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Abstract: The aim of this paper is to describe a novel methodology for model-design and tuning in computer 
simulations, based on automatic parameter screening and optimization. Simulation requires three steps: 
mathematical modelling, numerical solution, and tuning of the model’s parameters. We address Tuning 
because, at the state-of-the-art, the development of life-critical simulations requires months to appropriately 
tune the model. Our methodology can be split in Screening (identification of the relevant parameters to 
simulate a system) and Optimization (search of optimal values for those parameters). All techniques are 
fully general, because they leverage ideas from Machine-Learning and Optimization Theory to achieve their 
goals without directly analysing the simulator’s mathematical model. Concerning screening, we show how 
Machine-Learning algorithms, based on Neural Networks and Logistic Regression, can be used for ranking 
the parameters according to their relevance. Concerning optimization, we describe two algorithms: an 
adaptive hill-climbing procedure and a novel strategy, specific for model tuning, called sequential masking. 
Eventually, we show the performances achieved and the impact on the time and effort required for tuning a 
helicopter flight-simulator, proving that the proposed techniques can significantly speed-up the process.

1 INTRODUCTION 

Computer simulations have been one of the major 
breakthroughs in the 20st century technology, with 
previously unforeseeable theoretical and practical 
implications. Simulations have shown how the 
interaction among different entities/components with 
non-trivial behaviour can result in an apparently 
unpredictable dynamics, opening new perspectives 
in the study of complex systems. In countless fields 
of Science it is now a standard to resort to 
simulations in order to test hypothesis or in order to 
get a deeper insight in the dynamics of systems with 
sensitive dependency on the initial conditions. 
Concerning Engineering, simulations are essential 
for both Testing and Training, and increasingly take 
the place of traditional experimenting and 
prototyping; this has dramatic impact on all 
industries where safety and costs are critical factors 
(such as the aerospace, bio-medical, pharmaceutical, 
and military industries), and makes the development 
of highly accurate simulators a life-critical activity. 

For a very long time the Modelling and Simulation 
techniques were developed independently by 
different communities of Civil, Aerospace and Bio-
medical Engineers, and this led to much confusion 
and lack of communication, hindering the 
development of the sector. Only recently M&S was 
recognized as a field on its own, with a well-
established methodology. In order to develop 
effective and accurate computer simulations of 
complex systems, three main steps are required:  
1) Mathematical modelling of the agent(s), of the 
environment, of the interactions between agents or 
between agent and environment; 2) Numerical 
solution of the model’s equations; 3) Tuning of the 
model’s parameters. Much work has been done since 
the 50s regarding the first steps. Depending on the 
kind of simulation, Mathematical Modelling can rely 
on principled results from Physics, Operational 
Research and Game theory. Concerning the 
Numerical solution of the model, beside to domain-
specific approaches (designed for particular 
problems in CFD or computational electronics), also 
efficient general-purpose techniques are now 
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available (e.g. FEM). Thanks to the advances in 
these two steps it is therefore possible to model and 
solve problems from virtually any application 
domain. The third step of M&S, essential whenever 
high accuracy is to be achieved, is Tuning; this is the 
process of assigning precise values to the free 
parameters of the mathematical model behind a 
simulation (Even when it is possible to identify the 
form of the functional relation among the different 
variables of the system, it is seldom possible to set a 
priori the exact values of all parameters). Tuning has 
not seen in recent years the same development of the 
first two steps of M&S, and is often the bottle-neck 
of the process of building a simulator. This is the 
case, for example, in the flight-simulators industry, 
where tight regulatory constraints require a long 
Tuning process in order to Certificate a simulator for 
pilot Training; however, flight-simulations are not 
the only example, and model tuning is even more 
crucial in various medical contexts, such as 
simulation-driven training (Morgan et al, 2006) and 
accurate dose calculation in radiotherapy (which 
relies on the ability of precisely modelling the 
patient geometry using Computed Tomography 
(Lewis et al, 2009)). In all these fields, the complex 
tuning job is mostly carried out by hand, using a 
trial and error approach in order to modify the huge 
number of parameters until the required accuracy is 
attained. This approach makes tuning a human-
intensive and time-consuming process (given the 
high dimensionality of the solution space and the 
complex interactions among parameters) and calls 
for the development of automatic tools for model 
tuning. In the following sections we begin formally 
defining the tuning problem (section 2) and 
providing a two-step decomposition of the problem, 
heart of the proposed approach (section 3).  In 
sections 4 and 5 we present automatic techniques for 
parameter Screening (i.e. identification of the most 
relevant parameters for the effective simulation of a 
system) and parameter Optimization (i.e. search of 
the optimal values for those parameters); for each 
step the state-of-the-art is discussed, highlighting the 
major limits of currently used approaches, and 
different alternatives are proposed, evaluating pros 
and cons of each choice. Finally (section 6) we 
validate the proposed techniques against a 
Helicopter-simulator case study, comparing the 
performances of our two-step approach with manual 
tuning (taking TXT e-solutions data as benchmark): 
we provide detailed results showing how the 
combination of Screening and Optimization can 
outperform manual tuning, in terms of speed, 
accuracy and capability of dealing with high-

dimensional parameter spaces. It is important to 
notice that, although validated against a specific type 
of simulation, the proposed methodology is designed 
to be as general as possible: our approach leverages 
ideas from Machine-Learning and Optimization 
Theory in order to achieve its goals treating the 
simulator as a black-box, without relying on any 
kind of domain knowledge or other a priori 
assumptions. 

