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Abstract: We address the problem of transforming statistically stationary waveform signals into their intrinsic 
geometries by embedding them into two or three dimensional space for the purpose of visualizing them. The 
graph Laplacian based manifold embedding algorithms basically generate geometries intrinsic to the signal 
characteristics under the conditions that it is smooth enough and sufficient number of patches are extracted 
from it. Especially, commute time is known to have the properties of shrinking the mutual distance between 
two points as the number of paths connecting them increases, which makes it possible to align the 
statistically different patches in the form of curves. Extensive experiment is conducted with speeches and 
musical instrumental sounds to investigate the relevance of the waveforms to their own inherent geometries. 

1 INTRODUCTION 

If data lies in a higher dimensional space, it is very 
hard to imagine what it looks like. However, if it is 
possible to visualize it in a two or three dimensional 
space, it can be a meaningful clue for a desired 
output in the area of pattern recognition or machine 
learning. When data set lies on or close to a linear 
subspace, PCA(principal component analysis) is 
most useful and optimal for dimensionality 
reduction in terms of maintaining maximum 
variance of the data set. However, when data set lies 
on a nonlinear space, PCA introduces severe error. 
The manifold learning algorithms replace PCA on a 
nonlinear space.  

Over last decades, there have been several 
different embedding algorithms developed for 
dimensionality reduction in manifold ways. Isomap 
(Tenenbaum et al, 2000) and locally linear 
embedding (Roweis and Saul, 2000) are known to be 
the first manifold learning algorithms. Laplacian 
eigenmap (Belkin and Niyogi, 2003), based on ideas 
from spectral graph theory, attempts to represent 
data points using information involved in the 
eigenvalues and eigenvectors of the graph Laplacian. 
The spectral graph theory analyzes how information 
diffuses with time across the edges connecting nodes 
via eigenvalues and eigenvectors of the Laplacian 
matrix of the graph. The general principle of 
computing an eigenspace is to reduce the complexity 

of a problem by focusing on a few relevant 
quantities and dismissing others. Many authors 
recently began to consider random-walk based 
similarity measure on the graph. The hitting time 

 ,h i j  of a random walk on a graph is defined as 

the expected time for a random walk on a graph to 
start from a node iv  to arrive at a node jv . 

However, it may not be symmetric, that is 

   , ,h i j h j i , which makes it inappropriate for a 

distance measure between pairs of nodes. An 
alternative measure for the hitting time is a commute 
time  ,c i j , which is defined as the average time 

taken for the random walk to travel from node iv  to 

reach jv for the first time and then return to iv , i.e., 

     , , ,c i j h i j h j i  . Commute time provides a 

distance measure between any pair of vertices. (Qiu 
and Hancock, 2007) showed the commute time can 
be computed from the Laplacian spectrum using the 
discrete Green’s function. (Taylor, 2011) proposed 
methods to organize the patches extracted from 
images or waveform signals according to the graph-
based metrics. They showed the embedding of the 
set of patches based on the eigenfunctions of the 
graph Laplacian can concentrate even the patches 
including high frequency components. Their recent 
studies on the patch graph and its embedding give 
convincing ideas of analyzing signals from the 
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geometrical point of view. Although the usual 
shortest path distance is most common metric on a 
graph, it may not be always relevant, as mentioned 
above. The commute time distance, which has been 
widely used in mathematical chemistry or 
collaborative recommendation, began to be 
exploited in the graph based manifold embedding, 
Our paper starts from the assumption that a given 
data set has the embedding result, i.e. its intrinsic 
geometry, if it is sufficiently correlated. In this 
paper, we address the problem of transforming 
statistically stationary waveform signals into its 
intrinsic geometries by embedding them into low 
dimensional Euclidean space. 

The outline of the paper is as follows: In the next 
section, we explain how to extract patches from the 
segment of a signal and construct patch graphs using 
the patch set. We review the compute commute time 
embedding in section 3. In section 4, we present 
experiments and investigate the characteristics of the 
commute time embedding. We conclude with 
directions for future research in section 5. 

2 CONSTRUCTION OF PATCH 
GRAPH 

It is assumed that the signal of interest is given as a 

finite duration of samples   
1

K

k
x k


, where 

maximally overlapped patches of size p  samples are 

extracted around each time sample in the following 
way: 

1 ,   1, 2, ,pn
n

n

S n N   
x

x
x

 (1)

where       , 1 , , 1
T p

n x n x n x n p     x   

and 1pS   represents 1p   sphere. The patch nx  is 

obtained by normalizing nx with its magnitude so 

that it may not be sensitive to changes in the local 
energy of the signal. In this paper, a patch nx is 

regarded as a vector on the 1p  dimensional sphere 

embedded on the p dimensional Euclidean space. 

