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Abstract: Traffic flow control has motivated many researchers since early decades of the 19th century. Recently, the
concept of a perimeter traffic control for an urban region has been strengthened by a series of works, which
have shown that a perimeter controller, located at a region border, can manipulate the transfer flows across
the border to maximize the total outflow of the region. The macroscopic fundamental diagram (MFD), that
relates average flow with accumulation, is used to model the traffic flow dynamics in the region. Assuming
that the control inputs of the cross-border flows are coupled, i.e. the border is always utilized over time for
transferring flows by one of the two directions (from and towards the region), and that the urban region has
two traffic flow demands generated inside the region with internal and external destinations, and a generated
traffic flow outside the region with a destination to the region, the explicit formulation of the optimal feedback
control policy and a proof of optimality are provided. The proof is based on the modified Krotov-Bellman
sufficient conditions of optimality, where the upper and lower bounds of state variables are calculated.

1 INTRODUCTION link densities hava well-definedMFD (as illustrated
in Fig. 1(a)), i.e. low scatter of flows for the same

In the last decade, network traffic flow modeling with densities (or accumulations), (Geroliminis and Sun,
the Macroscopic Fundamental Diagram (MFD) repre- 2011b; Mazloumian et al., 2010; Daganzo et al.,
sentation has intensively attracted the traffic flow and 2011; Knoop et al., 2013; Mahmassani et al., 2013).
control researchers. The MFD simplifies the mod- Note that heterogeneous networks might not have
elling task of the traffic flow dynamics for large-scale well-defined MFDs, mainly in the decreasing part of
urban networks, as it provides aggregate relationshipsthe MFD, as the scatter becomes higher as accumu-
between traffic variables at an urban region. lation increases and hysteresis phenomena has been

The MFD provides a unimodal, low-scatter rela- found to exist (Daganzo et al., 2011; Buisson and
tionship between network vehicle densityeh/km) Ladier, 2009; Saberi and Mahmassani, 2012; Geroli-
or accumulatior{veh) and network space-mean flow minis and Sun, 2011a). As a solution, these networks
(outflow) (veh/hr) for different network regions, if ~ might be partitioned into more homogeneous regions
congestion is roughly homogeneous in the region. with small variances of link densities, (Ji and Geroli-
The physical model of the MFD was initially pro- minis, 2012). Note that the network topology, the sig-
posed by (Godfrey, 1969), but the theoretical ele- nal timing plans of the signalized intersections inside
ments for the existence of the MFD were provided the region, and the infrastructure characteristics af-
later by (Daganzo, 2007). The MFD was first ob- fect the shape of the MFD, see e.g. (Geroliminis and
served with dynamic features in congested urban net-Boyaci, 2012).
work in Yokohama by (Geroliminis and Daganzo, The MFD concept has been utilized to introduce
2008), and investigated using empirical or simulated control policies that aim at improving mobility and
data by (Buisson and Ladier, 2009; Ji et al., 2010; Ma- decreasing delays in large urban networks, (Daganzo,
zloumian et al., 2010; Daganzo et al., 2011; Gayah 2007; Haddad and Geroliminis, 2012; Geroliminis
and Daganzo, 2011; Zhang et al., 2013; Mahmassaniet al., 2013; Hajiahmadi et al., 2013; Haddad et al.,
et al., 1987; Olszewski et al., 1995) and others. 2013; Aboudolas and Geroliminis, 2013; Keyvan-

Homogeneous networks with small variance of Ekbatanietal., 2012; Knoop etal., 2012; Zhangetal.,
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2013). E.g. perimeter control strategies, i.e. ma- 2 OPTIMAL PERIMETER

nipulating the transfer flows at the perimeter border CONTROL: PROBLEM

of the urban region, have been introduced for single-

region cities in (Daganzo, 2007; Keyvan-Ekbatani DEFINITION

et al., 2012; Shraiber and Haddad, 2014), and for _ . , i

multi-region cities in (Geroliminis et al., 2013; Had- This paper deals with a perimeter control problem for

dad et al., 2013; Hajiahmadi et al., 2013; Aboudolas & Nomogeneous urban region having a well-defined
and Geroliminis, 2013). In this paper, we deal with MFD, schematically shown in Fig. 1. The flow dy-

perimeter control for a single urban region modelled N@MiC equations for a homogeneous urban region
by an MFD. have been already formulated in (Shraiber and Had-

