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Abstract: When the assumptions underlying the standard complete linkage method are unwound, the size of a hierarchi-
cal sequence reverts back from n levels to n�(n�1)

2 +1 levels, and the time complexity to construct a hierarchical
sequence of cluster sets becomes O(n4). Moreover, the post hoc heuristics for cutting dendrograms are not
suitable for finding meaningful cluster sets of an n�(n�1)

2 + 1-level hierarchical sequence. To overcome these
problems for small-n, large-m data sets, the project described in this paper went back more than 60 years to
solve a problem that could not be solved then. This paper presents a means for finding meaningful levels of an
n�(n�1)

2 +1-level hierarchical sequence prior to performing a cluster analysis. By finding meaningful levels of
such a hierarchical sequence prior to performing a cluster analysis, it is possible to know which cluster sets
to construct and construct only these cluster sets. This paper also shows how increasing the dimensionality of
the data points helps reveal inherent structure in noisy data. The means is theoretically validated. Empirical
results from four experiments show that finding meaningful levels of a hierarchical sequence is easy and that
meaningful cluster sets can have real world meaning.

1 INTRODUCTION

Reasoning about hardware limitations while an ap-
plication is being developed is a key aspect of com-
putational thinking (Kirk and Hwu, 2013). This pa-
per presents the second part of a three-part research
project. The goal of this project was to develop a gen-
eral, simplistic, complete linkage hierarchical cluster-
ing method that 1) substantially improves upon the
accuracy of the standard complete linkage method
and 2) can be fully automated or used with minimal
operator supervision. The standard complete link-
age method (Sorenson 1948) was the first of seven
standard hierarchical clustering methods to be devel-
oped during the late 1940’s to the mid-1960’s (Everitt
et al., 2011). At that time, clustering problems hav-
ing about 150 data points were viewed as moderately-
sized problems while problems having about 500 data
points were viewed as large. Cf. (Anderberg, 1973).

To accommodate the hardware limitations of that
time and solve these “large-scale” clustering prob-
lems, those who developed the standard hierarchical
clustering methods made several assumptions. They
assumed that cluster sets are nested partitions, i.e.,
that clusters are both indivisible and mutually exclu-

sive (Jain and Dubes, 1988). Making this assump-
tion reduces the size of a hierarchical sequence from
n�(n�1)

2 + 1 levels to n levels (Berkhin, 2006), where
n is the number of data points in a data set. Fur-
ther, the number of combinations that need to be ex-
amined at each level of the hierarchical sequence be-
comes much smaller than complete enumeration (An-
derberg, 1973). Those who developed the standard
hierarchical clustering methods also assumed that no-
tions of distance between data points (“interpoint”
distances) can be generalized to notions of distance
between clusters of data points (“intercluster” dis-
tances). By making this assumption, proximity mea-
sures known as linkage metrics could be devised.
Linkage metrics are used to combine clusters of data
points or subdivide a cluster of data points at a time
(Berkhin, 2006). Once the cluster sets of an n-level
hierarchical sequence are constructed, a dendrogram
is used to visually represent the hierarchical sequence,
and post hoc heuristics for “cutting” dendrograms are
used to find meaningful cluster sets. See, e.g., (Jain
and Dubes, 1988), (Johnson and Wichern, 2002), and
(Everitt et al., 2011).

The above-described assumptions sacrifice accu-
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racy for efficiency when the inherent (hierarchical)
structure in a data set is not taxonomic. See (Lance
and Williams, 1967), (Olsen, 2014). The stan-
dard complete linkage method has the following four
weaknesses: First, when clusters are being combined
or a cluster is being subdivided, the standard com-
plete linkage method cannot resolve ties between in-
tercluster distances. Consequently, either one of the
distances is selected arbitrarily or alternative hierar-
chical sequences are constructed, and the results are
no longer deterministic. Second, because the stan-
dard complete linkage method uses intercluster dis-
tances to construct clusters, does not allow clusters
to overlap, and does not allow data points to migrate
between clusters (Lance and Williams, 1967), cluster
sets often are constructed inaccurately. Third, results
obtained from the standard compete linkage method
can depend on which end of a hierarchical sequence
is treated as the beginning. Consequently, the dendro-
grams for agglomerative hierarchical clustering and
divisive hierarchical clustering may be different, and
finding the cause(s) for the difference is both inconve-
nient and time-consuming. Fourth, the standard com-
plete linkage method does not find meaningful levels
or meaningful cluster sets of hierarchical sequences1.
It still is necessary to construct a dendrogram and de-
termine where and how many times to cut the den-
drogram, and post hoc heuristics are computationally
expensive to run.

