
Virtual Bin Picking
A Generic Framework to Overcome the Bin Picking Complexity

by the Use of a Virtual Environment

Adrian Schyja1 and Bernd Kuhlenkötter2

1Institute for Research and Transfer, Dortmund, Germany
2Institute of Production Systems, TU Dortmund University, Dortmund, Germany

Keywords: Bin Picking, Simulation, DirectControl 3, AutomationML, SmartComponents.

Abstract: Bin Picking is a very popular topic in the scope of robotic applications. For many years, R&D facilities as well
as the industry work on Bin Picking solutions. However, it is challenging to bring such systems into industrial
shop floors mainly due to the design and economical calculability accompanied by the acceptance of stable
Bin Picking systems without any downtime. This paper presents a versatile interface-based framework for
the planning, designing and in particular for the simulation of various Bin Picking applications. For that, the
term ’Virtual Bin Picking’ has been introduced, which associates the simulation of Bin Picking scenarios in
a virtual environment without the need for hardware components. Thus, it enables the design of Bin Picking
work cells and it allows to predict the quality of such cells in an early virtual commissioning stage.

1 INTRODUCTION

In today’s automated factories, robot based grasping
tasks are essential and the associated constraints need
to be overcome in different situations. Once the work
object or its position is not known exactly, the grasp-
ing system – consisting of a robot and its gripper –
must be extended by suitable (vision) sensors and ap-
propriate software. The latter includes, in particular,
the recognition and localization of the work pieces
with strategies to compute collision-free paths needed
for the movement of the robot. A typical example of
such applications is the removal of disordered com-
ponents from a bin, well known as Bin Picking. Such
handling processes are used in metal working indus-
tries, in the field of logistics for commissioning or in
food industry. In many cases, an early conclusion on
the feasibility of a Bin Picking solution, especially
the achieved cycle times and process reliability with-
out costly and time-consuming real experiments in
advance, are impossible. As a result, such designed
and optimized systems are often specifically tailored
to one or just a few specific tasks making them and
thus very inflexible in response to changing require-
ments.

Comparing Bin Picking systems to conventional
solutions such as huge feeding systems, one advan-
tage is the adaptability and hence the ability to han-

dle different work pieces with only one system. The
set up times are reduced when changing the product,
since there is no reconstruction of the overall sys-
tem necessary, only a reconfiguration, which in turn
minimizes costs. With such systems, heavy or harm-
ful components can be handled as it is currently per-
formed by manual operators consequently exposing
them to dangerous situations.

This paper is structured as follows. The next sub-
section describes the current challenges and the need
for a virtual Bin Picking system. Section II outlines
both, the architecture and the implementation of the
presented framework within a simulation system. The
subsequent section illustrates the concept of virtual
Bin Picking. Section IV presents the idea of smart,
virtual components which may be shared across het-
erogeneous engineering tools. Section V continues
with the use of the developed framework and exem-
plary results are presented. Finally, section VI points
out possibilities for further developments.

1.1 Related Work

Both research facilities and industry have been work-
ing on the Bin Picking topic for several decades. De-
velopments during recent years have shown that a
technical realization of Bin Picking for specific fam-
ilies of work pieces is achievable. Nevertheless, no

133
Schyja A. and Kuhlenkötter B..
Virtual Bin Picking - A Generic Framework to Overcome the Bin Picking Complexity by the Use of a Virtual Environment.
DOI: 10.5220/0005011401330140
In Proceedings of the 4th International Conference on Simulation and Modeling Methodologies, Technologies and Applications (SIMULTECH-2014),
pages 133-140
ISBN: 978-989-758-038-3
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)



prevalence rate of Bin Picking systems in industrial
environments has succeeded so far. One reason for
this circumstance is that the realized cycle times of
available systems do not meet industrial requirements
for economically feasible Bin Picking systems. Fur-
thermore, such systems are often very complex, so
that particularly commissioning and configuration re-
quire a lot of expertise on one hand. On the other
hand, it takes a disproportionate amount of time lim-
iting the economic benefit when it comes to a change
of work piece settings.