Different control approaches have been proposed dad, 2014), and they are briefly presented as follows.
to solve perimeter control problems for single-region 1here are two state variables denotedrpy(t) and
cities. (Daganzo, 2007) has presented a bang-bangt2(t) (veh), which respectively represent the num-
control as an optimal control policy for an urban re- P€r of vehicles traveling in the region with destina-
gion. A Proportional-Integrator (Pl) perimeter con- 10N inside.and outside the region at timeThe to-
troller has been designed for an urban region in f[al accumulated number of the veh|<_:les in the region
(Keyvan-Ekbatani et al., 2012). The formulated non- 1S Ni(t) = Mu(t) +niz(t). The MFD links theaccu-
linear system is linearized around a priori known set- mulation ni(t), andtrip completion flow defined as
point chosen carefully within a value range in the un- th€ output flow of the region. The MFD provides a
congested regime of the MFD having positive slope low-scatter rglatlonshlp, if congestion is roughly ho-
and close to the critical state (total time spent) of the Megeneous in the region. The MFD is denoted by
MFD function. The work in (Keyvan-Ekbatani et al., Gy(nu(t)) (vehy's), and it is assumed to Hdpschitz
2012) aims at regulating the dynamic system around €Ontinuous non-negative and unimodal - This as-
the desired chosen set-point, at which the system’s to-SUMPtion is based on many simulation and empiri-
tal ime spent is minimized, in other words, the state @l results, e.g. in (Geroliminis and Daganzo, 2008).
reference is the same as the set-point. Moreover, the! "€ MFD is defined as the trip completion flow for
work in (Keyvan-Ekbatani et al., 2012) do not allow the region am(t): (i) the sum of a transfer flow,
direct consideration of the control constraints, butim- 1-€- trips from the region with external destination
pose them after the design process, e.g. adjusting ofeutside the region), plus (i) an internal flow, i.e.
fine-tuning the controller gains. trips from the region with internal destination (in-

In (Shraiber and Haddad, 2014), a robust perime- side the.region). The_transfer flow is calculqted cor-
ter controller has been designed for an urban region €SPonding to the ratio between accumulations, i.e.
with the MFD representation. The designed controller M2(t)/Mm(t)-Gi(m(t)), while the internal flow is cal-
is a fixed Pl-controller with proportion#p and inte-  culated bynqa(t)/nu(t) - G (nu(t)).
gratorK; gains, which stabilizes the linearized system  The traffic flow demands generated in the region
against MFD and parameter uncertainties. The ro- with internal and external destinations are respec-
bust controller is also designed to handle control con- tively denoted byaus(t) and qia(t) (veh/s), while
straints within the design level in a systematic way. d21(t) (veh/s) denotes a generated traffic flow outside
The results showed that the controller has performed the region with destination to the region, as schemat-
well for the whole state set, and not necessary for a ically shown in Fig. 1(b). Following (Shraiber and
value range nearby a set-point. Haddad, 2014), a perimeter control is introduced on

In this paper, the optimal feedback control for a the border of the urban region, where its inputs are
perimeter traffic flow at an urban region is derived, coupledu(t) (—) and 1—u(t) and control the ratios
and a proof of optimality is provided with the help Of flows, 0< u(t) < 1, that cross the border from in-
of the modified Krotov-Bellman sufficient conditions ~Side to outside and from outside to inside the region at
of optimality. The region is assumed to be a ho- timet, respectively, see Fig. 1(b). Itis also assumed
mogeneous region having a well-defined MFD with that the perimeter control will not change the shape of
two traffic flow demands generated inside the region the MFDs. Note QISO that the internal flow cannot be
with internal and external destinations, and a gener- controlled or restricted.

ated traffic flow outside the region with a destination ~ The vehicle-conservation equations in the urban
to the region. regions are given as follows (same equations (1) and

(2) in (Shraiber and Haddad, 2014)):
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>

Trip completion flow
G1(n1 (1)) (veh/s)

> L

N1, max

Accumulation, ny (t) (veh)

(b)

Figure 1. (a) A schematic MFD which is Lipschitz, con-
tinuous, non-negative, and unimodal function, (b) An urban
region with three traffic demangy1(t), g12(t), go1(t), and

a perimeter controller with inputgt) and 1— u(t).

dn;t(t) =qu(t) + (1 —u(t)) - goa(t)
1)
_ ”;11(?; Gy (nu(t)).
dn(l;(t) — quaft) r;]llz((tt)) Gi(n(t)-ut). (2

Let us now rewrite (1) to have a state equation cor-
responding to variable;(t) instead ofnyy(t). The
reason for that is only technical as this simplifies the
mathematical proofs given later in Section 3. By sum-
ming (1) and (2) and substituting;1(t) = ny(t) —
n1o(t), one gets

dnét(t) = qua(t) + Gaa(t) + Gaat) - 7n1(t111_(312(t)
Ga(mu(0) - (@) + 22 Gy (nu00) ) ut).