Because of these weaknesses, it can be difficult
to interpret results obtained from the standard com-
plete linkage method. Consequently, it is underuti-
lized in automation and by intelligent control systems,
including supervisory functions such as fault detec-
tion and diagnosis and adaptation. Cf. (Isermann,
2006). When the standard complete linkage method is
used, stopping criteria often are used in place of post
hoc heuristics. Stopping criteria are predetermined.
If the model upon which they are based is inadequate
or changes, the stopping criteria lose their usefulness.
Moreover, the standard complete linkage method is an
updating method, so it uses information from previ-
ously constructed cluster sets to construct subsequent
cluster sets. It must construct the cluster set for ev-
ery level of an n-level hierarchical sequence until the
stopping criteria are met. See, e.g., (Jain and Dubes,

1A “meaningful cluster set” refers to a cluster set that
can have real world meaning. Under ideal circumstances,
a “meaningful level” refers to a level of a hierarchical se-
quence at which a new configuration of clusters has fin-
ished forming. These definitions appear to be synonymous
for n�(n�1)

2 +1-level hierarchical sequences. The cluster set
that is constructed for a meaningful level is a meaningful
cluster set, so these terms are used interchangeably.

1988), (Johnson and Wichern, 2002). These cluster
sets must be either materially accurate or, if possible,
amendable for material inaccuracies. See, e.g., U.S.
Patent No. 8,312,395 (defect identification in semi-
conductor production; operators must ensure that the
results are 80 to 90 percent accurate). As much as 90
percent of the effort that goes into implementing the
standard complete linkage method is used to develop
stopping criteria or interpret results.

Notwithstanding these weaknesses, the standard
complete linkage method is an important clustering
method. The distributions of many real world mea-
surements are bell-shaped, so the standard complete
linkage method has broad applicability. Its simplic-
ity makes it relatively easy to mathematically capture
its properties. Of the standard hierarchical cluster-
ing methods, the standard complete linkage method is
the only method that is invariant to monotonic trans-
formations of the distances between the data points,
that can cluster any kind of attribute, that is not prone
to inversions, and that produces globular or compact
clusters (Johnson and Wichern, 2002), (Everitt et al.,
2011). Moreover, more sophisticated methods show
no clear advantage for many purposes. Thus, the need
exists to bring complete linkage hierarchical cluster-
ing over from the “computational side of things ... to
the system ID/model ID kind of thinking” (Gill, 2011)
as part of closing the loop on cyber-physical systems.

For the first part of the project, a new, complete
linkage hierarchical clustering method was devel-
oped. See (Olsen, 2014). The new clustering method
is consonant with the model for a measured value that
scientists and engineers commonly use2, so it sub-
stantially improves upon the accuracy of the standard
complete linkage method. Further, it can construct
cluster sets for select, possibly non-contiguous levels
of an n�(n�1)

2 +1-level hierarchical sequence. The new
clustering method was designed with small-n, large-
m data sets in mind, where n is the number of data
points, m is the number of dimensions, and “large”
means thousands and upwards (Murtagh, 2009).3

2The model for a measured value is measured value =
true value + bias (accuracy) + random error (statistical un-
certainty or precision) (Navidi, 2006). This model has sub-
stantially broader applicability than the taxonomic model
that is the basis for the standard complete linkage method.

3These data sets are used by many cyber-physical sys-
tems and include time series. For example, a typical auto-
mobile has about 500 sensors; a small, specialty brewery
has about 600 sensors; and a small power plant has about
1100 sensors. The new clustering method may accommo-
date large-n, large-m data sets as well, and future work in-
cludes using multicore and/or heterogeneous processors to
parallelize parts of the new clustering method, but large-n,
large-m data sets are not the focus here.
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Because the computational power presently ex-
ists to apply hierarchical clustering methods to much
larger data sets than before, the new clustering
method unwinds the above-described assumptions.
However, by unwinding these assumptions and letting
the size of a hierarchical sequence revert back from n
levels to n�(n�1)

