
Artificial Neural Network Models of Intersegmental Reflexes 

Alicia Costalago Meruelo1, David M. Simpson1, S. Veres2 and Philip L. Newland3 
1Faculty of Engineering and the Environment, University of Southampton, Southampton, U.K. 

2Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield, U.K. 
3Centre for Biological Sciences, University of Southampton, Southampton, U.K. 

Keywords: Reflex, Artificial Neural Network, ANNs, Time Delay Neural Network, Metaheuristic Algorithm, 
Evolutionary Programming, Particle Swarm Optimisation, Chordotonal Organ, Locust. 

Abstract: In many animals intersegmental reflexes are important for postural control and movement making them 
ideal candidates for the bio-inspired design of medical treatment for neuromuscular injuries in cases such as 
drop foot and possibly in robot design. In this paper we study an intersegmental reflex of the foot (tarsus) of 
the locust hind leg, which is a reflex that raises the tarsus when the tibia is flexed and depresses it when the 
tibia is extended. A novel method is described to quantify the intersegmental responses in which an 
Artificial Neural Network, the Time Delay Neural Network, is applied. The architecture of the network is 
optimised through a metaheuristic algorithm to produce accurate predictions with short computational time 
and complexity and high generalisation to different individual responses. The results show that ANNs 
provide accurate predictions when trained with an average reflex response to Gaussian White Noise 
stimulation compared to autoregressive models. Furthermore, the network model can calculate the 
individual responses from each of the animals and responses to another input such as a sinusoid. A detailed 
understanding of such a reflex response could be included in the design of orthoses or functional electrical 
stimulation treatments to improve walking in patients with neuromuscular disorders. 

1 INTRODUCTION 

Intersegmental reflexes are key elements in postural 
control and locomotion in many animals. One of 
their roles is to provide stability and agility to 
movements (Prochazka, Clarac et al. 2000). A reflex 
response is a neurally mediated reproducible 
movement graded with respect to stimulus intensity 
that is not controlled voluntarily. Understanding 
such types of reflexes might improve current 
medical treatments for neuromuscular injuries such 
as drop foot. It can also be applied to the design of 
prosthesis or active prosthesis for amputees (Herr  
and Grabowski 2011). 

Intersegmental reflexes have been observed in 
many vertebrates and invertebrates, such as cats, 
crustaceans and insects (Burrows and Horridge 
1974, Bush, Vedel et al. 1978, Field and Rind 1981, 
Smith, Hoy et al. 1985). Vertebrates and 
invertebrates have many similarities in motor control 
(Pearson 1993) and by studying intersegmental 
reflexes in insects, the complexity of the motor 
system and reflex responses is reduced, aiding its 

understanding. In locusts, the tarsus is moved by 
only three motor neurons (Burrows 1996). The tarsal 
intersegmental reflex elevates the tarsus when the 
tibia is extended and depresses it when the tibia is 
flexed (Figure 1). The response is therefore initiated 
by knee joint kinetics, which are monitored by a 
sensory organ in the femur, the femoral chordotonal 
organ (FeCO).  

 

Figure 1: Tarsal intersegmental reflex when the tibia is 
fully flexed, in 60° and fully extended. 

The chordotonal organ is connected to the tibia 
by a strand, an apodeme, which pulls on the FCO 
when the tibia is flexed and reduces the tension on 
the FCO when the tibia is extended (Shelton, 
Stepehn et al. 1992, Field and Matheson 1998).  

Mathematical models have been used for many 
years to understand and describe similar reflexes. 
Linear and nonlinear models, such as Wiener 
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methods, have been used in many studies (Newland 
and Kondoh 1997, Dewhirst, Simpson et al. 2009). 
Although these methods provide a quantitative 
description of the dynamic transfer characteristics of 
the system, they can contain different types of 
estimation errors (Korenberg and Hunter 1990). 
Artificial Neural Networks (ANNs) are considered 
to be able to approximate any continuous function 
(Haykin 1999), including non-linear systems (Hunt, 
Sbarbaro et al. 1992), they can adapt and generalise 
better than other mathematical methods (Benardos 
and Vosniakos 2007) and can be easily implemented 
in software and hardware devices (Hunt, Sbarbaro et 
al. 1992, Twickel, Büschges et al. 2011). Another 
issue is that, to date, mathematical models of 
biological systems have only been fitted to 
individual responses, i.e. the parameters are fitted to 
the response of one individual, which can be a poor 
representation of a population (Marder and Taylor 
2011). 

