare the fire source until it 
reaches a point where elevated temperatures are also 
detected. To maximize the possibility of identifying 
the target, an average of the previous four readings 
is taken into account to linearize the readings hence 
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making the detection more reliable (Fig. 6). This is 
achieved by introducing a while loop with shift 
register in LabVIEW. 

 

Figure 4: Fire declaration algorithm. 

In the modified voting logic are incorporated 
some of the attributes of parallel sensor combination 
along with the conventional voting logic (Fig. 7). 
The combinations of interest in fire detection with 
two light sensors will only contain the ones that 

include readings from the thermal infrared sensor. 
Hence, the combination of the outputs containing the 
two light sensors only has been excluded.  

In the instance where light sensors are giving a 
low confidence reading, or no reading, but the 
temperature sensor is giving a very high confidence 
reading, the fire incident is declared (Table 1). If the 
thermal infrared sensor was defined as A and the 
two light sensors were designated the letters B and 
C, the voting logic described by the Venn diagram 
shown in Fig. 7.  

Fig. 8 shows LabVIEW implementation of 
modified voting logic algorithm. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Possible combinations of sensor readings. 

 

Figure 6: Single sensor based increasing gradient tracking 
in LabVIEW implementation. 

Table 1: Sensors and confidence levels. 

Mode Sensors and Confidence Levels 
 A B C 

ABC A2 B2 C2 
ABC A3 B1 C1 
AB A2 B3 - 
AC A2 - C3 
A A4 - - 

A B C 

D 

WA WB WC 

    Σ W 

Voting Logic Rule (Fig. 8) 

Low 
Confidence Level 

Threshold 

Move to Source 

Increased Gradient (Fig. 6) 

Compare sensor readings, follow 
increasing gradient 

Maximum Gradient 

Detect / Avoid 
obstacles 

High 
Confidence Level 

No 

Sinusoidal Movement (Fig. 2 and 3)

    Fire declaration 

Yes 

ABC
AC AB

AB C 
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Figure 7: Combinations of interest in sensor outputs with 
two light sensors and one thermal infrared sensor. 

 

Figure 8: LabVIEW implementation of Modified Voting 
Logic. 

5.4 Detection Modes 

In this section are presented the combinations of 
sensor outputs that are able to declare a fire incident. 
As more sensors detect different confidence levels, 
the need to have higher confidence levels decreases. 
Modes that contain two sensors are not required to 
have the highest confidence levels as an intermediate 
confidence level from all the sensors may be 
sufficient to declare a fire incident. For the low 
confidence level, however, all three sensors have to 
be a part of the decision making process.  

As mentioned in the last section, the voting logic 
has to be modified in certain scenarios, so some 
scenarios need to be excluded and some need to be 
added. In the above mentioned case exclusions will 

include any confidence levels of the sensors B and C 
since they do not signify the presence of fire alone. 
Also, if the highest confidence level from sensor A 
is obtained, a fire incident is declared.  

It can be noticed from Table 1 that there was no 
mentioning of confidence level A1, as temperature 
being a mandatory variable in fire detection, the 
possibility of declaring fire is not considered when 
confidence level A1 is reported. 

As the detection modes have been defined, now 
it is possible to proceed with the derivation of 
system detection and false-alarm probability using 
the distributions presented in Table 2-4,with 
assumed chosen for the illustration of the approach. 

Table 2: Distribution of detections conditional 
probabilities among sensor confidence levels for Sensor A. 

Sensor 
Confidence 

Level 

Sensor A 

A1 A2 A3 A4 

Distribution 
of Detections 

1000 700 500 400 

Conditional 
Probability 

1.0 0.7 0.5 0.4 

Table 3: Distribution of detections conditional 
probabilities among sensor confidence levels for Sensor B. 

Sensor 
Confidence 

Levels 

Sensor B 

B1 B2 B3 

Distribution 
of Detections 

100 500 300 

Conditional 
Probability 

1.0 0.5 0.3 

Table 4: Distribution of detections conditional 
probabilities among sensor confidence levels for Sensor C. 