2 +1 levels, the time complexity to con-
struct cluster sets becomes O(n4). This is large even
for small-n, large-m data sets. Moreover, the post hoc
heuristics for cutting dendrograms are not suitable for
finding meaningful cluster sets of an n�(n�1)

2 +1-level
hierarchical sequence. For example, in (Tibshirani
et al., 2001), Tibshirani et al. present a gap statistic
for determining an “optimal” number of clusters for
a data set and use this technique to determine where
to cut a dendrogram. Because the technique selects
the number of clusters from a range of numbers, a
range of cluster sets must be constructed as opposed
to constructing only select cluster sets. Like other
post hoc heuristics, see, e.g., (Kim and Lee, 2000),
(Daniels and Giraud-Carrier, 2006), the gap statistic
is designed to find only one or maybe a few clus-
ter sets. Further, it is not designed for hierarchical
sequences where clusters are not well-separated but
close together or overlap.

Thus, with today’s technology, the project went
back more than 60 years to solve a problem that could
not be solved then. For the second part of the project,
a means was developed for finding meaningful lev-
els of an n�(n�1)

2 + 1-level (complete linkage) hierar-
chical sequence prior to performing a cluster analy-
sis. By finding meaningful levels of such a hierarchi-
cal sequence prior to performing a cluster analysis,
it is possible to know which cluster sets to construct
and construct only these cluster sets. This reduces the
time complexity to construct cluster sets from O(n4)
to O(ln2), where l is the number of meaningful lev-
els. These are the cluster sets that can have real world
meaning. It is notable that the means does not depend
on dendrograms or post hoc heuristics to find mean-
ingful cluster sets. The second part also looked at how
increasing the dimensionality of the data points helps
reveal inherent structure in noisy data, which is nec-
essary for finding meaningful levels.

2 OTHER RELATED WORK

Researchers have avoided developing clique detec-
tion methods for hierarchical clustering, and at least
one researcher has specifically taught away from us-
ing these methods (Jain and Dubes, 1988) (citing
(Matula, 1977)). In (Peay, 1974) and (Peay, 1975),

E.R. Peay presents a linkage-based clique detection
method and applies the method to hierarchical cluster-
ing. For each level of an n�(n�1)

2 +1-level hierarchical
sequence for which a clique set is constructed, Peay’s
clique detection method recognizes every maximally
complete subset of data points as a clique, includ-
ing those from which the data points migrate. Be-
cause Peay’s clique detection method is an updating
method, it also constructs a clique set for every level
of such a hierarchical sequence. It cannot construct
only the clique sets that correspond to meaningful
levels of a hierarchical sequence. A similar prob-
lem holds for flat clique detection methods. Without
knowing which levels of a hierarchical sequence are
meaningful, flat methods are ineffective.

Within a framework based on ultrametric topology
and ultrametricity, F. Murtagh, in (Murtagh, 2009),
observes that it is easier to find clusters in sparse or
high dimensional spaces. This work does not describe
how to find meaningful levels of a hierarchical se-
quence. Also, it assumes that the mean values and
the standard deviations of all the dimensions of a data
point are the same.

3 NOISE ATTENUATION

The means for finding meaningful levels is based on
two assumptions. Let X = fx1;x2; :::;xng be a data set
that contains a finite number of data points n, where
each data point has m dimensions. Further, suppose
that each data point is a sequence of samples and that
at any moment in time, with respect to each class or
source, all the samples have the same true values and
biases4. First, the means assumes that noise (random
error) is the only random component in a measured
value, that noise can be modeled as Gaussian random
variables, and that the noise that is embedded in each
dimension (sample) of each data point is statistically
independent. Second, the means assumes that the dis-
similarities between the data points are non-negative
values. This latter assumption is needed because p-
norm distance measures do not distinguish between
positive and negative correlation.

