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Abstract: A series of modelling methodologies based on artificial intelligence tools are applied to solve a complex 
real-world problem. Neural networks and support vector machines are used as models and differential 
evolution and clonal selection algorithms as optimizers for structural and parametric optimization of the 
models. The goal is to make a comparative analysis of these methods for the case study of the free radical 
polymerization of styrene, a complex, difficult to model process, where the monomer conversion and 
molecular masses are predicted as a function of reaction conditions, i.e. temperature, amount of initiator and 
time. Four modelling methodologies are developed and evaluated in terms of accuracy. 

1 INTRODUCTION 

Artificial neural networks (ANNs) are recommended 
tools for modelling complex nonlinear processes 
because they require only input-output data, with no 
need for in-depth knowledge of the rules governing 
the system. They often lead to accurate results and 
can be integrated into optimal control procedures.  

Beside ANNs, support vector machines (SVMs) 
are gaining popularity over other learning methods, 
mainly due to their good generalization capability 
(Burges, 1998). Another important advantage is that 
SVMs perform well on high dimensional problems, 
and there is ongoing research on improving their 
scalability (Wang et al, 2011; Zhang et al., 2012).  

Developing optimal ANN or SVM models with 
the adequate parameters is not an easy task. In the 
trial-and-error method (frequently applied by the 
majority of researchers, especially from engineering 
domains), the architecture is repeatedly modified by 
hand and evaluated with the goal of lowering the 
error. These repeated actions increase the 
computational overhead and the search is usually 
based on gradient descent, whose result is prone to 
being trapped in local minima (Cartwright and 
Curteanu, 2013). In the polymerization field, the use 
of ANN and SVM is increasing. Different types of 
processes are modelled with these techniques, as 
proven by the different review works (Noor et al., 

2010; Cartwright and Curteanu, 2013). 
Evolutionary algorithms (EAs) are promising 

methods for optimizing both the architecture and the 
internal ANN parameters (Almeida and Ludermir, 
2008a; Almeida and Ludermir, 2008b). Among all 
EAs, differential evolution (DE) is an especially 
powerful approach. Its efficiency lies in a simple, 
compact structure that uses stochastic direct search 
(Subudhi and Jena, 2009). A series of applications 
recommend it as an efficient tool, particularly for 
highly non-linear objective functions. For instance, 
Lahiri and Ganta (2009) developed a method which 
incorporates a hybrid ANN and DE technique for the 
ANN parameter tuning. The algorithm was applied 
for the prediction of the hold up of the solid liquid 
slurry flow. The oxygen mass transfer in the 
presence of oxygen vectors was modelled using a 
feed forward multilayer perceptron neural network 
with parameters optimized using two DE-based 
versions: classical and self-adaptive (Dragoi et al., 
2011). In combination with neural networks, a 
modified DE version, including two initialization 
strategies (normal distribution and normal 
distribution combined with the opposition-based 
principle) and a modified mutation, was applied for 
modelling the oxygen transfer when n-dodecane is 
added in aerobic fermentation systems of bacteria 
(Dragoi et al., 2013a). The pharmaceutical freeze 
drying process was studied from multiple points of 
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view (modelling and system identification) using a 
hybrid combination of DE with ANNs and back-
propagation as a local search procedure (Dragoi et 
al., 2012a; Dragoi et al., 2013b). The classification 
of some organic compounds based on their liquid 
crystalline property was performed using ANNs 
optimized with two different self-adaptive versions 
of the DE algorithm (Dragoi et al., 2012b). 

Another optimization tool used in this work is 
the clonal selection (CS) algorithm, which belongs 
to the artificial immune system (AIS) class. AIS is a 
group of computational methods represented by 
highly abstract models of biological immune 
systems (Castro and Timmis, 2003). The main 
motivation of using immune systems as a source of 
inspiration for computational systems resides in their 
capabilities related to self-evolution, self-
organization and self-sustainability (Ahmad and 
Narayanan 2011). In addition, unlike other 
biological systems such as the nervous system, the 
immune system is not centrally controlled and 
therefore detection and response can be locally 
executed (Dasgupta and Nino, 2009). Related to the 
combination of AISs with ANNs for chemical  
engineering processes, to the authors’ knowledge, 
only a few studies can be found (Tao et al., 2012). 
For instance, different variations CS-ANN were 
applied by our group for the removal of heavy 
metals from residual water (Dragoi et al., 2012) and 
for the optimization of CO2 absorption in pneumatic 
contractors (Cozma et al., 2013). 