2 THE TUNING PROBLEM 

We now give a formal definition of the problem we 
are facing, defining the terminology and notations to 
be used in the rest of the paper; the elements here 
presented can be specialized, depending on the 
problem at hand; in section 6 we will see a 
specification of all the following for a helicopter 
flight simulator (case-study for validation). Let:  
 

- P be a set of n parameters; 
- A∈  ;be a generic assignment of parameters in P ࡾ
- Assign to each pi	∈P a range ܴ ൌ ሾܽ, ܾሿ;  
- An assignment A is said consistent if 	ܣ ∈ ܴ	∀݅; 
- A0 denotes the initial consistent assignment, 
randomly chosen or theoretically derived; 
- Let S be a set of domain-specific performance 
metrics, measuring different features of the output; 
- S(A) represents the values of the performance 
metrics computed when the simulation is executed 
with the parameters’ assignment A; 
- Ref is the set of expected values for the metrics 
(ground-truth from observations); 
- E(A) is a measure of the global simulation error 
(combining errors on the different metrics). 

→ The (full) tuning problem is the problem of 
finding a consistent assignment A ∈  of all ࡾ
parameters in P, such that the simulation error E(A) 
is minimum. 

3 PROPOSED METHODOLOGY 

As previously anticipated, the proposed 
methodology decomposes the full tuning problem in 
two sub-tasks. The two sub-problems can be solved 
in sequence, exploiting the results of the first phase 
in order to complete more efficiently the second: 
 

→ The screening problem is the problem of ranking 
the parameters according to their relevance and 
defining a subset SP⊂P of most relevant parameters. 
→ The restricted tuning problem requires to find the 
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best consistent assignment A|SP of parameters in SP, 
exploiting the ranking of parameters in SP for 
optimization, while assuming fixed the values of all 
other parameters (those in P/SP).  

If the Screening problem is effectively solved, 
the restricted tuning problem should achieve the 
same accuracy of the full tuning problem at a lower 
cost and introducing less side-effects (issue that will 
be explained in more details in section 6, devoted to 
experimental results). The techniques for solving the 
Screening problem are thus crucial for the entire 
proposed approach to tuning.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Figure 1: The flow of the tuning process, highlighting the 
available choices for screening and optimization. 

4 SCREENING  

Screening is a process with a long tradition in classical 
statistics, and multiple methods are available to pursue 
its goals. Most methods, though, make assumptions on 
the distribution of data, require prior knowledge, or 
have other disadvantages. One-factor-at-the-time 
Designs (Zhang, 2007) require almost no interactions 
among factors; Sequential Bifurcation (Bettonvil et al, 
1997) requires the sign of the contributes of all factors 
to be fixed and known; Pooled ANOVA (Last et al, 
2008) requires to know the fraction of relevant factors; 

Design Of Experiments (Fisher, 1935) requires to 
evaluate an exponential number of configurations, 
introducing  scalability issues (fractional factorial 
designs overcomes this problem through controlled 
deterioration of the quality of results; however, the 
fraction evaluated must decay with exponential speed 
to keep constant the computational resources 
required). SB and Pooled Anova assume further a low-
order polynomial relations between input and output 
variables, and all previous approaches are usually 
based on a two-level scheme (implicitly assuming 
linearity - or at least monotonicity - for the functional 
form of the output, and making the choice of the 2 
levels a sensitive decision). When all assumptions are 
satisfied and the required knowledge is available, these 
methods can be very effective. However, in our 
research, we were looking for a fully general approach 
and we considered different Machine Learning 
approaches in order to accomplish this goal. Feature 
Selection, for example, is the classic area of Machine 
Learning dealing with dimensionality reduction and 
parameter identification; yet, this is NOT what we are 
looking for because F.S. algorithms do not focus on 
evaluating the impact of the different parameters on 
the simulation’s output, trying just to eliminate 
redundancy and relying mostly on learning the 
statistical dependencies among factors (which, in our 
context, are independent from each other). In order to 
exploit Machine Learning for parameter screening we 
have followed a completely different track: extracting 
a feature ranking from a classifier trained on a 
database of previously generated <parameter-set, 
simulation error> tuples, and deriving the subset of 
relevant parameters from such ranking.  