In the past, many research institutions have been
dealing with the development of Bin Picking sys-
tems. First attempts to detect and unload work pieces
by assistance of robots were made in the mid ’70s.
Here, however, no bins were used as the components
were located on conveyor belts (Tsuboi and Inoue,
1976; McKee and Aggarwal, 1977). In the follow-
ing decades, more sophisticated technology concern-
ing sensors, grippers and robots was available and
the subject of Bin Picking has been addressed in var-
ious works (Ghita and Whelan, 2003; Schraft and
Ledermann, 2003; Kirkegaard and Moeslund, 2006;
Leonard et al., 2007; Böhnke, 2007; Ghita and Whe-
lan, 2008). Most of the named papers present their
work in the context of Bin Picking systems and re-
flect specific subdomains, e.g. object recognition
and pose detection (Palzkill et al., 2010; Böhnke and
Gottscheber, 2010; Wurdemann et al., 2011), path
planning (Schyja et al., 2012; Johnson, 2013), gripper
optimization and determination of best grasping posi-
tions (Francois et al., 1991), vision sensors (Pochyly
et al., 2012), among others. Since they are part of re-
search activities most of the presented solutions are
shown on laboratory or prototype level. There are
even some commercial systems available off the shelf,
however, testing for suitability and configuration is
often time consuming and requires availability of real
components.

1.2 Motivation

Currently, there are no software tools available, which
may be used for designing and verifying entire Bin
Picking systems. Nor are there any for systematic
determination of necessary system components in an
early engineering phase complicating the system’s
planning. Even the selection of suitable components
in terms of vision sensors, robots or grippers requires
a high level of knowledge. Due to the complexity and
amount of possible solutions this results in a major
challenge. Additionally, the selected solutions may
actually only be verified on a real implementation,
which is time consuming and sconsequently not ef-

DirectControl 3

Presentation Layer

Data Layer M
A

F 
A

dd
in

 In
te

rf
ac

e

.NET

Addins

3rd Party

Controller

Physics

Sensors

DataExchange

Domain Layer

MEFManager

Figure 1: Simplified representation of the three-tier archi-
tecture of the DirectControl 3 framework.

ficient. For this reason, it might be too soon to reach
a definite conclusion about general general suitability
of required components, potential cycle times or the
degree of emptying the bin.

Due to these shortcomings, we present an engi-
neering tool, which enables virtual planning and si-
mulation of various Bin Picking scenarios allowing
optimization of such a system before real commis-
sioning.

2 SIMULATION FRAMEWORK

The DirectControl 3 (DC 3) application framework,
a successor of (Kneupner, 2004), has integrated the
approach of simulating Bin Picking. DC 3 is a mod-
ular framework focusing on the simulation of indus-
trial robot-based processes and applications (Schyja
et al., 2012). It provides an application programming
interface (API) which offers access to internal func-
tionalities and is based on the Microsoft .NET frame-
work. A simplified architecture of the software is
depicted in figure 1. This framework follows a rich
client platform (RCP) paradigm and provides a core
with lots of reusable software modules and mecha-
nisms. These modules are quite generic and offer
important key functionalities, such as user interface,
project management, neutral data structures and man-
ager classes in terms of singletons making them ac-
cessible at any time. The complete design is based
on the Microsoft Windows Presentation Foundation
Framework (WPF), which offers an efficient separa-
tion of model and view, known as the Model-View-
Controller pattern. The framework is designed to be
completely independent of manufacturer, which is re-
alized by the use of generic interfaces and an appro-
priate inheritance hierarchy of data structures. The
latter is a primary key feature of this framework and
offers the capability to adapt into different application
domains.

The fundamental idea of DC 3 is to offer a core
framework, the DC 3 runtime platform, which then
may be extended via additional software components.
To achieve that, DC 3 provides techniques for ex-

SIMULTECH�2014�-�4th�International�Conference�on�Simulation�and�Modeling�Methodologies,�Technologies�and
Applications

134



tending the framework in two ways. Both utilize a
.NET based extensibility framework to support cus-
tom components as well as user defined Addins.