This paper describes novel methods to quantify 
intersegmental responses in the locust hind leg 
tarsus, describes a new mathematical approach to 
model and predict the tarsal reflexes using ANNs 
and asks whether individual responses or the average 
response should be used to model and study the 
system. 

2 METHODS 

2.1 Experimental Methods 

Adult male and female locusts (Schistocerca 
gregaria) were fixed in modelling clay ventral side 
up, with the femur fixed at 60° from the abdomen 
and with the tibia fixed at an angle of 60° to the 
femur, an angle which represents the middle of the 
linear range movement of the FeCO apodeme 
(Figure 2). The FeCO was exposed by removing a 
small piece of cuticle at the distal end of the femur, 
and the cavity was perfused with locust saline. The 
FeCO apodeme was grasped with a pair of fine 
forceps tip attached to a shaker (permanent magnet 
shaker LDS V101). The shaker was driven by a 
signal generated in Matlab®, which was amplified 
and converted to analogue via a digital-to-analogue 
(DA) converter (USB 2527 data acquisition card 
(DAC), Measure Computing Norton, MA, USA). 
The movement response in the locust tarsus was 
recorded with a Keyence laser displacement sensor 
(LK G3001V controller, LK G32 Head, Keyence) 
aimed at the last segment of the tarsus. 
The stimulus signals were designed and applied 

through Matlab®.  Locusts walk at a step frequency 
of approximately 3 Hz (Burrows and Horridge 1974) 
and for this reason, Gaussian White Noise (GWN) 
was produced band-limited between 0 - 5 Hz, and a 
sinusoidal input simulating walking was applied at 1 
Hz. GWN was chosen since it contains all the 
frequencies within that band and all the amplitudes 
within a range. The maximum peak-to-peak 
amplitude of the input signals was approximately 1 
mm, which represents a femoro-tibial displacement 
of 90° (Field and Burrows 1982, Dewhirst, Angarita-
Jaimes et al. 2012). The signals were scaled so that 
approximately 99.7 % of their values fall in the 
femoro-tibial joint angle between 20° and 100° (0.9 
mm of displacement of the FeCO apodeme). The 
frequency and phase response  of the equiment was 
linear between 0 and 200 Hz.  

 

 

Figure 2: Image of a locust showing the set up for 
analysis. The forceps were attached to the apodeme in the 
distal part of the femur and a laser was aimed at the tarsus 
to monitor its movements. 

2.2 Mathematical Methods 

2.2.1 Data Post-Processing 

Recordings of tarsal movement from eight locusts 
were made following the procedure described and 
recorded at a sampling frequency of 10,000 Hz. The 
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mean value was subtracted from the recordings to 
eliminate any effect of laser position. To eliminate 
low frequency noise and spontaneous movements 
not related to the applied stimulus a third order high-
pass Butterworth filter was applied with a cut off 
frequency of 0.2 Hz. The data was then resampled to 
500 Hz after applying an anti-alias filter, a third 
order Butterworth with cut off frequency of 200 Hz, 
thereby reducing file size and processing time. Both 
Butterworth filters were applied in the forward and 
reverse directions to avoid introducing any phase 
delay. An average reflex response was calculated 
using the responses from the eight individuals to test 
whether the average is representative of the system 
or is if it is better to use individual responses 