Sensor 
Confidence 

Levels 

Sensor C 

C1 C2 C3 

Distribution 
of Detections 

100 500 300 

Conditional 
Probability 

1.0 0.5 0.3 

5.5 Fire Declaration Algorithm 

As the detection modes have been defined, now it is 
possible to proceed with derivation of system 
detection and false-alarm probability 

System Pd= Pd{A2B2C2 or A2B3 or A2C3 or 
A3B1C1 or A4} 

(6)

Applying the repeated Boolean algebra 
expression for five detection modes a total of 4 

A

B CABC 

AB AC 
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combinations are obtained 

System Pd= Pd{A2}Pd {B2}Pd {C2} + 
Pd{A3}Pd {B1}Pd {C1} + Pd{A2}Pd {B3} 

+ Pd{A2}Pd {C3} + Pd{A4} 
(7)

Similarly, the probability of false alarm 
calculation for the system would be: 

System Pfa= Pfa{A2}Pfa {B2}Pfa {C2} + 
Pfa{A3}Pfa {B1}Pfa {C1} + Pfa{A2}Pfa 

{B3} + Pfa{A2}Pfa {C3} + Pfa{A4} 
(8)

5.6 Confidence Levels Calculation 

Mapping of the confidence-level space into the 
sensor detection space is accomplished by 
multiplying the inherent detection probability of the 
sensor by the conditional probability that a particular 
confidence level is satisfied given detection by the 
sensor. Since the signal-to-interference ratio can 
differ at each confidence level, the inherent 
detection probability of the sensor can also be 
different at each confidence level. Thus, the 
probability Pd{An}, that Sensor A will detect a target 
with confidence level An, is  

Pd{An} = Pd'{An} P{An/detection} (9)

Where Pd'{An} is the inherent detection 
probability calculated for confidence level n of 
sensor A using the applicable signal-to-interference 
ratio, false alarm probability, target fluctuation 
characteristics, and number of samples integrated 
and P{An/detection} is probability that detection 
with confidence level An occurs given a detection by 
sensor A. 

Similar process can be repeated to obtain the 
false alarm probability of the system using Pfa 

values. Using the data from Table 2-4, the results for 
the detection probabilities for the sensor system are 
shown in Table 5. 

Table 5: System detection probabilities. 

Detection probabilities for the suggested sensor system 

Mode Sensor A Sensor B Sensor C Mode Pd 

A2 B2 C2 0.58 0.35 0.35 0.07 
A3 B1 C1 0.45 0.4 0.4 0.07 

A2 B3 0.58 0.26  0.15 
A2 C3 0.58  0.26 0.15 

A4 0.39   0.39 
System Pd    0.83 

 

6 EXPERIMENTAL RESULTS 

Experiments were performed on the robot NXT 2.0 
for the validation of the algorithm. The results 
showed a very high success rate of detecting the 
source. In fact, the robot was able to identify the 
light and heat source each time provided there was 
no light reflecting off the surface of other objects. 

Figure 9 presents the different steps in searching, 
locating, obstacle avoidance, approaching the source 
and declaring a fire incident.  

The robot was able to identify the light and heat 
source for different obstacle orientations and 
configurations.  

 
 

 
 

 

Figure 9: Robot starting behind an obstacle andmovingon 
a sinusoidal path while detecting the heat source. 
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Figure 9: Robot starting behind an obstacle andmovingon 
a sinusoidal path while detecting the heat source (cont.). 

By limiting the detection mode of sensor A to the 
2nd level for declaration, false alarm possibilities 
have also decreased. There were few false alarms 
during any experiment. The experiment were 
performed a total of 30 times with 27 true 
declarations. The success ratio was 90% in 
declaration of the source. 

7 CONCLUSIONS 

Confidence level calculations and experimental 
results show a consistency in recognizing and 
declaring a fire source while minimizing the 
possibility of a false alarm or non-declaration.  

As a result of the adoption of single sensor 
detection mode and also using single sensor non-
possibility mode, the accuracy of detecting a fire 

increased. Also, this improvement was achieved 
while not compromising on the ability to detect 
suppressed or noisy targets.  

Good source detection results were achieved by 
the introduction of the sinusoidal movement 
strategy. This increased the angle of peripheral 
vision to 180˚ improved the detection probability by 
helping the detection of a stronger source and, at the 
same time, by bringing weaker sources into visible 
range. 

Introduction of comparison of stronger signals 
while avoiding the obstacles resulted in a decrease 
of the detection times. 

The above combined improvements made the 
detection system more reliable, more robust and 
more accurate in tracking and in declaration of 
indoor fires.  

The system is also able to distinguish between a 
reflected and direct signal coming from the source 
based on the readings of different variables at the 
approach of an obstacle. 
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