We define the patch set as the collection of all 
patches extracted from the signal. Thus, the signal is 
reformatted as a patch set, with which the graph of 
patches is constructed. 

In order to construct a patch graph, which is a 
simple, and connected graph organized from the 
patch set, we need to decide which node be 
connected with which. Since we may not know the 

geometry associated with the patch set, we first 
should investigate whether pairs of nodes iv  and jv

be adjacent. A similarity function on the patches is 
needed to define a meaningful local neighborhood. 
In this paper, we relate a similarity function, which 
measures how the nodes iv  and jv  are adjacent, to 

the Euclidean distance, where a Gaussian similarity 
function is adopted. Thus, the weight along the edge 
connecting nodes iv  and jv , which are associated 

with ix and jx , respectively, is defined as follows:  

 
2 22

, : connected,
0 otherwise

i j
i jew i j

  


x x
x x  (2)

Given a set of patches 11, , N  x x  and some measure 

of similarity between all pairs of data  ,w i j , we 

can construct a graph by representing each patch ix  

as a vertex iv  in the graph, where two vertices iv  

and jv  are connected if the similarity  ,w i j  

between the corresponding data points is larger than 
a certain threshold, and the edge is weighted by 

 ,w i j . There are several popular methods to 

construct a graph, such as  -neighborhood graph, k-
nearest neighbor graph, or fully connected graph, 
given a set of nodes. Among them, we adopt a 
scheme of k-nearest neighbor graph (Brito et al, 
1997) in which nodes uv  and vv  are connected if uv  

is among the k-nearest neighbors of vv  or vv  is 

among the k-nearest neighbors of uv . Computing 

similarities between pairs of patches allows us to 
map the patches at the ambient space into some 
geometry at the embedding subspace. 

3 REVIEW OF COMMUTE TIME 
EMBEDDING 

Given the adjacency matrix W , whose entries are 

   ,
uv

W w u v , the degree matrix D  is computed 

to be a diagonal matrix with entries 

   
1

,
N

uu v
D w u v


   and the graph Laplacian 

matrix is defined as L D W  . It is assumed that a 
patch graph is connected and undirected. Let 

TL U U   be the spectral decomposition of L , 
where U  is the matrix containing all eigenvectors as 
columns and   the diagonal matrix with the 
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eigenvalues 1, , N   . Denote by †L  the Moore-

Penrose inverse of L .  Then we have 

     ,
T

i j i jc i j z z z z    (3)

where ,2 ,

2

, ,i i N
i

N

u u
z vol

 

 
     

 
 . If 

1 1
2 2

symL D LD
  is used instead of L , LU U    

becomes symL V V   where 1 2D   and 
1 2V D U . Thus,  

,2 ,N

2

, ,i i
i

i N i

v v
z vol

d d 

 
      

 (4)

This allows us to interpret  ,c i j   as Euclidean 

distance between two nodes iz and jz on the 

embedding subspace.  
For the dimensionality reduction, It is not needed 

to use all the components in the embedding defined 
by the above equation. We can use only the first q  

components corresponding to the lower eigenvectors 
in the following way: 

, 1,2

2 1

, , i qi
i

i q i

vv
z vol

d d 




 
   
   

 (5)

Compare the commute time embedding with a 
Laplacian eigenmap (Belkin and Niyogi, 2003), 
defined as 

,2 ,N, ,i i
i

i i

v v
y

d d

 
    
 

 (6)

Likewise, its dimensionality reduction can be done 
in the following way: 

,q 1,2 , , ii
i

i i

vv
y

d d


 

     
 

 (7)

Compared with the entries of iy  , the entries of iz   

are additionally scaled by the inverse of eigenvalues 
of  symL  so that the entries with the lower 

eigenvalues are more stressed.  
For the embedding purpose, It is supposed that 

the graph is connected; that is, any node can be 
reached from any other nodes of the graph. If this is 
not the case, the nodes of the graph can be 
decomposed into several disjoint subsets, which 
causes the eigenvalues of the Laplacian matrix have 
values of zero whose multiplicity corresponds to the 

number of the disjoint subsets. In case of commute 
time embedding, the coordinates of each node on the 
graph corresponding to eigenvalues of zero are 
mapped into zero on the embedding domain. 