®3)

The optimal control problem aims at manipulating the
control inputu(t) to optimize an objectivd, subject
to (2) and (3). There are a variety of criteria that can
be chosen, e.g. thiaroughputof the transportation
network and the total networtelay. In this paper,

16

the throughput of the transportation network in the re-
gion is chosen, which is defined as the total number
of vehicles that complete their trips and reach their
destination during the time intervg, t¢], i.e.

tf
5= /
to

wheretg andt; (s) are the starting and final times of
the control process. Note that the defined problem
here is an optimal control problem, while in (Shraiber
and Haddad, 2014) the problem is defined as a regu-
lator control problem.

Gy (mu(t))dt, (4)

3 OPTIMAL CONTROL DESIGN

The MFD functionGl(nl(t)) is assumed to be uni-
modal with a single maximum value af (veh), see
also Fig. 1(a), i.e.

ny = argm(%ﬁl(nl(t)) :

(5)

Let us denotausst) (—) as the steady-state control
input, which corresponds to a steady-state condition
dny/dt = 0, atny(t) = nj, i.e. the steady state control
inputus(t) is calculated from (3) withidy /dt =0 and
ni(t) = njy, as follows:

Uss(t) = [QM('[) +qua(t) + oa(t) — ni_nirjilz(t)
()| [aes(0) + 22 40
1
(6)

Note thatuss(t) is a time dependent corresponding to
the traffic demandeu1(t), gi2(t), andgoa(t).

Theorem 3.1. The optimal feedback control*(n;)
for the problem P1:max,q) J1 subject to (2) and (3)
is as follows:

If ny(t) # nj, then

.. o vy (t) < nj,
() = {1 i om O
otherwise (a(t) = ny),
Uss(t) 0<usgt) <1,
u*(n)) =<0 Uss(t) <O, (8)
1 Uss(t) > 1.

Proof. The proofis based on thmimodalityassump-
tion of the functionGy1(ny(t)). The unimodal func-
tion G1(ny(t)) has the point-wise maximum for each
pointt atn(t) = Ny(t) if ny(t) < nj andny(t) is an
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upper bound ohy(t). Similarly, Gi(nsi(t)) has the  one can construct a functid(t, x, u) as follows
point-wise minimum for each pointatny (t) = ny(t)

if n1(t) > nj andn,(t) is a lower bound oy (t). The R(t,x,u) = a—Vf(t,x,u) — fo(t,x,u) + 6_V7 (14)
upper bound; (t) and the lower bound, (t) have to 0x ot

be found with respect to the dynamical state equa- whereV (t,x) is assumed to be a continuous and dif-
tions (2) and (3) with initial conditions; (to) = N1 o, ferentiable function. Taking into account that the full

Ni2(to) = N120 (see Lemmas 3.3 and 3.4). To com- time derivative oV (t,x) with respect to (12) is
plete the proof we shall use the sufficient global op- & v av

timality conditions in the form of modified Krotov- — = —f(t,x,u) + =,
Bellman conditions (see sections 3.1 and 3.2) and a9 ot
prove Lemmas 3.2, 3.3, and 3.4 in Section 3.3.1] and substituting (15) and (14) in (13), one gets

According to (8), the optimal feedback control for o &

ni(t) = nj is u"(n;) = usgt), whereusg(t) has to sat- =V (b x(tr)) =V (to, xo) _/to R(t,x,u)dt. (16)
isfy the control constraint & usg(t) < 1. However,

if uss(t) < 0 orusg(t) > 1, then the optimal feedback
control is respectively*(n;) = 0 oru*(nj) = 1. Note

that in the latter two cases the state cannot be kept
at nj, since if usgt) < O the variablens(t) will de- dx*
crease frommy (t) = nj even with all feasiblei(t), but dt
the minimum decrease is achievedufy) = 0, and if
Uuss(t) > 1 thenny(t) will increase for all feasible(t),

(15)

The sufficient Krotov-Bellman conditions of optimal-
ity are as follows: if there exists a paix*,u*) such
thatx* is the solution of the dynamic system