Within the context of the nearest neighbor prob-
lem for database search, where high(er) dimensional-
ity is considered to be a curse, Beyer et al., in (Beyer
et al., 1998), show that under broadly applicable con-
ditions, if

lim
m!¥

Var[
kYmkp

E[kYmkp]
] = 0; (1)

4In real world terms, this is the same as calibrating the
sensors.
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Figure 1: Exemplary results from a sensitivity analysis. The minimum distance and the maximum distance (not shown)
between data points from two different classes are calculated. Limits calculated with Equation 5 are very consistent with the
empirical results for STDDIST Normal. When noise is uniformly distributed, the results are analogous to those when noise is
normally distributed, indicating that the Gaussian random variable assumption is reasonable.

then for every e > 0,

lim
m!¥

Prob[DMAX p
m � (1+ e)DMIN p

m] = 1: (2)

Ym is the difference between any independent data
point Pi;m; i = 1;2; :::;n, and Qm, a query point that is
chosen independently of all the data points; m is the
dimensionality of Pi;m and Qm; DMAX is the distance
between Qm and the farthest away data point; DMIN
is the distance between Qm and the nearest data point;
and p is the index of the p-norm distance measure. In
(Hinneburg et al., 2000), Hinneburg et al. extend this
work by showing that

lim
m!¥

E[
DMAX p

m�DMIN p
m

m1=p�1=2 ] =Cp; (3)

or

lim
m!¥

E[DMAX p
m�DMIN p

m] =Cp � (m1=p�1=2): (4)

Cp is a constant that depends on p.
For the purposes of cluster analysis, these equa-

tions hint that classes of noisy data points may be spa-
tially separable. However, they do not show how the
distances between data points from different classes
(“interclass” distances) relate to the distances be-
tween data points that belong to the same class (“in-
traclass” distances). Also, Cp is unknown. A set of
theorems was proved to provide the missing pieces.
Theorem 1, below, pertains to the 2-norm distance

measure. Here, although it can have a much broader
scope, it is written specifically for Euclidean distance.
Since statistical independence is assumed only with
respect to the Gaussian random variables (noise), the
mean values (true values plus biases) may be highly
correlated.

Theorem 1. Let C1 and C2 be two clusters,
each of which is comprised of a finite set
of data points, i.e., C1 = fx1;1;x1;2; :::;x1;n1g
and C2 = fx2;1;x2;2; :::;x2;n2g. Let each data
point have m dimensions, each of which is
a statistically independent, Gaussian ran-
dom variable, i.e., X1;i;k � N(µ1;i;k;s

2
1;i;k) and

X2; j;k � N(µ2; j;k;s
2
2; j;k); i = 1;2; :::;n1; j = 1;2; :::;n2,

and k = 1;2; :::;m. When Yk;(i; j) = (X1;i;k � X2; j;k),
Yk;(i; j) � N(µk;(i; j);s

2
k;(i; j)). If sk;(i; j) is bounded

from below by e > 0 and above by a constant S,
and if jµk;(i; j)j is bounded from above by a constant
M, then as m ! ¥, the variance s2

Zm;(i; j)
of the

random variable Zm;(i; j) = (åm
k=1 Y 2

k;(i; j))
1
2 converges

to
å

m
k=1 s4

k;(i; j)

2(åm
k=1 s2

k;(i; j)+å
m
k=1 µ2

k;(i; j))
+

å
m
k=1 s2

k;(i; j)µ
2
k;(i; j)

å
m
k=1 s2

k;(i; j)+å
m
k=1 µ2

k;(i; j)
.

Proof for Theorem 1. A sketch of the proof is in the
Appendix to this paper.

For Yk;(i; j) � N(0;1), k = 1;2; :::;m,
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limm!¥ s2
Zm;(i; j)

= 1
2 . For Yk;(i; j) � N(0;s2

k;(i; j)) where

sk;(i; j) = s(i; j), k = 1;2; :::;m, limm!¥ s2
Zm;(i; j)

=
1
2 s2

(i; j). When sk;(i; j) and µk;(i; j) are chosen from
uniform distributions, the Monte Carlo method shows
that the limit in Theorem 1 converges from below
to m

3 S2 as the bound M on µk;(i; j) increases. As
m increases, the standard deviation of this number
becomes smaller relative to its magnitude. When
sk;(i; j) = s(i; j), k = 1;2; :::;m, the Monte Carlo
method shows that the limit in Theorem 1 con-
verges from below to mS2 as the bound M on µk;(i; j)
increases. The standard deviation of this number de-
creases to zero absolutely. When sk;(i; j) = s(i; j) and
µk;(i; j) = µ(i; j), k = 1;2; :::;m, the result in Theorem 1
becomes

lim
m!¥

s
2
Zm;(i; j)

=
s2
(i; j)

2(1+
µ2
(i; j)

s2
(i; j)

)

+
µ2
(i; j)

(1+
µ2
(i; j)

s2
(i; j)

)

: (5)

If s(i; j) is held constant and µ(i; j) is allowed to vary
between 0 and jµ(i; j)j � s(i; j), sZm;(i; j) is a constant

between
s2
(i; j)
2 and s2

(i; j). The graph for the first term in
Equation 5 is monotonically decreasing while that for
the second term is monotonically increasing. More-
over, as Fig. 1 shows, limits calculated with Equation
5 are very consistent with the empirical results from a
sensitivity analysis.