The former technique provides functions to au-
tomatically register and discover any type of com-
ponents within the core application. Primarily it
is based on the Managed Extensibility Framework
(MEF) and consists of two major sections: the com-
ponents, which are exported and any remote station,
which discovers and imports the exported parts. To
simplify the usage of MEF a generalized compos-
ing manager is provided which may be inherited and
reused for user defined parts. This is usually per-
formed using interfaces. As an example, the core
framework provides a scripting manager, which im-
ports any published or exported script based on a spe-
cific interface class. This registration is done com-
pletely in the background, while the programmer only
has to provide some additional metadata about the
components. If needed, they will be added to the
user interface as well, depending on their metadata.
In this way, it becomes very easy to enrich the core
with additional components and functionalities. This
technique works even if the exported components
are located in outsourced assemblies, which yields to
the second mechanism to extend the core framework.
Based on the Managed Add-in Framework (MAF), a
robust Addin architecture is provided. Using this cus-
tom extensions may be loaded or unloaded at runtime,
which have access to internal structures of DC 3 at
runtime. Addins may reference – among core func-
tionalities – other Addins and may specify the order
of loading sequence, which is quite important within
the scope of dependency. The overall lifetime of any
Addin is managed by a responsible part of the core
framework.

Although the framework is intended for simula-
tion purposes, it allows integrating custom project
types as well. Each project type may specify its cus-
tom user interface arrangement, any views and win-
dows, and so on. In this manner we extended the
framework by a Bin Picking project, which offers a
toolbox for doing Bin Picking simulation.

3 SIMULATION OF BIN PICKING

With DC 3 a general extensible framework with a lot
of basic functionalities exists. Additionally, an appli-
cation programming interface (API) is provided for
the development of any types of extensions. For en-
abling Bin Picking simulation, various additional ex-
tensions by means of Addins are needed. The con-
cepts and implementation will be presented in the next

sections. The result will be a configurable Bin Pick-
ing simulation framework.

3.1 The Environment Model

The first significant extension developed is a simu-
lation framework that enables a complete environ-
ment simulation including path and motion planning.
A common way of most 3D applications for spatial
representation of the graphic components is a strong
coupled integration of a scene graph. To keep the
general idea of a neutral implementation, we pur-
sue an alternative approach by separating the struc-
ture of the environment into a so-called environment
model and a loosely coupled graphical representation.
The environment model represents the scene without
a graphical representation. This strongly follows the
separation of concerns paradigm and enables running
a model-based simulation including all features like
collision detection without the need of visualization,
which saves resources and computational time. An-
other advantage of the separation between the envi-
ronment and the graphical visualization by means of
a scene graph is the way of the internal organization
of data structures. While a scene graph may use a
nested tree representation, e.g. in case of a kinematic
chain consisting of links and joints, the environment
model may use a flat tree structure, which simplifies
the presentation of the model within the user inter-
face. Within the environment model any object like
geometries or robots including joints and links are de-
rived from a generalized frame object which repre-
sents a coordinate system. Each of these objects has
an interface which may be used to connect a graphical
representation.

For enabling a vendor independent robot simu-
lation modelling of kinematic chains and the design
of data structures for enabling a general path plan-
ning are matters of special importance. In the cur-
rent development stage the framework supports dif-
ferent types of kinematic representations. First, they
may be coded and integrated into specific extensions.
Secondly there is a general representation based on
a customized XML format. Both types use the DH-
convention (Denavit and Hartenberg, 1955) to rep-
resent the frame relationship of the links. Much
more complex kinematic chains are enabled utiliz-
ing the COLLADA (version 1.5) file format, which
is supported as well. The latter format becomes more
and more important within the engineering tool chain
since it is currently the only standardized file for-
mat which supports kinematics (Kuhlenkötter et al.,
2010). Any of the representation types is integrated
via a universal interface and passed through a kine-

Virtual�Bin�Picking�-�A�Generic�Framework�to�Overcome�the�Bin�Picking�Complexity�by�the�Use�of�a�Virtual�Environment

135



matic compiler, which is responsible for the transfor-
mation into an internal representation based on the
environment model. Thus, different robots are sup-
ported without any binding to a specific manufacturer.