=f(t,x*,u") an)

over the time intervalto, t;], and the following prop-

but the minimum increase is achieved bft) = 1. |
This is explained as follows. Let us first respectively u* =argsupR(t,x,u),
denotea(t) andb(t) as follows: R(t,x,U") = p(t) (18)
n; — noo(t - _
a(t) = qua(t) + quat) + gea(t) — 1712() -Ga(ng), ©=V(t,X(t)) = Constant
! ) hold, then this paifx*,u*) is a global optimum solu-
. tion. Note thatu(t) is any measurable bounded func-
b(t) = gpa(t) + ”12£ ) Gy(m), (10) t|on_ of t_. According to th_ese sufficient condmo_ns of
n; optimality, the problem is reduced to a solution of
then, (3) is rewritten as the nonlinear Krotov-Bellman PDE for the function
dny (t) V(t.x). .
e a(t) —b(t)-u(t) (11) In this paper, thenodifiedKrotov-Bellman con-

ditions are proposed, where the maximization of
whereb(t) > 0, anda(t) —b(t) - us{t) = 0. Therefore, Rt x u) overu in (18) is replaced by the maximiza-
if Uss(t) <0< u(t) then dhy/dt = a(t) —b(t)-u(t) <  tion of R(t,x,u) overx, as follows:

a(t) —b(t) - uss(t) = 0, and ifusg(t) > 1 > u(t) then

dny/dt = a(t) — b(t) - u(t) > a(t) — b(t) - usdt) = 0. X" = argsupR(t,x,u),
. . R(t,x",u) = u(t), (19)
3.1 Modified Krotov-Bellman Sufficient ©=V(t;,x(t)) = Constant

Conditions of Optimality Note that in both variants (18) and (19), the resulting

functionR(t,x,u) after maximization, i.e R(t,x,u*)
andR(t,x*,u), respectively, will be a function of time
t only.

The Krotov-Bellman sufficient conditions of optimal-
ity are summarized as follows. The reader can refer
to (Krotov, 1996) for further information. Given a dy-
namic system . .
y i 3.2 Application to the Maximum

G = [Lxu), (12) throughput Objective
with state variablex(t), control inputsu(t), initial

conditionsx(tp) = Xp, and the following objective
function

Applying the modified Krotov-Bellman conditions to
the problem (2)—(4), one gets

1;
mind = [ fo(t,x,u)dt, (13)

to

17
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ov [
SUR (t).m42(0) | 3, Oaa(t) + daa(t) + d2a(t)

ny (t) — nlz(t) nlz(t)

Ga(m(t)) - <q21<t> n

ny(t) _ ny(t)
.Gl(nl(t))) u(t)| + %\z/(t) [qlz(t) - ?]112(?))
Gu(m(1))- u<t>} +Gumv)+ & L=,
(20)
© =V (t,n1(tr), n12(t;)) = Constant (21)

Note that (20) and (21) are without taking into ac-

count the upper and lower bound constraints on state

variablen; (t), i.e.

G1(t) = ne(t) —m(t)
g, (t) =Ny (t) —na(t)
Let A1 and A, be the Lagrange multipliers for

(22) and (23), respectively. Now, let us choose
V(t;n(t), n12(t)) = C, whereC is a constant. Then,

(22)

<0,
<o0. (23)

be found with respect to the dynamical state equa-
tions (2) and (3) with initial conditions;(to) = 10,
ni2(to) = N120. In this section, it is explained how to
achieve the upper bourm (t) and the lower bound
ny(t), according to Lemmas 3.3 and 3.4, respectively.
But first Lemma 3.2 is presented, which is taken from
(Krotov etal., 1971) and utilized to prove Lemmas 3.3
and 3.4.

Lemma 3.2. Consider an ODE systendx/dt =
f(x,u,t), wheref(x,u,t) is Lipschitz and continuous
vector-function, x(t) = [x1(t),Xa(t),...,x.(t)]" are
the state variables, and(t) are measurable bounded
control inputs. The upper bound of the solutioft)
with initial conditionsx(tp) = Xo is denoted aX(t).
Each component i of this bound can be calculated ac-
cording to the following equation

dx

dt SURY xq Xp,.o: X 1% 1.... % fi (X1, X2 ., Xi-1,
)_(i,XiJrl,---,Xn,U»t), (27)

with the initial conditionx;(to) = x; 0, where f(-) is
the i-component of the vector-functif{n). The lower

imposing state constraints (22) and (23) on (20) and bound x(t) can be calculated in the same way by just

(21) withV(t, n1(t),n12(t)) = C, one gets

SUR, o [G1(N1(t)) = A1+ Ty (t) — Ay - g, (1)] = H(t),
(24)

o=cC. (25)

Note that Lagrange multipliers are taken with sign
minus because of maximization df. According to
Karush-Kuhn-Tucker (KKT) conditions all Lagrange
multipliers are non-negative and may have positive
values only when the corresponding constraint is
binding, i.e. non-redundant. From maximization of
(24), one gets

0Gy

an]_ )\1+Al:O

(26)
This implies thatn(t) = ny(t) when %—ﬁll >0, ie.
whenny(t) < nj (becauseGy(ny(t)) is assumed to
be unimodal with a single maximum valuerg), and
ni(t) = ny(t) when %—ﬁll <0, i.e. whenny(t) > nj.
Note that Lagrange multipliers for upper and lower

constraints cannot be non-zero simultaneously, andboundn;(t) =ny(t) is obtained fowu(t) = 0.

because of unimodality the only point Wh%%ll =0
is the pointny (t) =nj .