4 FINDING MEANINGFUL
LEVELS AND CLUSTER SETS

Often, as the dimensionality of the data points in-
creases and the 2-norm interclass distances become
larger, the standard deviations of the 2-norm inter-
class distances, i.e., sZm;(i; j) , nonetheless remain rel-
atively small or constant. When sk;(i; j) = s(i; j) and
µk;(i; j) = µ(i; j), k = 1;2; :::;m, this is certainly so, be-
cause Equation 5 shows that sZm;(i; j) is a constant. In
particular, when the distribution of the noise that is
embedded in each dimension of each data point does
not change, sZm;(i; j) is a constant between

s(i; j)p
2

and
s(i; j). As the Monte Carlo simulations show, this also
is so when the 2-norm interclass distances grow at an

expected rate that is much faster than d(
p

mS2)
dm = S

2
p

m .
When this scenario holds, data points that belong

to the same class link at about the same time even
at higher dimensionalities. As Fig. 2(a) depicts,
classes of data points can be close together at lower
dimensionalities. When they are, the magnitudes of
many intraclass distances and interclass distances are

about the same, so the two kinds of distances com-
mingle. However, as Fig. 2(b) depicts, the classes of
data points are farther apart at higher dimensionali-
ties, so the intraclass distances and the interclass dis-
tances segregate into bands. Thus, higher dimension-
alities can attenuate the effects of noise5 that preclude
finding meaningful levels of a hierarchical sequence
at lower dimensionalities and distinguish between the
classes. Moreover, as Figs. 2(b) and (c) show, this
pattern repeats itself as clusters become larger from
including more data points.

Consequently, as the dimensionality of the data
points increases, the distance graphs for a data set
can exhibit identifiable features that correlate with
meaningful levels of the corresponding hierarchical
sequences. These levels are the levels at which multi-
ple classes have finished linking to form new config-
urations of clusters. In particular, assuming that the
data set has inherent structure, a distance graph takes
on a shape whereby sections of the graph run nearly
parallel to one of the graph axes. Where there is very
little or no linking activity, the sections run nearly ver-
tically. Where there is significant activity, i.e., where
new configurations of clusters are forming, the sec-
tions run nearly horizontally. Thus, portions of the
graph that come after the lower-right corners and be-
fore the upper-left corners indicate where new con-
figurations of clusters have finished forming. As the
schematic in Fig. 2(c) shows, a distance graph can be
visually examined prior to performing a cluster anal-
ysis. Since a distance graph is used to find meaningful
levels of a hierarchical sequence prior to performing
a cluster analysis, it is not a summary of the results
obtained from the analysis. Instead, it enables a user
to selectively construct only meaningful cluster sets,
i.e., cluster sets where new configurations of clusters
have finished forming.

Finding meaningful levels is remarkably easy:
Step 1. Calculate the dissimilarities between data

points xi and x j in data set X , i; j = 1;2; :::;n;xi 6= x j.
Then, calculate the lengths or magnitudes of the vec-
tors that contain the dissimilarities between the data
points. Here, the dissimilarity measures are simple
value differences, and the 2-norm is used to obtain
Euclidean distance.

Step 2. Construct ordered triples (di; j; i; j) from
these distances and the indices of the respective data
points, sort the ordered triples into rank or ascending
order according to their distance elements, and as-
sign indices to the sorted ordered triples (the “rank
order indices”). The time complexity to calculate
the distances is O( n�(n�1)�m

2 ). If ordinary merge sort

5Attenuating the effects of noise refers to reducing the
effects of noise on cluster construction.
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Figure 2: Simple illustration that shows how two classes of data points link as the distance between the classes increases (left)
and schematic for finding meaningful levels of a hierarchical sequence (right). Inherent structure is revealed through identi-
fiable features of the distance graph. These features correlate with those levels of the corresponding hierarchical sequence at
which multiple classes have finished linking to form new configurations of clusters.