3.2 Multi-Engine 3D Visualization

Like many other engineering tools a 3D visualiza-
tion of a simulation is essential, not only to get a vi-
sual feedback but also for the verification. Based on
the environment model an arbitrary visualization en-
gine may be connected to the model. We introduced
a general interface, which allows integrating differ-
ent rendering engines or even powerful geometry li-
braries like graphical kernels. Each engine may reg-
ister itself via the MEF technique within the DC 3
core framework and the user may select and switch
between different engines. Additionally, each engine
can register their supported file formats. Based on
this conception, three different engines were realized.
The former uses the MOGRE rendering framework, a
.NET port of the open source Object-Oriented Graph-
ics Rendering Engine. The internal scene organiza-
tion is divided into two sub-graphs, the internal and
the visual one. The internal scene is used to render
temporary items which are not part of the environ-
mental model. Any environment related object is part
of the visual scene, which mainly consists of trans-
formable nodes and leaves with attached triangular
meshes. Each node is connected and synchronized
with the environment item by the use of the mentioned
interface.

In addition, we integrated a pure WPF based ren-
dering engine as well as a commercial graphical ker-
nel using the same procedure by means of connecting
to the environment model. The latter provides a ren-
dering engine among common 3D CAD file formats,
so that the range of functions of the developed frame-
work is expanded enormously. The complete integra-
tion of 3D visualization is realized in a multithreaded
and thread safe manner to achieve maximum perfor-
mance.

3.3 Path Planning and Collision
Avoidance

Unloading parts from the bin requires computation of
valid path starting from a home position moving into
the bin. After grasping the work piece the movement
towards a release position must be determined. Dur-
ing path planning, apart from kinematic reachability,
the collision avoidance is an important factor. For
guaranteeing a collision-free path, it is crucial to sim-
ulate the steps of grasping a work piece and its move-

(a) (b)
Figure 2: (a) Simulation of grasping parts out of a bin, (b)
simulation and analysis of failures, e.g. nested parts using
physic simulation.

ment throughout the execution of a path (figure 2).
Furthermore, physics simulation comes in once a re-
alistic grasping simulation of work pieces is required
to determine, for example, cycle time, throughput, the
degree of emptying or any undesirable situations as
depicted in figure 2.

In a similar manner compared to the embedding
of rendering engines, an interface for physics simula-
tion was integrated. Since the most physics engines
already entail a collision detection processing unit,
we concentrate on the specification of a physics en-
gine interface. Of course, individual collision detec-
tion libraries without support for physics simulation
may be used that way, however, without physics. The
interface is designed to enable a connection to the en-
vironment model. Thus, it is synchronized with the
simulation engine. Compared with the integration of
visualization, in this case, bidirectional synchroniza-
tion is necessary. Using this interface in combination
with the environment model, different loosely cou-
pled physics and collision libraries were integrated,
including Open Dynamics Engine (Drumwright et al.,
2010), RAPID (Gottschalk et al., 1996) and D-Collide
(Project Group 510, 2008).

3.4 Realistic Simulation

The target poses of a robot path are connected through
many interpolated poses in between, which then must
be reached by the end effector of the robot. During
path planning the robots motion must be considered,
which means that for each interpolated pose joint pa-
rameter needs to be calculated. Latter refers to the
inverse kinematics computation. For that, several ap-
proaches exists, such as algorithms based on geomet-
rical constraints, Jacobian matrices, or evolutionary
algorithms. A considerable development in the past
was the specification of an interface for realistic mo-
tion control of robots, namely the RRS-Interface (Re-
alistic Robot Simulation) (RRS-Owners, 1991).

Based on this specification, a neutral interface was
developed enabling the integration of different, man-

SIMULTECH�2014�-�4th�International�Conference�on�Simulation�and�Modeling�Methodologies,�Technologies�and
Applications

136



ufacturer specific motion controller. Through the con-
cept of this interface it is possible to integrate differ-
ent third party motion algorithms such as RRS mod-
ules, frameworks like Robot Operating System (ROS)
(Martinez and Fernndez, 2013), OpenRave (Diankov,
2010) or even to develop custom motion controller to
solve at least the forward and backward calculation.
Each implementation of a motion controller may be
outsourced into separate assemblies which then are
registered via the MEF framework into the core of
DC 3. By the use of additional metadata any motion
controller informs the core framework which type of
robot it supports. While the interface consists of low
level programming calls, there is additionally a high
level implementation, the virtual controller object.
Each virtual controller has a relation to a single so-
called MotionController interface which in turn con-
trols motion of one or more robots. Through the con-
cept of separation we may switch between different
controllers and use a more precise or realistic motion
controller via RRS or a less precise but faster in com-
putation via a custom implementation.