2.2.2 Artificial Neural Networks 

To model the intersegmental reflex responses of the 
tarsus a dynamical artificial neural network is 
proposed, a Time Delay Neural Network (TDNN) 
(Waibel, Hanazawa et al. 1989). This network uses 
delayed versions of the input to estimate the output, 
turning the static Feed-Forward Network into a 
dynamic network (Haykin 1999). Using this, we 
assumed the reflex responses to be a combination of 
current and past input samples. The network is 
formed by an input node, an output node, and a 
number of hidden layers and with hidden nodes. The 
activation function for each hidden node is the 
sigmoid. The output node has a linear function, so 
all the non-linear calculations are performed inside 
the network. The training algorithm for the network 
is the Levenberg - Marquadt back-propagation 
algorithm, that has higher accuracy and faster 
convergence time compared to classical back-
propagation algorithms (Bishop 1995). The number 
of delayed samples used in the input is set to 100 
samples, which is based on preliminary work 
(optimisation of decrease in NMSE as the delay 
increases for a set architecture). The architecture of 
the network is optimised using a metaheuristic 
algorithm presented in the next section. 

2.2.3 Metaheuristic Algorithm 

The choice of the architecture of a neural network 
affects the performance of such network. In this 
case, the optimal networks should have high 
accuracy and low complexity to reduce 
computational time, and should be able to 
generalise, i.e. it should not over-fit the training 
data. To choose a performance optimal for the task 
an algorithm is proposed (Figure 3) based on a 
combination of Evolutionary Programming and 

Particle Swarm Optimisation (PSO) (Kennedy and 
Eberhart 1995, Eiben and Smith 2003). Similar 
algorithms have been successfully applied 
previously to design artificial neural network 
architectures (Benardos and Vosniakos 2007, 
Suraweera and Ranasinghe 2008). The algorithm 
creates a population of possible TDNN solutions, 
composed of random individuals. Each individual 
denotes the architecture of a neural network in a 
vector representation, with architectures limited to 5 
hidden layers and 32 nodes per layer (Carvalho, 
Ramos et al. 2011), which provide a wide range to 
determine the optimal architecture. An individual 
has the form: 
 

ߟ ൌ ሾ݊ଵ ݊ଶ ݊ଷ ݊ସ	݊ହሿ (1) 
 

Where η is the individual or candidate TDNN 
architecture, and ni the number of nodes in the layer 
i.  

 

Figure 3: Metaheuristic algorithm for the design of the 
TDNN architecture. 

A cleaning function is applied to the population 
of randomly initiated individuals ηj, so that no 
network contains 0 hidden layers. Subsequently, the 
networks are created and trained with two thirds of 
the GWN average response calculated across 
individuals. The networks are then tested with the 
third GWN not used on the training and their 
performance and fitness is evaluated. The 
performance is calculated as the Normalised Mean 
Square Error (NMSE) between the predicted output 
 .ݕ ො and the recorded outputݕ

 

ሺ%ሻܧܵܯܰ ൌ 100 ∙
∑ ൫݅ݕ െ ො݅൯ݕ

2ܰ
݅ൌ1

∑ ൫݅ݕ൯
2ܰ

݅ൌ1

 (2) 
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The fitness function designed (Equation 3) evaluates 
the performance of the network, its size, and 
indirectly, the computational time. Since the 
networks are set to train for a limited amount of 
iterations, poor performance is obtained if they are 
not fully trained by then.  

 

ሻߟሺݐ݂݅ ൌ ݁
ቀ

100
∑∙ሺ%ሻെܽܧܵܯܰ  ቁ (3)݅ߟ

 

Where ܽ is a constant set to 0.002 (based on 
preliminary trial an error experiments) and ∑ߟ is the 
number of nodes in the network. The fitness 
evaluates the accuracy of the network and uses a 
penalty factor dependant on the network size. Using 
the fitness function, the architectures are modified 
using PSO and mutation. PSO uses a population 
approach where all individuals work together in the 
search space to find the optimum. The mutation rate 
adds random jumps in the search space to avoid 
local maxima. For PSO the architecture of the 
network represents its “position”,	ݔఎሺݐሻ. Its 
“velocity”, ݒఎሺݐሻ, is the difference between the 
actual position and its previous position.  