4.1 Database Generation 

In order to reduce as much as possible the bias 
introduced during this critical phase, the database is 
generated randomly using a normal distribution 
centred in A0. The standard deviation depends on the 
range Ri of each parameter: it is a trade-off between 
the necessity of exploration as much as possible of the 
solution space and the need of remaining within the 
ranges: 

ݓ݁݊ ൌ   ݐ݁ݏ݂݂ , ∀݅ ൌ (1) |ܲ|	ݐ	1

ݐ݁ݏ݂݂ ~ ܰሺ0, ߪ
ଶሻ,  ൌ ሺሻ (2)

ߪ											 ൌ
|ோ|


ൌ 	

ି


                         (3) 

Assuming the range symmetric with respect to the 
initial assignment, with this policy about 1 out of 10 
parameters will be sampled outside the range of 
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feasible values: outlier must be set on the boundary in 
order to make all assignments consistent. After the 
database set up, a simulation is executed for each 
assignment A, and the error E(A) is stored as “class” 
variable. The class variable is then discretized 
(although this is compulsory only if Logistic 
Regression is used in the proceedings). Discretization 
can be done through a binomial partition (acceptable-
error, unacceptable-error), or a N bin partition with 
equal frequency. Finally, how large must the whole 
database be depends on which of the proposed ranking 
algorithms is chosen in the following steps and on the 
number of parameters (section 6). 

4.2 Ranking: Logistic Regression 

Logistic Regression (LR) is a classical classification 
algorithm, very popular when dealing with discrete 
class variables. We now give a brief presentation on 
how to apply Logistic Regression and interpret the 
results, discussing pros and cons of this choice in the 
context of computer simulations. Implementations of 
these ideas are available in most data analysis 
packages (such as the Matlab Statistical Toolbox, or 
its open source alternatives Weka and R). More 
detailed information can be found in literature in 
(Harrel, 2001) or in (Bishop, 2006). 

4.2.1 The LR Model 

Logistic Regression is the most famous and widely 
used generalized linear model (Nelder et al, 1972) 
with link-function given by the famous logit 
function: 

ሻሺݐ݈݅݃ ൌ ln ൬


1 െ 
൰ (4)

Given a binomial class variable (Low_Error 
High_Error) the LR model is described by the 
following equations, where the coefficients grouped 
in the vector βሬԦ	are computed through either 
maximum likelihood or maximum a posteriori 
estimation:   

൫ݐ݈݅݃   ܲ௪_ா൯ ൌ ߚ  ∑ ߚ ∗        (5) 

൫ݐ݈݅݃ ܲ௪ಶೝೝೝ൯ ൌ Ԧߚ Ԧܺ                    (6) 

   	 ܲ௪_ா ൌ
ഁ

ሺଵାഁሻ
                 (7) 

 

The extension to a multinomial model is quite 
straightforward; supposing K possible outcomes and 
assuming the independence of irrelevant alternatives 
a simple way to build the multinomial logit model is 
to run independently K-1 binomial logistic 

regressions, leaving out just the last outcome YK: 

ln ቆ
ܲ௨௧ୀ

ܲ௨௧ୀ಼
ቇ ൌ Ԧߚ	 Ԧܺ (8)

Then, by exponentiation of both terms, isolating the 
different probabilities, and exploiting the fact that 
probabilities of all outcomes must sum up to one: 

ܲ௨௧ୀ ൌ ܲ௨௧ୀ಼ ∗ ݁
ఉሬሬԦሬԦ (9)

ܲ௨௧ୀ಼ ൌ
1

1  ∑ ݁ఉሬሬԦೕሬԦ

 (10)

There are many extensions to this model, among 
these we point out (Cessie et al, 1992) which uses 
ridge estimators to improve accuracy high 
dimensional parameter spaces. This slightly 
modified Logistic Regression algorithm is the one 
implemented in Weka, and the one used in our case-
study (section 6). 

4.2.2 Parameter Ranking 

If the LR approach is chosen it is easy to extract 
measures of relevance for the parameters of the 
model: the coefficients of the parameters already 
provide such ranking. In general, this is not a 
reliable measure if the different factors are highly 
correlated, because multi-collinearity makes 
computing the relevance of the single covariates 
much more complex; therefore more sophisticated 
metrics have been developed, which are capable of 
producing valid results in such situations (among 
these Dominance analysis, Likelihood ratio and 
Wald statistics). However, multi-collinearity is not 
an issue for us, because in computer simulations the 
different parameters are independent and our 
database is appropriately built in such manner; thus, 
the ranking provided by the coefficients βi is 
perfectly valid and there is no need to resort to more 
complex procedures in order to obtain meaningful 
results. 