3.5 Virtual Bin-Filling

In a real world scenario, initially there are empty bins,
which are filled with work pieces for any further pro-
cessing. For a nearly realistic simulation of Bin Pick-
ing the virtual bin must be filled within the simula-
tion environment. The virtually filled-up bins serve
as input information for a subsequent simulation of
Bin Picking and, in particular, for virtual part localiza-
tion. To be able to optimize for instance path planning
strategies, a realistic behaviour is essential. Therefore
the bin must be filled randomly with work pieces as
precise as possible.

One solution may be a brute-force algorithm
based on the bounding box of the bin and the dropped
parts itself. The first part will be randomly positioned
within the bin and in case of any collisions between
the part and the bin including parts it will be randomly
repositioned. Then next part will be added to the col-
lision set and a new collision-free position within the
bin will be calculated. These steps are repeated until
a predefined number of parts is reached. The results
are suboptimal, since gaps between parts may occur
which leads to a less realistic placement. A more
promising approach is reflected in the utilization of
physics engines, as described above.

For the randomized, virtual bin filling a further ex-
tension was developed, which enables a more realis-
tic simulation. Through a graphical user interface, the
CAD models of the bin and the work piece as well as
additional parameters such as the maximum number

(a) (b)
Figure 3: Virtually filled bins with different automotive
parts using physics simulation.

of components or physical properties are configured
in a first step, followed by the simulation of dropping
parts into the bin. Based on the integrated 3D simu-
lation as well as the developed modules for physics
simulation, instances of the work pieces are created
and placed at a predefined height over the bin. Next,
they are falling into the bin using physics simulation,
until a specified maximum amount is reached. Then,
the scenario and particularly the positions of the work
pieces may be exported into a file or database and
used for further simulation of Bin Picking. This way
a lot of different scenarios may be set up and used
for virtual path planning as well as optimization. A
further advantage is the possibility to determine cycle
times or the degree of emptying. Figure 3 shows some
results of filled bin with different work pieces based
on physics simulation.

In addition to the virtual bin filling, we are also
able to replicate real world scenarios. Within the re-
search project AGMASS a Bin Picking cell was de-
veloped (Bücker et al., 2011), which uses the devel-
oped framework for doing the path planning and for
the communication and synchronization of all hard-
ware components. While the process is being exe-
cuted, a database collects all relevant information for
later investigations in the virtual environment. Thus
it is possible to consider deadlock situations or situ-
ations, where parts interlock. To prevent those situa-
tions they may be optimized within the virtual envi-
ronment.

4 REUSABLE VIRTUAL
COMPONENTS

A work cell such as Bin Picking consists of different
system components. For a realistic simulation it is
important to have information about the components
available in the virtual environment. Currently, it is
common to exchange CAD models through different
standardized file formats, but in general much more
information is required, in terms of physical or dy-

Virtual�Bin�Picking�-�A�Generic�Framework�to�Overcome�the�Bin�Picking�Complexity�by�the�Use�of�a�Virtual�Environment

137



namical properties, electrical information, kinemat-
ics, etc. In the past, there was no comprehensive
file format, which was able to cover all needed in-
formation. With the release of AutomationML (Au-
tomation Markup Language) a data exchange format
based on XML exists for the first time, which is able
to store any relevant engineering information. Auto-
mationML is an open and standardized specification
for characterization and exchange of information on
plant topology, geometry, kinematics, electrical sig-
nalling and further information in an object oriented
way, making it very powerful. Since it has been
already used in different engineering tools, like the
robotics programming and simulation system ABB
RobotStudio (Kuhlenkötter et al., 2010), its impor-
tance increases more and more.