 

ݐఎሺݒ  1ሻ ൌ ݅ ∙ ሻݐఎሺݒ  2 ∙ ܴଵ ∙ ቀఎ െ ሻቁݐఎሺݔ

 2 ∙ ܴଶ ∙ ቀ െ  ሻቁݐఎሺݔ
(4a) 

ݐఎሺݔ  1ሻ ൌ ሻݐఎሺݔ  ݐఎሺݒ  1ሻ (4b) 
 

Where ݅ ൌ 1.05	 is the inertia weight (Shi and 
Eberhart 1998),  ܴଵ and ܴଶ are random numbers that 
evaluate the contribution from the personal best of 
the individual ఎ and the global best of the 
population  over the generations. The mutation 
algorithm uses a dynamical mutation rate ܴሺߟሻ 
(Equation 5) like the one used by Angeline, 
Saunders et al. (1994).  

 

ܴሺߟሻ ൌ 1 െ
ሻߟሺݐ݂݅
௫ݐ݂݅

 (5) 
 

Where ݂݅ݐሺߟሻ is the fitness of an individual and 
 ௫ is the fitness of the best performingݐ݂݅
individual. The mutation rate is larger if the network 
is performing poorly and smaller if the fitness is 
high, fine tuning in the optimal architecture. Once 
the individuals have been modified, a competition 
algorithm ensures that the fittest of the pair parent-
offspring passes to the next generation. 

The algorithm is repeated over a number of 
generations, in this particular case for 50 
generations, or until an optimal network is found. 

2.2.4 Autoregressive Model 

To  compare  the  results  of the  TDNN,  an auto- 

regressive (AR) model of the tarsal movements is 
developed. As with the TDNN, the model assumes 
that the tarsal response is a combination of current 
and past input samples. Considering the discrete 
form, the response of the system can be 
characterised as: 
 

ሻݐሺݖ ൌ ݄ሺ߬ሻ ∙ ݐሺݑ െ ߬ሻ  ሻݐሺݒ
்ିଵ

ఛୀ
 (6) 

 

Where ݖሺݐሻ is the response, ݄ሺ߬ሻ is the transfer 
function of the system, ݑሺݐ െ ߬ሻ is the stimulus and 
 ݄ሺ߬ሻ	 ሻ is the noise. To calculate de parameters ofݐሺݒ
the least square method is used. The equation of the 
Minimum Mean Square Error cost function (Haykin 
2002) is rearranged and it is assumed that the 
prediction is a linear function of the impulse 
response function. Combining the cost function with 
the system response, the least square estimate of the 
AR parameters is: 
 

ࢎ ൌ ሺࢁ்ࢁሻିଵ(7) ࢠ்ࢁ 
 

Where ࢠ is the output, ࢁ is the pre-windowed 
matrix (Ljung 1999) and ࢎ the estimated model 
parameters. For a full derivation see Dewhirst 
(2013).  

To compare the results from both mathematical 
models, the NMSE (Equation 2) is going to be used, 
when the model is tested with the same data not used 
in training.  

3 RESULTS 

3.1 Intersegmental Reflex Responses 

The movements of the tarsus recorded and post-
processed show that as the tibia is extended the 
tarsus is depressed and when the tibia flexes the 
tarsus is levated (Figure 4) which corroborates the 
 

 

Figure 4: Tarsal intersegmental average response recorded 
with shaker stimulus applied for the input at 1 Hz. 
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results described by Burrows and Horridge (1974). 
There is also an observable delay between the input 
to the FCO and the response in the tarsus of 0.1 s, 
resulting from known neural conduction times and 
synaptic delays (Burrows, 1996).  

3.2 Metaheuristic Algorithm TDNN 
Architecture 

Using the responses from the eight animals and the 
average response to band-limited GWN the 
algorithm was run until the optimal architectures for 
each response were obtained (Table 1), a total of 9 
models. While the algorithm was set to a maximum 
of five layers and 32 nodes per layer, the optimal 
architectures are limited to two layers and a 
maximum of five nodes per layer. The algorithm 
was set to run over 50 iterations or generations, 
however, the ANN architectures converge and the 
best or optimal network was obtained after the 35th 
generation for all the individual responses, including 
the average response. Therefore, we can assume it 
has reached the maximum fitness within 35 
generations. 

Table 1: Number of nodes per layer for the TDNN 
designed using the metaheuristic algorithm.  