4 EXPERIMENTS 

Patch sets associated with signals are constructed, 
where the size of patch is decided experimentally 
with 25p   samples. When the commute time 

embedding is performed on the patch set composed 
of N   patches, each vertex is mapped into an 1N    
dimensional vector, as shown in Eq. (4) which 
causes severe burden and makes it hard to get a feel 
for what the data looks like. In this paper, 
dimensionality reduction is employed so that the 
data can be embedded on three dimensional space 
because it is possible to visualize them on the 
embedding subspace if the patch sets can be 
represented on two or three dimensional space. 

4.1 Investigating the Characteristics of 
Commute Time Embedding 

In Fig. 1, we show an example of the segment of 
some sinusoidal signal, its PCA embedding and 
commute time embedding. The segment is 
composed of 700 samples, from which 676 patches 
are extracted so that they may be maximally 
overlapped. In this figure, patches of lower variance 
are encoded with blue color, while patches of higher 
variance with red color. Throughout this paper, 
lower variance means it is less than the median of 
the distribution of the variances over all patches in 
the patch set, while higher variance is larger than the 
median (Taylor, 2011). In PCA embedding, it is 
meaningless to reduce their dimensionality into three 
dimensional space, because the embedded points 
corresponding to the patches are randomly scattered 
around the three dimensional Euclidean space. It 
means that one cannot effectively encode the patches 
of 25 dimensional vectors into three dimensional 
vectors, because the patches lie on the curved 
manifold. However, the result of commute time 
embedding shows that each patch is mapped densely 
to generate a smooth curve inherent to the 
characteristics of the signal and even two 
dimensional space would be enough to represent 
them without severe loss of inherent information. 

Then, we investigate how the number of patches 
in the patch set affects the embedding results. In 
order  to  understand  how  many patches are needed  
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              (a)                                               (b) 

 
 (a)                                               (b) 

Figure 1: An embedding comparison between PCA and 
commute time of a sinusoidal signal. (a) A sinusoidal 
signal. (b) PCA embedding. (c) Commute time embedding 
on three dimensional space. (d) Commute time embedding 
on two dimensional space. 

for the commute time embedding to have the 
intrinsic geometry of smooth curve, we comprise 
five patch sets, each of which is composed of 
samples extracted from a chirp signal with varying 
sample sizes of 700, 800, 900, 1,000, and 1,400. The 
number of patches for each patch set is 676, 776, 
876, 976, and 1,376, respectively. Fig. 2 depicts the 
embedding of the patch sets associated with chirp 
signals, whose numbers of patches are varied, using 
the map given in Eq (5), where 3q  . When the 

number of patches in the patch set is not sufficiently 
enough compared with the statistics of the patches, 
such as correlation among them, the distances 
between pairs of patches are so randomly distributed 
that some patches appear to be scattered on the 
embedding subspace, while others are likely to be 
aligned along a smooth curve. It is observed that the 
embedding approaches its intrinsic geometry as the 
number of patches increases.  

Because the patches nx  extracted from the chirp 

signal get to contain higher frequency components 
as n  increases, more patches are needed for smooth 
and nearly continuous embedding compared with the 
signal in Fig. 1, where the sinusoidal is periodic and 
its patch set is sufficiently correlated. The commute 
time embedding preserves commute time distance 
between pairs of patches, which are equal to the 
mutual Euclidean distance after embedding, so that 
the distances between pairs of patches should be 
more densely distributed in order to get the 
continuous and smooth curve of embedding. That is 

why the chirp signal needs more than 1,000 patches 
for the embedding to be a smooth curve of inherent 
geometry. 

 

 (a)                                            (d) 

 

 (b)                                            (e) 

 

 (c)                                            (f) 
Figure 2: Evolution of a commute time embedding as the 
number of patches extracted from a chirp signal increases. 
(a) a chirp signal, The number of patches are (b) 676, (c) 
776, (d) 876, (e) 976, (f) 1,376. 

According to (von Luxburg et al, 2010), however, 
the commute time  ,c i j   between pairs of nodes 

iv   and jv   for all i j  , converges to 

  1 1

i j

vol G
d d

 
  

 
  as the number of nodes n  

increases. This does not reflect connectivity of the 
graph, just simply reflect the local degree 
information only. Here,  ,u v

d w u v   represents 

a degree of a vertex uv  . It means that the time to hit 

vertex jv   just depends on jd   if the number of 

nodes gets large, regardless of which vertex iv   the 

random walk starts from, and the random walk has 
forgotten where it came from, by the time it is close 
to vertex jv . It is proved that this phenomenon 

begins to happen even when the number of nodes 
exceeds 1,000~2,000, depending on the statistics of 
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the patch set. Thus, we restrict the number of 
patches should be less than 1,500, to avoid such 
unwanted situations. 