In order to simplify the exchange of informa-
tion and in particular product data we develop the
so-called SmartComponents within the conexing re-
search project (Schyja et al., 2014). Through Smart-
Components, a concept is presented for exchanging
virtual representations of real components between
heterogeneous engineering tools based on Automa-
tionML. Beyond CAD data they include all engineer-
ing related information. However, for a consistent
simulation, the functionality of such components is
also necessary. In case of a gripper, the functionality
reflects the simulation of opening, closing or grasp-
ing any object. Another example is a sensor like a
light barrier, detects obstacles. Since it is not desir-
able to implement these features in every engineer-
ing tool from scratch, we are currently working on
a generic approach to integrate black box capabili-
ties into SmartComponents in terms of secured third
party libraries. For this we are developing formal def-
initions of methods and extend therefore the Auto-
mationML specification. Additionally, to access i. a.
black box functionality and its data across different
tools a development kit is realized.

This approach will result in two possible scenar-
ios: if the target software provides a native support
of a given component or its functionality, this native
features will be used and only missing information
from the SmartComponent are extracted. Conversely,
the software may have no native support. In the lat-
ter case the information and functionality contained in
the SmartComponent is used for the simulation. This
enables applications that even do not have native sup-
port for a component to use that exported function-
ality. To prevent an unwanted access to any sensi-
tive data or licensed functionalities, a possibility of
encryption will be offered to SmartComponents.

In the current state of development, we cus-
tomized a 3D CAD design software using the devel-

Figure 4: Virtual Bin Picking scenario based on a real work
cell, which is used for simulation.

opment kit and developed interfaces for importing and
exporting SmartComponents within that tool. This
enables the export of work pieces including physical
information needed to perform a realistic physics si-
mulation within DC 3. This has also been extended
for loading and saving SmartComponents. Thereby it
is easy to do a Bin Picking simulation on almost any
work piece.

5 SIMULATION RESULTS

Simulation and verification of different Bin Picking
scenarios has become possible due to the presented
framework. What has been challenging so far is now
optimized with respect to Bin Picking as in the design
and layout a work cell.

With the real Bin Picking cell, a lot of data has
been recorded having been feed into the developed
virtual Bin Picking system. Figure 4 depicts a virtual
copy of the existing Bin Picking cell. This applica-
tion is the result of different cooperating Addins as
described in the previous sections and was used for
different experiments. Valid paths are calculated on
configured gripping frames as they are in a real setup.
Any peripheral equipment is considered when calcu-
lating paths and, in case of any collision, alternative
paths are calculated. The complete computational and
the simulated time is stored for analysis purpose as
well as for cycle time detection. Since RRS is used,
the determined times are close to the real ones quali-
fying them to be reliable.

In fact, data from deadlock situations were
particularly interesting. While the layout of this cell
was fixed, we used this data to optimize both path
planning and the design of the gripper. At the cur-
rent stage, we do not provide any sensor simulation
needed for virtual object localization. Hence, we need

SIMULTECH�2014�-�4th�International�Conference�on�Simulation�and�Modeling�Methodologies,�Technologies�and
Applications

138



Algorithm 1: Simulation of Bin Picking

1. fill virtual bin by physics or real data
2. compute grasping positions or import real one
3. sort parts by center of gravity in Z direction
while parts in bin do

take n top most parts (n is a random number)
choose one of them randomly
for all grasp id do

if reachable and no collision then
compute motion
generate path
execute and simulate unloading part
remove part from pile

else
reject part (remember for statistics)
continue

end if
end for

end while

to emulate the part localization for simulating Bin
Picking. The complete procedure for simulation is
presented in algorithm 1. Firstly, the bin is filled using
virtual or real data. Instead of calculating any grasp-
ing positions real ones may also be used. To emu-
late localization, the parts are sorted by their center of
gravity along the Z axis. Thus, the top most parts are
accessible. As long as there is either a part in the bin
or no parts to be unloaded, any top most part will be
considered. Next a path is generated for each reach-
able and collision free grasping position.