3.3 Upper and Lower Bounds of State
Variable ny(t)

Recall that to complete the proof of Theorem 3.1, the
upper boundi;(t) and the lower bound, (t) have to

18

replacingsupbyinf in (27).

Proof. The proof is a straightforward, however, it is
not presented in this paper. The reader can refer to
(Krotov et al., 1971) for an explicit proof. O

Lemma 3.3. The upper bound for state variable(h)
is achieved with control input(t) = O.

Proof. Let us start with state variable(t). From
(2), it is clear that the second term in the right-hand
side is a non-positive and in particular it is equal to
zero foru(t) = 0. Therefore, the supremum of the
right-hand side will be achieved fart) = 0 and it
depends only oh According to Lemma 3.2, an upper
boundn;(t) is achieved withu(t) = 0. Now, let us
consider state variable(t). From (3) one can see
that the supremum over(t) is achieved foru(t) =

0, then the right-hand side is a functiontoénd the
variablesn; (t), nio(t). It has been shown that with
u(t) = 0 from (2) it follows thatn; o(t) = figo(t). After
substitutionni2(t) = Ni2(t) in the right-hand side of
(3), it follows according to Lemma 3.2 that an upper
O

Lemma 3.4. The lower bound for state variable (i)
is achieved with control input(t) = 1.

Proof. The infimum over(t) of the right-hand side
of (3) is achieved fou(t) = 1. Substitutingu(t) =1
into (3), one gets

dnl

" (28)

= Qua(t) + du2(t) — Ga(m(t)).
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It follows from Lemma 3.2 that the solution of (28) is effect of network instabilityTransportation Research
a lower bound (t). O Part B, 45(4):643—655.
Geroliminis, N. and Boyacli, B. (2012). The effect of

Lemmas 3.3 and 3.4 complete the proof of The- variability of urban systems characteristics in the
orem 3.1. One can add that if at some point in time network capacity. Transportation Research Part, B
t = ts, the optimal trajectory will go left or right from 46(10):1607-1623.
the valuen; (ts) = nj, then we can split the problem  Geroliminis, N. and Daganzo, C. F. (2008). Existence
into two pieces (namely from =ty to t = ts and of urban-scale macroscopic fundamental diagrams:
fromt =ts to t = t;) and build new upper or lower some experimental finding3ransportation Research
bounds res tivelv the initial poi Part B, 42(9):759-770.

pectively from the initial poini(ts) and i ]

Ny (ts) = . Geroliminis, N., Haddad, J., and Ramezani, M. (2013). Op-

timal perimeter control for two urban regions with
macroscopic fundamental diagrams: A model pre-
dictive approach. IEEE Transactions on Intelligent

4 CONCLUSIONS Transportation System$§4(1):348-359.
Geroliminis, N..and Sun, J. (2011a). Hysteresis phenomena

: ; : : ) of a macroscopic fundamental diagram in freeway net-
The analytical solution for the optimal perimeter feed works, Transportation Research Part, 45(9)-966

back control with the maximum throughput criterion 979

In o urb_a_m region has been de.”‘(ed and qgscr'bed'Geroliminis, N. and Sun, J. (2011b). Properties of a well-
The modified Krotov-Bellman sufficient conditions of defined macroscopic fundamental diagram for urban
optimality have been utilized for the proof of optimal- traffic. Transportation Research Part, B5(3):605—
ity. The resulting optimal control policy is oriented to 617.

keep the state variable, i.e. the total number of the Godfrey, 3. W. (1969). The mechanism of a road network.
moving vehicles in the region, as close as possible to Traffic Engineering and Contrpll1(7):323-327.

the critical accumulationy}, where the MFED value  Haddad, J. and Geroliminis, N. (2012). On the stability

is maximized. Though this optimal solution is in- of traffic perimeter control in two-region urban cities.
tuitively expected here it is rigorously proven. The Transportation Research Part B6(1):1159-1176.
numerical simulations and comparison with existing Haddad, J., Ramezani, M., and Geroliminis, N. (2013). Co-
practices will be done in consequent papers. operative traffic control of a mixed network with two

urban regions and a freewalransportation Research
Part B, 54:17-36.
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