In this paper, ANNs and SVMs are employed as 
acceptable alternatives to the phenomenological 
models, which are difficult to develop and solve 
with satisfactory accuracy for a complex 
polymerization process. The goal is to perform a 
comparative analysis of different approaches and to 
identify the best method that generates simple but 
highly efficient models. The modelling 
methodologies include ANNs and SVMs, optimized 
with techniques such as DE, CS or grid search. One 
must emphasize the benefits of the hybrid modelling 
techniques in terms of accuracy and in connection 
with the particularities of the process. The novelty of 
this approach lies in several aspects: the application 
of different modelling techniques for a complex 
chemical process, new elements introduced in the 
DE optimizer and a novel combination DE-SVM.  

2 DATABASE  

The case study of our research work is the free 
radical polymerization of styrene performed through 

batch suspension technique. A complete 
mathematical model previously elaborated and 
solved (Curteanu, 2003) is used here as a simulator 
for producing the working database. The model 
contains the balance equations for the monomer 
conversion, initiator concentration, distribution 
moments of radicals and dead polymer and also, 
equations that take into account diffusion constraints 
(gel and glass effects). This last part is difficult to 
model with satisfactory accuracy; therefore, input-
output data models are recommended alternatives to 
be applied. 

Data quality and quantity are essential for 
modelling with machine learning techniques. In this 
case, the collected data was chosen to cover the 
whole domain of interest for the studied process and 
to be uniformly distributed within this domain. Thus, 
for the initiator concentration and temperature, the 
ranges specific to the suspension polymerization of 
styrene were 10-55 mol/l (variation step 5) and 60-
90 °C (variation step 10), respectively. Regarding 
the reaction time, the interval was 0 to 2000 minutes, 
because for lower concentrations of initiator and 
lower temperature, the reaction time is longer 
(Curteanu et al., 2010). 

After the data was generated, an internal step of 
data pre-processing was applied. This included 
normalization, randomization and splitting the data 
into training and testing subsets. The normalization 
was achieved using the 0-1 method: 

minmax

min
norm xx

xx
x




  (1)

Concerning data randomization, it was applied in 
such a manner that all points from a single initiator-
temperature combination belong to either the 
training or the testing set. In this way a separation 
between experiments is maintained and the testing of 
the model is not based on individual points but on an 
entire experiment. The amount of training data is 
80%, with the remaining 20% used for testing. 

For the styrene polymerization process 
considered here, the model input variables were 
chosen as: initiator concentration, I0, temperature, T 
and reaction time, t. The other two variables, 
monomer conversion, x, and numerical average 
molecular weight, Mn, represent the outputs of the 
models. The modelling techniques aim to provide 
predictions about the main properties (molecular 
mass) and reaction characteristics (conversion) as a 
function of the working conditions. 
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3 MODELLING METHODOLOGY  

Two modelling approaches, ANN and SVM, were 
applied to solve this real-world chemical 
engineering problem. Since both ANN and SVM 
have some parameters that need to be tuned in order 
to obtain optimal results, two bio-inspired 
algorithms, DE and CS, were applied and compared 
for model optimization. 

3.1 Optimizing Neural Networks 
with Differential Evolution 

DE, an algorithm based on the evolutionary 
paradigm, is used to simultaneously perform 
parametric and structural optimization of the neural 
network model for the styrene polymerization. The 
variant used in this work, called SADE-NN-2 
(Dragoi et al., 2012a) is a combination of a self-
adaptive DE with ANNs and back-propagation (BP). 
DE has the role of performing a global search, while 
BP locally improves the best solution found in each 
generation. This intertwinement of the two 
algorithms is possible because all DE individuals are 
in fact ANNs.  

As in the case of all evolutionary algorithms, the 
evolution of the population occurs by applying 
mutation, recombination and selection steps until a 
stopping criterion is met. Initially, a set of potential 
solutions are generated using a random approach. In 
this work, a Gaussian distribution is used. After that, 
mutation has the role to add diversity and the 
population of mutants is combined in the crossover 
step with the current one to create a trial population. 
In the DE case, two types of crossover can be 
encountered: binomial (each characteristic of the 
trial individual is randomly copied from one of the 
two parents) or exponential (blocks of characteristics 
are inherited alternatively from the parents). In 
SADE-NN-2, the binomial version is used, as it was 
observed that efficiency is increased only for a small 
number of case studies when the exponential version 
is employed. 