4.2.3 Pros and Cons of LR 

The Logistic Regression model can achieve good 
classification performance with a relatively low 
amount of training data; most potential shortcomings 
of this approach, such as the unreliability of the 
coefficients as measure of relevance of the single 
variables, are due to multi-collinearity, issue that, as 
we have seen, is not present in our peculiar context. 
The main problem with the use of Logistic 
Regression for parameter ranking is that the 
functional landscape that can be learned is limited; 
therefore, very complex objective functions might 
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require more powerful classifiers in order to be 
properly modelled and offer a valuable insight on 
the relevance of the different parameters. This is the 
reason for introducing an alternative approach,  

4.3 Ranking: Multilayer Perceptron 

The Multilayer Perceptron (MP) is a feedforward 
artificial neural network model, widely used in 
classification problems, both for discrete and 
continuous class variables. Therefore, we can train 
the Multilayer Perceptron either on the original 
database of simulations or on the version with 
discrete class variable used for LR. Detailed 
information on this topic can be found in (Haykin, 
1998), and implementations of the ideas presented in 
sections from 4.3.1 to 4.3.4 can be found in Weka 
(Hall et al, 2009), in the RSNNS (Bergmeir, 2012), 
and in the Matlab Neural Networks Toolbox. As 
done for Logistic Regression, we now briefly 
describe the model, discuss pros and cons of its 
application to computer simulations, and finally 
define the strategy that shall be used for parameter 
ranking.  

4.3.1 The MP Model 

The perceptron was first proposed in (Rosenblatt, 
1958) as the simplest model of the behaviour of 
biological neurons. The perceptron maps N inputs 
into a single binary or real-valued output variable y, 
computed applying an activation function f to a 
linear combination of  the inputs and of a threshold 
b, weighted by coefficients wi. Common activation 
functions are the step function, the sigmoid functions 
(such as the logit or the hyperbolic tangent), and the 
rectifier/softplus functions. 

 

Figure 2:  this figure presents the pipelined structure of a 
single perceptron, highlighting its main features. 

A perceptron alone is quite limited and cannot be 

used for non-linearly separable classification 
problems. The combination of many perceptron in 
an Artificial Neural Network, is instead extremely 
powerful. The Multilayer Perceptron is an acyclic 
layered directed graph of perceptrons with non-
linear activation function; the first layer (the input 
layer) has |P| nodes, and the last layer (the output 
layer) has as many nodes as the number of outcome 
variables (for numeric classes) or as the number of 
possible values of the outcome variable (for discrete 
classes); other layers (called hidden layers) can have 
any number of nodes. 

 

Figure 3:  the very common three layered MLP  

4.3.2 Computation 

Given L+1 node-layers (counting input, output and 
hidden layers) and L edge-layers (the connection 
layers between the node layers), the computation of 
a multilayer perceptron can be described as a 
sequence of non-linear transformations from x0 to xL: 

x0  
௪భ,				భ,			ሺ	ሻ
ሱۛ ۛۛ ۛۛ ۛۛ ሮۛ x1 

௪మ,			మ,			ሺ	ሻ
ሱۛ ۛۛ ۛۛ ۛۛ ሮ … 

௪ಽ,			ಽ,			ሺ	ሻ
ሱۛ ۛۛ ۛۛ ۛۛ ሮ xL 

If Nj is the number of nodes at layer j, xj ∈  for ࡺࡾ
all j=0,…,L represents the input of layer j, and Wj is 
an Nj×Nj-1 matrix for all j=1,…,L whose elements 
Wj

h,k represent the weight of the edge connecting 
node h of layer j with node k of the previous layer j-
1. The output value is computed applying in order, 
for all edge-layers for j=1 to j=L, the following 
expression: 
 

ݔ
 ൌ ݂൫ݒ

൯ ൌ ݂ሺ∑ ܹ
ேೕషభ

ୀଵ ݔ
ିଵ 	ܾ

ሻ       (11) 

This paradigm of computation is the reference that 
must be kept in mind in order to understand how the 
network is trained to learn the weights that best 
approximate a target function. 
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4.3.3 Topology 

If a MP model is to be trained on our database, first 
the structure of the network must be chosen; the 
number of inputs and outputs is fixed thus the main 
design choices are the number of hidden layers and 
the number of nodes within those layers. The most 
widely used network topology has just one hidden 
layer. The reason is that convergence is usually 
faster for shallow architectures and it has been 
proved that the MP with a single hidden layer is a 
universal approximator (Cybenko, 1989), thus any 
function can be approximated with arbitrary 
precision if the weights of edges are properly 
chosen. In recent years, though, improvements in the 
training of deep networks (Hinton et al, 2006) have 
made other choices feasible, and some theoretical 
results imply that the universal approximation 
property of the three layered MP is achieved at the 
cost of an exponential number of nodes with respect 
to networks with more hidden layers. Therefore, our 
approach to parameter ranking through the analysis 
of a trained MP applies to networks with any 
number of layers.  