Figure 3: Illustration that shows how rank order indices and distance elements align with levels and the respective threshold
distances d0 of the corresponding hierarchical sequence. The data come from the nine motes experiment described in Subsec-
tion 5.3. The 2-norm distance measure was used to calculate the distances. The arrow in the column for the threshold distance
signifies that threshold distance d0 is a continuous variable. The meaningful cluster sets in the last column have asterisks.

(Cormen et al., 2004) is used, the time complexity to
sort the ordered triples is O( n�(n�1)

2 � log( n�(n�1)
2 )) =

O(n � (n�1) � log( n�(n�1)
2 )

1
2 ).

Step 3. Use the rank order indices and the ordered
triples to construct a distance graph. The distance
graph will remain smooth, regardless of the dimen-
sionality of the data points, when inherent structure is
absent. Assuming that the data set has inherent struc-
ture, increase the dimensionality of the data points
and repeat Steps 1 to 3 until the lower-right corners
have good definition (or as good as is practically pos-
sible).

Step 4. Along the axes of the distance graph, lo-

cate the rank order indices and/or the distance ele-
ments that correspond to where the lower-right cor-
ners appear in the graph. Under ideal circumstances,
these corners are nearly orthogonal. The rank order
indices and the distance elements coincide with the
meaningful levels and the respective threshold dis-
tances d0 of the corresponding hierarchical sequence.

For an example that shows how these four vari-
ables align, see Fig. 3. As part of the cluster analy-
sis described in (Olsen, 2014), the ordered triples are
evaluated in ascending order for information about
linkage. As the distance elements become larger,
threshold distance d0 increases implicitly from 0 to
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the maximum of all the distance elements. Although
threshold distance d0 is a continuous variable that can
vary from 0 (where each data point is a singleton) to at
least this maximum distance (where all the data points
belong to the same cluster), the only values that matter
are those n�(n�1)

2 values that are equal to the distance
elements di; j. Since the number of data points in a
data set is finite, the maximum number of levels of a
hierarchical sequence is finite and equal to the number
of ordered triples (distance elements) plus one. Thus,
the rank order indices, by virtue of the distance ele-
ments di; j, coincide with the last n�(n�1)

2 levels of the
hierarchical sequence.

Step 5. Use a complete linkage hierarchical clus-
tering method such as that in (Olsen, 2014) to con-
struct only the cluster sets for the meaningful levels.
By using a method that constructs cluster sets de novo
instead of using an updating method, it is possible to
construct only the cluster sets for meaningful levels
of a hierarchical sequence. The number of clusters in
a meaningful cluster set becomes an artifact of clus-
ter set construction. Finding meaningful levels of a
hierarchical sequence reduces the time complexity to
construct cluster sets from O(n4) to O(ln2).

5 EMPIRICAL RESULTS

The remainder of this paper describes the empirical
results from four experiments. The first experiment
shows how the effects of noise are attenuated as the
dimensionality of the data points increases. The sec-
ond experiment looks at data sets having multiple at-
tributes and how meaningful cluster sets can have real
world meaning. The third experiment also shows how
meaningful cluster sets can have real world meaning.
The fourth experiment demonstrates other interesting
properties of the means for finding meaningful levels
of an n�(n�1)

2 +1-level hierarchical sequence. The data
sets are representative of other data sets that have in-
herent structure. The 2-norm distance measure (Eu-
clidean distance) is used to calculate the distances.
level is a variable that is used to refer to individ-
ual meaningful levels, and d0 refers to the respective
threshold distances d0.

5.1 Synthetic Data Sets–Nearly Ideal
Circumstances

This experiment shows how the effects of noise are at-
tenuated and inherent structure emerges as the dimen-
sionality of the data points increases. The heat map
in Fig. 4 was provided by the Hollings Cancer Cen-

ter at the Medical University of South Carolina. The
data sets constructed from this heat map include three
gene classes and four sample classes. The ratio for
the gene classes is 50:150:1000 while the ratio for the
sample classes is 25:25:10:40. The signal-to-noise ra-
tio for the gene classes is 1.29/1.87, where noise is de-
fined as the pooled estimate of the standard deviations
for over (N(2;42), mostly in red-orange (dark gray)),
under (N(�2;42), mostly in yellow (light gray)), and
normally (N(0;12), mostly in orange (medium gray))
expressed genes.