For the comparison purpose, we display in Fig. 3 
the approximation errors of Laplacian eigenmap and 
commute time embedding, when the chirp signal of 
sample size of 1,400 is used. The approximation 
error is defined as  

 

2 2

, 1 , 1

2

, 1

N N

i j i j
i j i j

P N

i j
i j

z z z z

e q
z z

 



   




 


 (8)

In case of Laplacian eigenmap, iz  and iz  are 

replaced with iy and  iy , respectively, which are 

defined in Eqs. (4)~(7). The approximation errors of 
commute time embedding are less than those of the 
Laplacian eigenmap, as shown in Fig. 3. It means 
that scaling the entries of iz  by the inverse of the 

eigenvalues of symL  is tantamount to the effect of 

more energy compaction in the process of 
embedding, because it is expected the principal 
components are more stressed. 

 

(a)                                            (b) 

Figure 3: The approximation errors  Pe q of (a) 

Laplacian eigenmap and (b) commute time embedding. 

4.2 Examples of Commute Time 
Embedding 

Based on some understanding of the manifold 
embedding mentioned above, we assert that the 
intrinsic geometries for the given waveform signals 
can be generated using the manifold embedding.  

Especially, graph Laplacian based embedding 
algorithms are shown to generate low-dimensional 
manifolds ( geometries of smooth curves ) given the 
patch sets extracted from the waveform signals. 

In order to capture the intrinsic geometries of the 
musical instrumental sounds, we extract several 
patch sets from each different segment of the 
musical instrumental sounds – flutes, violins, cellos, 
and speech signals – vowels [a:], [o:], [u;], and then 
embed  them  on  the  three  dimensional   Euclidean 

 
(a) 

 
(b) 

 
(c) 

Figure 4: Commute time embedding results of the musical 
instrumental sounds. (a) flute, (b) violin, (c) cello. 

space. It is shown in Fig. 4 some examples of 
segments from which patch sets of instrumental 
sounds are extracted and their corresponding 
commute time embedding. 

Flute sounds, as shown in Fig. 4-(a), are very 
narrow-banded compared with those of violin or 
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cello sounds, and their embeddings are composed of 
two circles bounded. A close look at the figures 
implies the number of circular shapes in the 
embedding geometry is likely to be related to that of 
dominant frequency components such as formants of 
the waveforms. The waveforms are composed of 
two dominant formants. The waveforms of violin 
sounds, however, are more dynamic, i.e., have 
couples of dominant frequency components, 
compared with those of flutes, and are expected to 
have more complicated geometric structures, as 
shown in Fig. 4-(b). Indeed, the statistical 
distribution of the patch sets extracted from the 
different segments of the waveform varies according 
to their spectral variations. For this reason, patch 
sets, even though they are extracted from the same 
waveform, may have quite different-looking 
embedding. We get the similar results with the cello 
sounds, which are displayed in Fig. 4-(c).  

It is shown in Fig. 5 some examples of commute 
time embedding of the patch sets extracted from the 
segments of vowel sounds [a:], [o:] and [u;]. As 
expected from the previous results, we observe the 
embedding geometries similar to those of 
instrumental sounds. The results given above 
strongly support our earlier assertion that the 
intrinsic geometries for the given waveform signals 
can be generated using the graph Laplacian based 
manifold embedding. 

5 CONCLUSIONS 

In this paper, we have explored the use of commute 
time embedding for the purpose of transforming the 
segments of some waveforms into their intrinsic 
geometries. The embeddings corresponding to the 
patch sets extracted from the dynamic regions of the 
signals are scattered around some curves. We can 
reduce such scatterings by smoothing the signals 
from which patch sets are extracted, or increasing 
the number of patches in the patch set. As long as 
the segments of the waveforms are smooth enough 
for the commute times between pairs of patches to 
be densely distributed, it can be asserted that 
commute time embedding generates their own 
intrinsic geometries corresponding to the waveforms 
on the embedding subspace. As a future research, we 
would like to explore its application to pattern 
classification or speech recognition in a geometric 
way. 

(a) 

(b) 

(c)

Figure 5: Commute time embedding results of the vowel 
segments. (a) [a:], (b) [o:], (c) [u:]. 
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