4.3.4 Training 

Once the network’s topology has been devised, the 
best values for the network’s weights must be found, 
this is done with the iterative back-propagation 
algorithm (Rumelhart, 1986) using the database of 
pre-classified simulations. Let t be the iteration (also 
called epoch) and η a parameter called learning rate; 
if the database with continuous class variable is 
used, training proceeds according to the following 
rules, applied each iteration to all instances in the 
dataset (discrete classes are dealt with likewise): 1) 
compute the difference between the expected output 
‘ex’ and the actual output ‘xL’; 2) propagate the error 
across the network from output to input layer; 3) 
update the weights and the thresholds values: 

ߜ														
 ൌ ݂′ሺݒ

ሻሺ݁ݔ െ ݔ
ሻ                (12) 

ߜ 
ିଵ ൌ ݂ᇱ൫ݒ

ିଵ൯∑ ߜ


ܹ
ೕ

ୀଵ ݆	ݎ݂		 ൌ  (13)  1	ݐ	ܮ

             ∆ܾ
 ൌ ߜ	ߟ

	,				݂ݎ	݆ ൌ  (14)            ܮ	ݐ	1

         ∆ ܹ
 ൌ ߜ	ߟ

ݔ
ିଵ,				݂ݎ	݆ ൌ  (15)      ܮ	ݐ	1

This algorithm is the most widely used, although 
convergence is quite slow it can be made more 
efficient resorting to batching and multithreading. 
It is proved equivalent to gradient descent applied to 

an appropriate cost function and shares therefore the 
known limits of such approach: convergence not 
guaranteed and result possibly a local optimum.  

4.3.5 Parameter Ranking 

Extracting measures of relevance from a trained 
Multilayer perceptron is a complex task and there is 
no single way for doing so. Various approaches have 
been proposed in the past, all with their specific pros 
and cons; we present an alternative heuristic 
approach that is easily applicable to MPs with any 
number of hidden layers. Consider a network with 
L+1 node-layers and L edge-layers, with a single 
continuous outcome variable; given the previously 
defined notations, and denoted as R the array of 
length |ܲ| containing the parameters’ ranks: 

                   ሺࡾሻ ∶ൌ                          (16)	ሻሺ݇݊ܽݎ
 

ࡾ    ൌ ܹܹିଵ …ܹଵ 	ൌ 	∏ ܹ
ୀ	௧	ଵ 	       (17) 

If the network was made of linear perceptrons 
(having the identity function as activation function), 
each element of R would represent exactly the 
contribution to the outcome variable of the 
associated parameter when it takes unitary value. 
When applied to networks of non-linear perceptrons 
the metric has just a heuristic value, yet it has 
proved itself very effective in our experiments on 
flight simulations, yielding to even better results 
than LR (see section 6 for more details). The 
extension of the method to N outcome variables or 
to a discrete outcome having N possible values is 
trivial (R is a matrix with obvious meaning). 

4.3.6 Pros and Cons of MP 

The multilayer perceptron’s main strength is its 
representation power, due to its being a universal 
function approximator. Furthermore, the MP can be 
trained on the original simulation error values, and 
does not require discretization as LR, although it is 
still possible to train the network on the discretized 
dataset. However this approach has one big 
disadvantage when applied to our computer 
simulated environment: it usually requires a larger 
amount of data if compared to Logistic Regression. 
This can be a problem because we are responsible of 
generating all data to be analysed: computer 
simulations can be computationally expensive and it 
is not always possible to speed up computation just 
adding resources. Indeed, this was the case in our 
case-study for validation: being a training flight 
simulator, was designed in such a way that 
simulations could only be executed in real-time). If a 
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single function evaluation (i.e. a single computation 
of the simulation error for a given set of parameters) 
takes very long we therefore advise to try Logistic 
Regression first, and resort to the Multilayer 
Perceptron if needed. 

4.4 Computing SP 

We use feature ranking algorithms to evaluate all 
parameters of the model, assigning to each 
parameter a weight, measuring its importance. 
However in the subsequent phase we do not only 
exploit the ranking among different parameters, but 
execute the various optimization procedures 
allowing them to modify only a subset SP of the 
model’s parameters (restricted tuning problem). 
Defining which parameters are the “most” relevant 
and must be considered for tuning process is 
somehow arbitrary, and requires to find a trade-off. 
Considering for automatic tuning a high number of 
parameter implies the exploration a large solution-
space and might introduce despicable side-effects 
(which do not directly influence the performance 
metrics but make the simulation less “natural” to a 
human eye); Instead, considering a too small set of 
parameters might make optimization impossible if 
the optimum falls in the portion of spaces that 
becomes unreachable once fixed the values of 
parameters in P/SP. In order to use the ranks/weights 
of parameters to take a good decision, we suggest to 
sort the parameters according to their weights and 
then draw the cumulative function: the parameter set 
can be cut where the slope of the function slows 
down and at least a given percentage of the total 
weight is reached (e.g. at least 90-95%). An example 
of this procedure is shown in section 6 both for the 
Logistic Regression and for the Multilayer 
Perceptron rankings (figures 5 and 6). 