Concerning the selection step, where the trial 
individual competes with the current individual for 
the right to participate in the next generation, a 
tournament version with a “one-to-one” survival 
criterion is used.  

The characteristic feature of DE when compared 
with other EAs is the mutation step in which a trial 
vector is generated by adding to a base individual a 
scaled differential term (Price et al., 2005). In 
SADE-NN-2, this mutation principle is modified, 
such that the individuals participating to the 

differential terms are sorted based on their fitness. 
Since it was observed that in various situations the 
DE version called DE/Best/2/Bin (where the base 
vector is represented by the best individual in the 
population, 2 differential terms are employed and 
the crossover type is binomial) obtains acceptable 
results, this version was considered as a base for the 
current study. 

As the SADE-NN-2 is a self-adaptive method (in 
which the F and Cr control parameters are included 
into the optimization procedure, i.e. they evolve 
simultaneously with the individuals) a separate 
procedure for parameter optimization was not 
required. 

A direct encoding with real values was chosen 
for the ANNs, because it is the least expensive 
computationally. For each position in the population, 
at each generation, at least one decoding procedure 
is required. The ANN parameters chosen for 
encoding are the number of hidden layers, the 
number of neurons in each hidden layer, the weights, 
the biases and the activation functions. Unlike the 
majority of applications where the variation of the 
activation functions is performed at the layer level, 
in the SADE-NN-2, the variation is applied at the 
neuron level.  

3.2 Optimizing Neural Networks with 
Clonal Selection  

The second algorithm employed for neural network 
optimization is clonal selection. It describes the 
basic characteristics of the immune response when 
an antigenic stimulus is applied to a vertebrate 
(Abdul Hamid and Abdul Rahman, 2010).  

The main immunological principles used are: a 
specific memory set, selection and cloning of the 
best antibodies, removal of the worst antibodies, 
affinity maturation of the best immune cells and the 
generation of a diverse set of antibodies (Dasgupta 
and Nino, 2009). The main steps of the algorithm are 
initialization, selection, cloning, affinity maturation 
(the process of variation and selection achieved 
through hyper-mutation) and receptor editing. The 
last four steps are repeated until a stopping criterion 
is met.  

As in the DE case, the initialization is based on 
the Gaussian distribution. In the selection step, the 
best 30% of the population is cloned 10 times. After 
that, each clone is hyper-mutated and its affinity 
(computed using an affinity function similar to the 
fitness function used in EAs) is determined. The 
mutated clones with the highest affinity are selected 
for introduction into the population. In the last step, 
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5% of the population with the worst affinity is 
replaced with newly generated individuals. 

The CS-NN algorithm (Dragoi et al., 2012c) uses 
the same type of ANN (feed-forward multilayer 
perceptron) and the same encoding procedure as in 
SADE-NN-2. In this manner, the differences 
obtained between the two approaches are driven 
only by the optimization procedures (DE or CS) and 
their effectiveness can be assessed in a meaningful 
way. 

The characteristics of CS-NN which 
distinguishes it among other CS variants (except its 
combination with neural networks) are: the 
introduction of the opposition-based principle in the 
initialization phase and the introduction of a hyper-
mutation combining 3 types of hyper-mutation 
(Gaussian, non-uniform and pair-wise interchange), 
based on a random procedure. 

3.3 Modelling with Support Vector 
Machines 

One of the main advantage of the SVM is the small 
number of parameters that the user has to choose: 
the type of kernel with its parameters and a cost 
parameter which defines the balance between 
tolerance for training errors and generalization 
capability. For our case study, two support vector 
regression (SVR) models were designed, for each 
parameters of interest: x and Mn. 

The experiments were performed using the 
implementation provided by the LIBSVM library 
(Chang and Lin, 2011), using the ε-SVR or the  
µ-SVR variants. In ε-SVR, ε is a parameter of the 
loss function with values in the [0, ∞) domain. Also, 
the radial basis function (RBF) kernel was selected.  