 Layer 1 Layer 2 
Average response 4 - 

Animal 1 3 - 
Animal 2 5 - 
Animal 3 5 1 
Animal 4 2 1 
Animal 5 3 1 
Animal 6 3 - 
Animal 7 4 - 
Animal 8 3 - 

3.3 TDNN and AR Performance of the 
Average Response 

The TDNN and AR optimised for the average 
response across animals were tested using unseen 
GWN data and a sinusoidal input not used in the 
training or the algorithm. The TDNN was able to 
predict the averaged responses to both stimuli with a 
high accuracy. The NMSE (%) between the 
predicted response and the average GWN response 
recorded was 13.85 % for the TDNN (Figure 4) and 
27.18 % for the AR model. This same network was 
tested with a 1 Hz input to study its generalisation to 
a different input (Figure 5). The performance of the 
network with the 1 Hz data is NMSE = 4.3 %, while 
the AR model was 4.6 %, suggesting that both 

models were able to generalise to at least one other 
input when trained with GWN.  
 

 

Figure 5: Prediction of the TDNN of the average reflex 
response to a GWN stimulus. The NMSE = 13.85 %. 

 

Figure 6: Prediction of the TDNN of the average reflex 
response to a 1 Hz stimulus, with NMSE = 4.3 %. 

3.4 TDNN and AR Performance of the 
Individual Responses 

The models designed for the individual responses, 
TDNNs and AR models, were also tested with 
unseen data, both from GWN and 1 Hz sinusoidal 
stimulation to the FCO. This section studies the 
accuracy of the models trained with GWN responses 
from an individual and tested with responses from 
the same individual as training, but not the same 
data. The mean NMSE for all the TDNN with GWN 
was µ = 26.1 % (standard deviation σ = 9.2) (Table 
2), where some of the models perform better than 
others. In the case of the AR models, the mean was 
µ = 53.5 % (standard deviation σ = 21.7). When 
tested with 1 Hz sinusoids, some of the TDNN 
performed poorly (µ = 97.5 %, σ = 128.9, due to two 
NMSE higher than 100 %), while others had low 
prediction errors. In the case of the AR models, the 
predictions were better on average (µ = 43.8 %, σ = 
41.1), with only one with a high error. A statistical 
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analysis was performed to compare the TDNN and 
the AR models. The results show that, when tested 
with GWN, they are statistically different (t(7) = -
3.02, p = 0.009), however, with a 1 Hz sinusoid 
although there is a large difference in the mean 
values, the models are not significantly different  
(t(7) = 1.14, p = 0.14).  

Visual inspection of the poor performance of the 
models with some of the 1 Hz responses shows that 
the models overestimate the amplitude of the actual 
response. Such differences in amplitude are due to 
measurement noise, variability across individuals, 
and the motor neuron responses to a stimulus 
(Schneidman, Brenner et al. 2000, Marder and 
Taylor 2011). These results emphasized the 
differences across individual responses and the 
problems of choosing only one individual to model a 
system and use this as a generic model for all 
animals. 

Table 2: NMSE of the individual models when tested with 
unseen GWN and 1 Hz sinusoidal inputs from the same 
individual as training, but not the same response as used in 
the training.  

 TDNN AR 
 GWN 1 Hz GWN 1 Hz 

Animal 1 15.4 10.9 27.2 4.6 
Animal 2 28.6 11.0 81.3 11.8 
Animal 3 20.8 > 100 41.5 13.0 
Animal 4 17.1 26.8 49.9 80.4 
Animal 5 28.0 55.9 71.1 61.4 
Animal 6 28.7 99.5 82.6 33.2 
Animal 7 39.5 20.0 38.2 <100 
Animal 8 42.7 > 100 33.9 13.7 

Mean 26.1 97.5 53.5 43.8 

3.5 Performance of the Average 
Response TDNN and AR Models 
with Individual Responses 

We then analysed the accuracy of the TDNN and the 
AR models trained with the average response when 
predicting individual responses to GWN and 1 Hz 
inputs, and evaluate if the average response is 
representative of the population. 