5 OPTIMIZATION 

We have now reached the final step: the solution of 
the (restricted) tuning problem through automatic 
optimization procedures managing only the 
parameters in the previously defined subset SP. We 
present first a basic stochastic Hill Climbing 
procedure (searching for optimal values of all 
parameters in SP), then we describe two successive 
refinements of the algorithm which have proved 
themselves effective in a real tuning case-study. The 
first refinement introduces adaptive variance, and 
corresponds to a 1+1 evolutionary strategy. The 
third algorithms, which is by large the most 

efficient, is also capable of exploiting the ranking of 
parameters in SP in order to tune an increasing 
number of parameters at each iteration.  

5.1 Local Optimization, Why? 

All proposed approaches are local (and stochastic) 
optimization strategies; this is no accident, and it is 
appropriate for the following reasons: 
1) Do we have any choice? Often we do not; global 
optimization is more computationally demanding, 
therefore, in M&S, it might simply be impossible. 
The time for each function evaluation can be very 
long; executing different simulations in parallel can 
be unfeasible if all computational power available is 
required for executing a single computer simulation; 
finally, sometimes, e.g. in real-time simulations, no 
speed-up of the single simulation is possible even if 
more computational power is available. 
2) If modeling is carried out in a sensible way, the 
initial assignment A0 is not a completely random 
guess but a reasonable solution derived by physical 
considerations, and is thus (hopefully) near to the 
true optimal solution making local optimization less 
at risk of remaining stuck in non-global optima. 
3) When you recreate in a simulator some known 
observed reality (which is typical of flight or other 
life-critical simulations) you can recognize if you are 
stuck in a local optima because you know which the 
optimal value is (although you do not know where it 
is located within the very large solution-space). 
4) Concerning the choice of stochastic optimization 
instead of deterministic procedures, there are two 
elements to be considered: first, stochastic 
procedures are less prone to getting stuck in local 
optima, second, most stochastic algorithms needs to 
know very little about the function (no need to 
compute derivatives or similar). Having devoted so 
much time to develop screening techniques capable 
of treating the model just as a black box, we do not 
want to start analyzing the equations now that 
efficient black-box optimization techniques are 
readily available. 

5.2 Basic Stochastic Hill Climbing 

The basic Hill climbing procedure we now present 
in pseudo-code shall be thought of as a template to 
be refined in the following. Therefore, it’s quite 
impressing that, as we will see, even in this basic 
form the procedure accomplishes a reasonably low 
error, showing the power of Screening in making 
tuning possible. The algorithms works exploring the 
neighbourhood of the best solution up to a given 
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moment until a better one is found, then it moves to 
the new location and continues: 

01 best = A0 
02 A = A0 
03 min-err = execute(A0) 
04 R = loadRange() 
05 σ = computeStdDev(R) 
06 
07 while (error>threshold) 
08     
09   for (j=1 to |P|) 
10      if(pJ in SP) 
11        AJ = bestJ,+ σJ × N(0,1) 
12        AJ = setWithinRange(AJ,RJ) 
13      end-if 
14   end-for 
15    
16   if(execute(A) < min-err) 
17      min-err = execute(A) 
18      best = A 
19   end-if 
20 
21 end-while 

best contains the best assignment found up to the 
current iteration, min-err storing the corresponding 
error. Exploration of the neighbourhood of best is 
random: new assignments of each parameter  in 
SP are generated each iteration sampling from a 
normal distribution centred in		ሺܾ݁ݐݏሻ. The function 
computeStdDev(R) defines once for all the 
value of the standard deviation used for each 
parameter , which is proportional to the range ܴ; 
the same precautions seen for the database 
generation, to guarantee the consistency of all 
assignments, are taken into account also in this 
circumstance when defining the relation between 
range and standard deviation (section 4.1). Function 
execute(A) runs the simulation with 
parameters’ values specified by A and computes the 
simulation error E(A). Note that, as required, all 
parameters in P/SP maintain their initial default, and 
that as the number of iterations grows to infinity the 
best parameter assignment eventually converges to 
the global optimum with probability 1. 

5.3 Adaptive Variance 

In the hill climbing procedure of the previous 
section, random mutations occur every iteration in 
order to explore the neighborhood of the best 
solution found; the parameter controlling such 
mutations is the standard deviation of the normal 
distribution used for sampling. As it is, this standard 
deviation could be computed statically, depending 

only on the range of the different parameters 
considered; however, the optimal value of σ is not 
the same throughout the execution of the 
optimization procedure: indeed, it is intuitively clear 
that the best value for σ should be greater when the 
error is high and we are exploring the solution space 
with a high success rate, while it should become 
increasingly smaller when we are very near to the 
optimum and very small corrections are needed in 
order to improve our solution. This calls for a crucial 
important modification of the procedure of section 
5.1, allowing σ to adapt on-line during optimization. 
There are two main approaches to achieve the 
required capability: make the standard deviation 
decrease along with the simulation error, or make it 
increase or decrease dynamically depending on the 
success rate (the fraction of mutations that are 
successful, i.e. that improve the best solution). The 
former approach still requires to define at design-
time the exact relation between error and standard 
deviation, instead the latter is usually more powerful 
because provides greater flexibility. A common 
policy when the second approach is chosen is to 
decrease σ when the success rate is below 0.2 and 
increase it otherwise (this strategy is known as the 
1/5 success rule; it can be proved optimal for several 
functional landscapes and it is widely recognized to 
give good results in practice in a wide range of 
circumstances). Among the many implementations 
of such rule, the simplest one (Kern et al, 2004) 
accumulates the knowledge about success and 
failure directly in the value of σ, substituting the if-
else clause of lines 16-19 with the following code: 