3.4 Support Vector Machines and 
Differential Evolution 

The fourth approach for modelling the styrene 
polymerization process is a novel algorithm 
combining DE with SVM (DE-SVM). DE acts as an 
optimizer, while the SVM models the process. 
Distinctively from the SADE-NN-2, in DE-SVM, 
DE only performs parameter optimization. The 
training procedure is the classic one used for SVMs. 

The same self-adaptive DE version used in 
SADE-NN-2 was also employed in DE-SVM. Thus, 
the performance differences obtained are solely 
determined by the performance of the model and not 
by the ability of the optimizer to determine the best 
solution. If the population was formed of neural 
models in the case of SADE-NN-2, in the case of 

DE-SVM, the individuals forming the population are 
lists of SVM parameters such as: SVM type  
(µ-SVR, ε-SVR), kernel type (linear, polynomial, 
RBF and sigmoid), degree (applicable only for 
polynomial kernel type), γ (a coefficient of 
polynomial and sigmoid kernels) and C, the cost 
parameter. 

4 RESULTS AND DISCUSSION 

After gathering the data describing the process, a 
series of simulations with the four considered 
algorithms were performed. In the case of the 
modelling approaches based on ANNs (SADE-NN-2 
and CS-NN), some limitations to the structure of the 
network were imposed, in order to reduce the 
complexity of the encoded individuals and, 
therefore, to reduce the computational effort.  

Consequently, for the hidden layers, it was 
considered that a network with one hidden layer can 
efficiently model the polymerization process. This 
restriction is based on the authors’ experience: in the 
majority of our studies a network with one hidden 
layer provided satisfactory results. Also, it was 
considered that 30 neurons in the hidden layer are 
sufficient. A lower limit was imposed as well: the 
algorithms can generate networks with no hidden 
layers or with one hidden layer, with a number of 
neurons between 4 and 30. 

Initially, with both SADE-NN-2 and CS-NN, a 
set of models with two outputs corresponding to the 
parameters of the process, x and Mn, were generated. 
Although the mean squared error (MSE) computed 
on the normalized data had acceptable values: 0.081 
and 0.125 in the training phase for SADE-NN-2 and 
CS-NN, respectively, and 0.122 and 0.158 in the 
testing phase, the average relative errors (AREs) 
were not acceptable, exceeding 40% for some of the 
outputs. Therefore, for each output a separate neural 
model was created. A set of five best results are 
listed in Table 1 for SADE-NN-2 and in Table 2 for 
CS-NN. 

As it can be observed from Tables 1 and 2, for 
the x and Mn parameters, the best error in the testing 
phase is obtained with CS-NN (CN1 model and CN6 
respectively). These observations are also in trend 
with the average values. 

Concerning the SVM models, Table 3 presents 
the best results obtained with ε-SVR. A grid-search 
approach was used to find the best values for the 
model parameters. It is recommended to use 
exponentially growing sequences of C and γ in order 
to identify good parameters  (Hsu et a1., 2010).  The 
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Table 1: Best results obtained with SADE-NN-2 for each 
process parameter. 

Output 
variable 

Topo-
logy 

MSE 
training 

MSE  
testing 

Model 
id 

x 

3:19:01 0.0128 0.0094 DN1
3:19:01 0.0105 0.0104 DN2
3:11:01 0.0147 0.0132 DN3
3:04:01 0.0136 0.014 DN4
3:19:01 0.0109 0.077 DN5

Average  0.0125 0.0248 

Mn 

3:19:01 0.0039 0.0036 DN6
3:11:01 0.0058 0.0048 DN7
3:11:01 0.0045 0.0051 DN8
3:14:01 0.0047 0.0073 DN9
3:11:01 0.0118 0.0125 DN10

Average  0.0047 0.0045 

Table 2: Best results obtained with CS-NN for each 
process parameter. 

Output 
variable 

Topo-
logy 

MSE 
training 

MSE 
testing 

Model 
id 

x 

3:20:01 0.0069 0.0083 CN1
3:19:01 0.0094 0.0103 CN2
3:17:01 0.0091 0.0115 CN3
3:11:01 0.0127 0.0128 CN4
3:16:01 0.0099 0.0159 CN5

Average  0.0096 0.0117 

Mn 

3:08:01 0.0009 0.0016 CN6
3:10:01 0.0012 0.0017 CN7
3:12:01 0.0327 0.0031 CN8
3:16:01 0.003 0.0041 CN9
3:20:01 0.0051 0.0064 CN10

Average  0.0085 0.0033 
 

chosen values for the experiments are (2-3, 210) for 
C, and (2-3, 23) for γ, with step 0.5. Low values for 
MSE show the good performance obtained with 
RBF kernel for both output variables, while the 
polynomial kernel performance is not suited for 
modelling the Mn variable. 