The NMSE values obtained for the TDNN 
showed that the network trained with the average 
response is able to predict responses in all 
individuals to GWN (µ = 34.5 %, σ = 7.0) and to 1 
Hz sinusoid, with the exception of Animal 3 and 6 
(µ = 45.1 %, σ = 56.0). The AR model has poorer 
performance with GWN (µ = 70.8 %, σ = 53.9), 
although its performance is similar with 1 Hz (µ = 

43.8 %, σ = 41.1), including the poor performance 
with the same individuals. The TDNN provides a 
significantly better performance than the AR model 
for GWN inputs (t(7) = -2.08, p = 0.03), however, 
for 1 Hz inputs, they are not significantly different 
(t(7) = 0.15, p = 0.44). 

The differences between the NMSE of the 
individual TDNNs and the NMSE of the TDNN 
trained with the average response and tested with the 
individuals are not significantly different (t(7) = 1.4, 
p = 0.2), suggesting that the TDNN trained with the 
average response across the eight individuals is a 
good representation of the system. 

Table 3: NMSE of the TDNN trained with the average 
response when predicting individual responses to GWN 
and 1 Hz inputs. 

 TDNN AR 
 GWN 1 Hz GWN 1 Hz 

Animal 1 34.4 7.7 >100 11.8 
Animal 2 27.3 14.1 41.5 13.0 
Animal 3 34.1 > 100 55.7 80.4 
Animal 4 36.7 12.7 65.0 61.4 
Animal 5 46.5 33.4 >100 33.2 
Animal 6 34.6 > 100 32.8 >100 
Animal 7 38.6 19.3 35.3 13.7 
Animal 8 23.4 9.0 29.8 13.5 

Mean 34.5 45.1 70.8 43.8 

4 CONCLUSIONS 

The methods described here were used to model the 
reflex responses of the tarsus of the hind leg of the 
locust. The intersegmental reflex responses recorded 
were similar to those described by Burrows and 
Horridge (1974): raising the foot when the tibia was 
flexed and lowering the foot when the tibia was 
extended, matching the natural movement of the foot 
when walking in locusts and humans. Such 
movement has been speculated to be related to 
postural stability and agility (Burrows, Laurent et al. 
1988, Büschges 2005). 

The results have also shown that such responses 
can be modelled using AR models and optimised 
ANNs. The metaheuristic algorithm developed was 
able to find an optimal and relatively parsimonious 
network based on the specifications given. The 
combination of PSO and dynamic mutation provided 
a fast convergence in the design of ANNs, although 
the data cannot be directly compared to other 
publications, since, based on the authors knowledge, 
no similar modelling has been done.  
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The TDNN optimised and trained with the responses 
to band-limited GWN predicts the responses 
accurately for unseen band-limited GWN and 
sinusoidal inputs, significantly better than the AR 
model in the case of GWN stimuli. Furthermore, the 
TDNN trained with the average response is also able 
to predict responses in different individuals, 
although with limited accuracy. The accuracy of the 
average response TDNN model was not statistically 
different to that of the individual models, which 
suggests that, in this case, the average response is a 
good representation of the system. Furthermore, the 
NMSE values are similar to those obtained with 
Wiener methods in locusts electrophysiological 
responses of tibial motor neurons (Dewhirst, 
Simpson et al. 2009), which suggests that ANNs 
could be a good approach to model nervous systems. 

The errors in the predictions are related to the 
levels of measurement noise, background 
spontaneous activity and individual differences in 
the responses (Schneidman, Brenner et al. 2000, 
Faisal, Selen et al. 2008, Marder and Taylor 2011). 
There is, however, an underlying response common 
to all individuals that the TDNN is able to model 
and predict accurately, but the noise and the inherent 
response from each animal cannot be predicted with 
a generic model.  

Therefore, the TDNN model of the average 
reflex response exceeds the performance of the AR 
model and is a good candidate model to be 
considered towards the understanding of nervous 
systems and motor control. It could also be used in 
the design of treatment for neuromuscular injuries, 
such as drop foot. Similar reflexes could also be 
applied in the design of active prosthesis or 
autonomous robots. 
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