18 if(execute(A) < min-err) 
19     min-err = execute(A) 
20     best = A 
21     σJ = σJ ൈ α 
22 else 
23     σJ = σJ ൈ ߙሺିଵ/ସሻ 
24 end-if 

Reasonable values of parameter α are between 
2ଵ/and 2. This implementation requires to set only 
1 parameter instead of the 3 (change rate, averaging 
time to measure success rate, update frequency) 
needed with classical implementations following 
more narrowly the previous definition.  

5.4 Sequential Masking 

Although the hill climbing procedure, modified in 
order to adapt online the parameter controlling the 
entity of mutations, can already be used in practice 
to solve the restricted tuning problem, performance 
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can be further improved by the third algorithm, 
Sequential masking, exploiting the ranking of 
parameters in SP. This third approach to automatic 
tuning works as follows: 
1) A sequence of subsets, and thus of restricted 
tuning problems, SP1  SP2  …  SP is generated 
incrementally from the ranking of parameters in SP.  
2) the hill climbing procedure with adaptive variance 
is executed for a fixed number of iterations for each 
sub-problem, starting from the smallest (simplest) 
problem and using the result of each problem as 
initial guess of the subsequent problem.  

 

Figure 4: Sequential masking with four sub-problems. 

The idea is that challenges of increasing complexity 
are faced starting from increasingly good initial 
assignments. The increasing complexity is due to the 
fact that an increasing portion of the solution space 
is reachable. In conclusion, as shown in figure 4, 
starting from assignment A0, we compute a sequence 
of solutions converging to the final solution	ܣௗ of 
the restricted tuning problem with parameters SP. 

ܣ → ܵ	݊	ܥܪ	݁ݒ݅ݐܽ݀ܽ ܲ 	→ 	ଵܣ	
ܣ	…          → ܵ	݊	ܥܪ	݁ݒ݅ݐܽ݀ܽ ܲାଵ 	→ 	 ...		ାଵܣ	

ିଵܣ	 → ܲܵ	݊	ܥܪ	݁ݒ݅ݐܽ݀ܽ	 →  ௗܣ

The execution of the algorithm is controlled by two 
user defined parameters: the number of restricted 
tuning problems, which we can call the granularity 
of the algorithm, and the maximum number of 
iterations for each phase of the procedure. The max 
number of iteration can be different for each of the 
problems (higher for those considering more 
parameters). 

6 CASE-STUDY 

Our case-study for validation is the tuning of an 
industrial level flight-simulator of our_company in 
order to accurately simulate the take-off of a 

helicopter with one engine inoperative (breaking 
down during the execution of the procedure). This 
case-study is a classic example of simulator with 
severe accuracy requirements, as flight simulators 
must be certificated by flight authorities of different 
countries, verifying that the execution of a certain 
set of flight procedures is adherent to the observed 
behavior of the aircraft. There are 2 main procedures 
for take-off: Clear area TO and Vertical TO. We 
here analyse only the clear area procedure, showing 
the results of the screening and optimization 
algorithms (however the techniques have been 
applied to both). In the following P is a set of 47 
parameters, each associated to a range symmetric 
with respect to the initial assignment A0. The 
relevant performance metrics in S are three: CTO 
distance (distance from starting point to take-off-
decision-point), GP1 (average climb in 100 feet of 
horizontal motion during the 1st phase), and GP2 
(average climb in 100 feet of horizontal motion 
during the 2nd phase). Expected values Ref of such 
metrics are specified on the helicopter’s official 
manual. The global error E(A) is the sum of the 
squared relative errors with respect to the three 
performance metrics.  

6.1 Screening 

A database of 1200 simulations has been generated 
with the rules established in section 4.1, 
appropriately discretizing the values of the global 
simulation error. Then both the logistic regression 
and the neural network based approach to parameter 
ranking are applied, using the implementations 
available in the open source machine-learning 
package Weka (And choosing the classic three 
layered topology for the MP). Results were largely 
consistent: if the set of 10-20 most relevant 
parameters for LR is compared to the corresponding 
set within the MP ranking, about, about 85% of the 
parameters figure in both sets. The main difference 
is a single small group of parameters, having similar 
physical meaning, in which all parameters are 
ranked very low by LR while MP seems to be able 
to discriminate more effectively between relevant 
and not relevant parameters. If the cumulative 
functions of the two approaches are compared 
(Figure 7 and 8), this difference among the results is 
reflected in a steeper curve for the LR-based 
ranking, which concentrates most of the weight on 
fewer parameters (trend confirmed by other flight 
procedures). The resulting set SP of the most 
relevant parameters is thus smaller for LR than it is 
for MP. 
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Figure 5: Cumulative weight-function, LR ranking. 