The overall simulation takes both the simulation
of the gripper’s behavior, opening, closing and attach-
ing the work piece into account. This is realized based
on real conditions. The virtual controller is connected
with a virtual I/O module, which provides digital and
analog signals. The gripper attached to the robot is
connected through a signal to the I/O module and ap-
propriate instructions are added to a path generated
for each part. The resulting robot program is close to
a program, which may run on a dedicated robot, in-
cluding motion and action instructions. As a result,
lots of information are acquired. These include dura-
tion times of calculations and collision checks as well
as the (real) elapsed simulated time, which is provided
by the RRS module. We are able to analyse individual
parts and determine e. g. cycle times per part up to
a prediction for a complete bin, although no times for
part localization are currently considered. Hence the
resulting time is the minimum duration for computa-
tion of valid paths and for motion of the robot, which
is quite a step forward to an overall simulation of Bin
Picking.

6 CONCLUSIONS

In this paper an approach for virtual planning of Bin
Picking applications was presented. Since there are
currently no tools available, which allow an overall
virtual planning and process simulation as well as op-
timization of the entire design of such a robot based
work cell, it is verified nowadays in a real setup, lead-
ing to inacceptable downtimes. To overcome this, a
framework which allows process simulation and op-
timization of various Bin Picking scenarios without
the need of a real setup was developed. The devel-
oped solution was realized in form of a DirectCon-
trol 3 extension. In future works, we seek to achieve
a complete Bin Picking simulation including vision
sensors and virtual object localization. Therefore, we
want to extensively use SmartComponents in order
to intensify integration as well as the exchange of
virtual components like virtual controllers or robots
with other engineering tools, as described in (Bartelt
et al., 2013). Once virtual vision sensors will be made
available through SmartComponents, they will be in-
tegrated into the overall framework. In this way, lo-
calization algorithms may be tested in advance. Us-
ing the presented framework, it is possible to calculate
various configurations in a short time.

ACKNOWLEDGEMENTS

The research and development project conexing is
funded by the German Federal Ministry of Education
and Research (BMBF) within the Framework Con-
cept “Research for Tomorrows Production” and man-
aged by the Project Management Agency Karlsruhe
(PTKA). The authors are responsible for the contents
of this publication. The authors would like to thank
the anonymous reviewers for their helpful comments
and suggestions.

REFERENCES

Bartelt, M., Schyja, A., Kuhlenktter, B., and Benkner, T.
(2013). Interdisziplinre zusammenarbeit in einer het-
erogenen cax-software-landschaft. PRODUCTIVITY
Management, 3/2013.

Böhnke, K. (2007). Object localization in range data for
robotic bin picking. In International Conference on
Automation Science and Engineering, CASE, pages
572–577.

Böhnke, K. and Gottscheber, A. (2010). Fast object reg-
istration and robotic bin picking. In Gottscheber, A.,
Obdrzalek, D., and Schmidt, C., editors, Research and
Education in Robotics – EUROBOT 2009, volume 82

Virtual�Bin�Picking�-�A�Generic�Framework�to�Overcome�the�Bin�Picking�Complexity�by�the�Use�of�a�Virtual�Environment

139



of Communications in Computer and Information Sci-
ence, pages 23–37. Springer Berlin Heidelberg.

Bücker, M., Krewet, C., Schyja, A., and Kuhlenkötter, B.
(2011). Autonome Roboter mit sensorbasierter Bahn-
planung. Industrie Management, 1:21–24.

Denavit, J. and Hartenberg, R. S. (1955). A kinematic no-
tation for lower-pair mechanisms based on matrices.
Transactions of the ASME. Journal of Applied Me-
chanics, 22:215–221.

Diankov, R. (2010). Automated Construction of Robotic
Manipulation Programs. PhD thesis, Carnegie Mellon
University, Robotics Institute.

Drumwright, E., Hsu, J., Koenig, N., and Shell, D. (2010).
Extending open dynamics engine for robotics simu-
lation. In Proceedings of the Second International
Conference on Simulation, Modeling, and Program-
ming for Autonomous robots, SIMPAR’10, pages 38–
50, Berlin, Heidelberg. Springer-Verlag.

Francois, C., Hebert, M., and Ikeuchi, K. (1991). A three-
finger gripper for manipulation in unstructured en-
vironments. In IEEE International Conference on
Robotics and Automation.

Ghita, O. and Whelan, P. F. (2003). A bin picking system
based on depth from defocus. Machine Vision and
Applications, 13(4):234–244.