For the combination of DE with SVM, the best 
models obtained for the process parameters are 
presented in Table 4. 

In order to determine the efficiency of the best 
models, the coefficient of determination (r2) was 
also computed (Table 5).  

By analyzing the results it can be observed that 
in some cases, the coefficient of determination is not 
closely correlated to the MSE. This fact can be 
explained by the data distribution, since the system 
has a different dynamic for each combination of 
temperature-initiator. 
In order to visualize the differences between the 
predicted and expected data, for the modelling of the  

Table 3: Results obtained with ε-SVR for the output 
variables. 

Output 
variable

Method 
parameters 

MSE 
training 

MSE 
testing 

Model 
id 

x 

C = 256; γ = 2; 
RBF kernel;  = 0.1 

0.004 0.004 S1 

C=0.707; γ = 0.125; 
Polynomial kernel 
degree 2;  = 0.25 

0.021 0.02 S2 

C=0.353; γ = 0.125; 
Polynomial kernel 
degree 3;  = 0.25 

0.022 0.02 S3 

Mn 

C = 512; γ = 2; 
RBF kernel,  = 0.1 

0.09 0.27 S4 

C=2.828; γ = 0.125; 
Polynomial kernel 

degree 2;  = 3 
7.5 2.4 S5 

C=2.828; γ = 0.125; 
Polynomial kernel 

degree 3;  = 3 
7.5 2.4 S6 

Table 4: Results obtained with DE-SVM for the output 
variables. 

Para
meter 

Method 
parameters 

MSE 
training 

MSE 
testing 

x 
µ-SVM, RBF kernel 
C = 0.28;γ = 3.341 

0.0085 0.0075 

Mn 
µ-SVM,  RBF kernel 
C = 5.96; γ = 2.212 

0.0010 0.0014 

Table 5: The performance of the best models obtained 
with the four methods. 

Para-
meter 

Model r2 training r2 testing 

x 

DN1 0.9617 0.9580 
CN1 0.9768 0.9581 
S1 0.96 0.9304

DE-SVM 0.9714 0.9656

Mn 

DN6 0.9871 0.9800 
CN6 0.9915 0.9731 
S4 0.99 0.9813

DE-SVM 0.9936 0.9767
 

x parameter, a set of figures with testing data were 
generated. Since different combinations of 
temperature and initial value of the initiator were 
tested, two significant examples are given below: 
temperature of 368K and 10 mol/l of BPO initiator 
(Figure 1) and temperature of 338K and 50 mol/l of 
initiator (Figure 2). 

Concerning the Mn modelling, the DE-SVM 
approach is the best in terms of MSE testing. Similar 
to the x parameter, a series of figures for two 
temperature-initiator value combinations were 
generated for it (Figures 3 and 4). 
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Figure 1: Comparison between the predictions of x 
obtained with the four methods and the expected data 
when the process parameters are 368K (temperature) and 
10 mol/l (initial value of initiator). 

 

Figure 2: Comparison between the predictions of x 
obtained with the four methods and the expected data 
when the process parameters are 353K (temperature) and 
50 mol/l (initial value of initiator). 

 

Figure 3: Comparison between the predictions of Mn 
obtained with the four methods and the expected data 
when the process parameters are 348K (temperature) and 
15mol/l (initial value of initiator). 

 

Figure 4: Comparison between the predictions of Mn 
obtained with the four methods and the expected data 
when the process parameters are 383K (temperature) and 
20 mol/l (initial value of initiator). 

4 CONCLUSIONS 

Four modelling methodologies were developed and 
tested on a complex chemical process, i.e. free 
radical polymerization of styrene. They include 
ANN and SVM as models, structurally and 
parametrically optimized with DE and CS. Although 
both neural network and support vector machine 
models are found suitable for the polymerization 
process, selecting one of the techniques rely on the 
user experience. However, it must be mentioned that 
the combination SVM-DE deserves special attention 
due to its accessibility and accuracy observed in the 
results.  
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