 

Figure 6: Cumulative weight-function, MP ranking. 

6.2 Evaluating Screening 

In the next section we will go into details in the 
comparison of the performances of  adaptive hill 
climbing and sequential masking, but, before, we use 
the basic optimization procedure in order to provide 
the reader with an intuitive proof of the impact of 
the previous screening techniques; In figure 7 four 
executions of the basic HC procedure are compared; 
the horizontal axis identifies the number of 
simulations executed, while the vertical axis 
measures the minimum error up to the given 
iteration. In all four cases the algorithm has gone 
through 100 iteration: the solid lines represent the 
execution of the algorithm considering the results of 
screening (through LR and MP respectively); the 
dotted line, that converges to a relatively high 
simulation error and then stops improving, represent 
the execution of the procedure with SP=P (i.e. the 
procedure if applied directly to the full tuning 
problem with no screening); the dashed line, that 

shows no improvements at all, represent the 
execution using only parameters in P/SP 

 

Figure 7: Execution of the basic hill climbing optimization 
with different screening policies. 

In conclusion, figure 7 shows that LR and MP based 
rankings truly identify the relevant parameters: if 
optimization is allowed to modify only low-ranked 
parameters no improvement is achieved; if instead 
only high-ranked parameters can be modified, the 
restricted tuning problem is solved faster than the 
full problem and a lower error is reached: the 
algorithm with P=SP keeps an acceptable rate only 
for the first 10 iterations, then it almost stops and 
maintains a constant almost imperceptible 
improvement rate. 

6.3 Optimization 

We now show the results of applying the two 
proposed optimization algorithms to our case-study. 
Both converge to an error many orders of magnitude 
lower than the one achieved by the basic hill 
climbing procedure, and they also do so significantly 
faster. In order to make the results understandable 
the vertical axis is now the (base 10) logarithm of 
the error. 

The comparison of the two algorithms in figure 8 
shows that they both are able to keep the error 
decreasing at a good, almost constant, average rate. 
Sequential masking achieves particularly impressive 
performances, however both algorithms proved 
themselves effective, significantly improving the 
basic Hill climbing procedure, in figure 7, which 
instead, whether screening is used or not, hits sooner 
or later a wall, becoming unable of further 
improvements, or capable of doing so only at an 
unacceptable slow rate. 
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Figure 8: Comparison of sequential masking and adaptive 
hill climbing optimization procedures. 

6.4 Benchmarks and Conclusions 

In conclusion our approach has been proved 
effective in tuning a complex flight simulation 
model finding the optimal values of 50 parameters 
of the model. The entire process requires less than 2 
days of machine-time on a single desktop computer 
(with just a few hours actually dedicated to finding 
those values, and most of the time devoted to 
generating the database for parameter ranking). The 
main benchmark against which this result must be 
compared is manual tuning, which is still the state-
of-the-art in industrial applications. Our_company’s 
experienced engineers would require from 10 to 20 
days to accomplish the same result. Concerning 
previous attempts to automatic tuning, there is little 
work done for the tuning of industrial level 
computer simulators, and to the best of our 
knowledge, none in the area of flight simulations. 
The best related work is in medical context (Vidal et 
al, 2013): this paper presents an evolutionary 
strategy for tuning, but the approach is used only for 
lower dimensional problem with just 15 parameters. 
Thanks to an integrated approach combining 
screening and optimization (tightly coupled 
especially in the sequential masking algorithm), our 
methodology allows to significantly expand the 
range of application of automatic techniques for 
parameter tuning. When comparing to other attempt 
of automatic tuning it is important to notice that 
combining screening and optimization is not only 
crucial in order to achieve fast convergence to a 
really low simulation error, but it is also crucial in 
order to avoid an issue we have anticipated in 
previous sections of the paper: the introduction of 
peculiar side effects that can make simulations 
unrealistic to a human eye (such as odd small 

oscillations and vibrations difficult to control). The 
reason for such side-effects is that parameters that 
have a low impact on the performance metrics and 
thus on the global simulation error are free to deviate 
randomly from their default values, because there is 
no selective pressure capable of limiting their erratic 
wandering. Our methodology solves the issue by 
restricting tuning to the set of parameters with direct 
impact on the performance metrics, so, during 
optimization, all non-fixed parameters are directed 
towards their optimal values instead of being free to 
roam around. The proposed methodology is 
therefore the first real alternative to manual tuning, 
allowing an impressive speed up of the tuning 
process while preserving high quality results. 
Having applied the machine learning algorithms 
without exploiting any prior domain knowledge we 
also believe that is fully general, as future research it 
would be therefore interesting to apply the proposed 
technique to other application domains. 
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