Ghita, O. and Whelan, P. F. (2008). A systems engineering
approach to robotic bin picking. In Bhatti, A., editor,
Stereo Vision, chapter 4, pages 59–72. InTech.

Gottschalk, S., Lin, M. C., and Manocha, D. (1996). OBB-
Tree: A Hierarchical Structure for Rapid Interference
Detection. In Proceedings of the 23rd annual con-
ference on Computer graphics and interactive tech-
niques, SIGGRAPH ’96, pages 171–180, New York,
NY, USA. ACM.

Johnson, M. (2013). Flexible Path Planning For Bin-
Picking Applications. Masterarbeit, Technische Uni-
versitt Dortmund.

Kirkegaard, J. and Moeslund, T. B. (2006). Bin-picking
based on harmonic shape contexts and graph-based
matching. In 18th International Conference on Pat-
tern Recognition, volume 2 of ICPR, pages 581–584.

Kneupner, K. (2004). Entwicklung eines Programmier- und
Steuerungskonzepts für Robotersysteme auf der Basis
eines Umweltmodells. PhD thesis, TU Dortmund Uni-
versity. ISBN 3-18-338920-7 VDI Verlag, Düsseldorf.

Kuhlenkötter, B., Hypki, A., Schyja, A., and Miegel, V.
(2010). Robot Workcell Simulation with Automa-
tionML Support - An Element of the CAx-Tool Chain
in Industrial Automation. In Proceedings for the joint
conference of ISR 2010 (41st International Sympo-
sium on Robotics) und ROBOTIK 2010 (6th German
Conference on Robotics). VDE Verlag GmbH.

Leonard, S., Chan, A., Little, J. J., and Croft, E. A.
(2007). Robust motion generation for vision-guided
robot bin-picking. ASME Conference Proceedings,
2007(43033):651–658.

Martinez, A. and Fernndez, E. (2013). Learning ROS for
Robotics Programming. Packt Publishing.

McKee, J. W. and Aggarwal, J. K. (1977). Computer recog-

nition of partial views of curved objects. IEEE Trans-
actions on Computers, 26(8):790–800.

Palzkill, M., Ledermann, T., and Verl, A. (2010).
Anticipation-preprocessing for object pose detection.
In 41st International Symposium on Robotics, ISR
2010, pages 440–445.

Pochyly, A., Kubela, T., Singule, V., and Cihak, P. (2012).
3d vision systems for industrial bin-picking applica-
tions. In 15th International Conference on Mecha-
tronics, MECHATRONIKA, pages 1–6. IEEE.

Project Group 510 (2008). Entwicklung einer echtzeitfhi-
gen Kollisionsbehandlung fr die physikalische Simu-
lation in virtuellen Umgebungen. Project Group, TU
Dortmund University, Computer Science VII.

RRS-Owners (1991). Realistic Robot Simulation Inter-
face Specification, version 1.3. Technical report,
Fraunhofer-Institut für Produktionsanlagen und Kon-
struktionstechnik (IPK), Berlin.

Schraft, R. D. and Ledermann, T. (2003). Intelligent picking
of chaotically stored objects. Assembly Automation,
23(1):38–42.

Schyja, A., Bartelt, M., and Kuhlenkötter, B. (2014). From
conception phase up to virtual verification using auto-
mationml. In 5th CATS 2014 – CIRP Conference on
Assembly Systems and Technologies. Status: accepted.

Schyja, A., Hypki, A., and Kuhlenkötter, B. (2012). A
modular and extensible framework for real and vir-
tual bin-picking environments. In 2012 IEEE In-
ternational Conference on Robotics and Automation
(ICRA), pages 5246 –5251.

Tsuboi, Y. and Inoue, T. (1976). Robot assembly system
using tv camera. Industrial Robot: An International
Journal, 3(2):67–72.

Wurdemann, H. A., Aminzadeh, V., Cui, L., and Dai, J. S.
(2011). Feature extraction of non-uniform food prod-
ucts using rgb and rgb-d data combined with shape
models. In International Conference on Robotics and
Biomimetics, ROBIO, pages 1652–1657. IEEE.

SIMULTECH�2014�-�4th�International�Conference�on�Simulation�and�Modeling�Methodologies,�Technologies�and
Applications

140