The mean values of the three gene classes are used
to construct a noiseless data set. As the first graph in
Fig. 4 shows, inherent structure emerges immediately
for noiseless data. For the noisy data set, inherent
structure emerges as early as m = 5000 dimensions,
and the last graph suggests that the corresponding hi-
erarchical sequence has five meaningful levels: level
= 0 or d0 = 0.00, level = 499,500 or d0 = 105:28, level
= 699,500 or d0 = 297:65, level = 711,900 or d0 =
365:58, and level = 719,400 or d0 = 429:81. The clus-
ter sets for these levels were constructed without con-
structing any of the other 719,396 cluster sets (which
also is 1195 fewer cluster sets than an n-level hierar-
chical sequence). The gene classes are discernible by
examining the meaningful cluster sets. The two tables
in Fig. 4 show that noise attenuation is not the same
as noise elimination.

5.2 Residential Heat Pump

This experiment looks at data sets that have multi-
ple attributes. Three data sets were provided by the
U.S. National Institute of Standards and Technology
(NIST). The data sets originally were collected for a
study described in (Kim et al., 2006). There, they
were used to analyze the performance of a residen-
tial heat pump that was operating in the cooling mode
when a single external fault was imposed. The data
sets are comprised of numerous kinds of measure-
ments that were collected at approximately 12 sec-
ond intervals for at least 17 minutes. While two of
the data sets were collected, the indoor air side flow
rate ( f t:3/min., scfm) was changed from 1000 scfm to
500 scfm and from 1000 scfm to 1200 scfm, respec-
tively. Using no-fault, third-order polynomial corre-
lations as the basis for calculating residuals, the read-
ings for the most informative seven kinds of measure-
ments related to air flow are excerpted from each data
set, and consecutive sequences of readings that in-
clude 15 consecutive time points are concatenated to
construct data points. In all, 11 data points having
105 dimensions (7 measurements x 15 time points)
are constructed from each data set, or 33 data points
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Figure 4: Heat map, distance graphs, and meaningful cluster sets for the synthetic data sets. The first graph pertains to the
noiseless data set while the next three graphs pertain to the noisy data set.

in total.
As the chart in Fig. 5 shows, the standard devi-

ations for all the measurements are relatively small.
Consequently, inherent structure emerges as early as
m = 105 dimensions. The graph in Fig. 5 suggests
that the corresponding hierarchical sequence has five
meaningful levels. The fault pattern for the 500 scfm
data appears at level = 407 or d0 = 40.10 while that
for the 1200 scfm data appears at level = 286 or d0 =
8.28.

5.3 Motes Sensing Luminescence

This experiment shows that meaningful cluster sets
can have real world meaning while other cluster sets
generally do not. Nine Crossbow R MicaZ motes
with MTS300CA sensor boards attached thereto are
configured into a 1x1 meter grid. The motes are pro-
grammed to take light readings (lux) of an overhead
light source every 1 second. After calibrating the
motes, canopies are placed over motes 1, 6, and 8 dur-
ing the entire experiment, so they are never exposed
to direct light (the “full shade” motes); canopies are
never placed over motes 2, 4, and 9, so they are al-
ways exposed to direct light (the “full sun” motes);
and canopies are placed over motes 3, 5, and 7 for 1.5
minutes out of every 3 minute cycle (collectively, the
“partial shade” motes). Further, the canopy for mote
3 is deployed at 30 seconds into each 3-minute cycle
and removed at 120 seconds, the canopy for mote 5 is
deployed at 60 seconds and removed at 150 seconds,
and the canopy for mote 7 is deployed at 90 seconds
and removed at 180 seconds. Data were collected for
15 minutes or 900 samples per mote (8100 samples

in total), out of which 893 samples per mote (8037
samples in total) were usable6.

Typical direct light readings were about 905 lux
while typical indirect light readings were about 813
lux. The standard deviations of the readings collected
by each mote are all less than 10 lux, so although
some corners of the distance graph are not nearly or-
thogonal, inherent structure emerges as early as m =
180 dimensions. The graphs in Fig. 6 suggest that the
corresponding hierarchical sequence has four mean-
ingful levels. At level = 6 or d0 = 287:97 (m = 893),
the cluster set includes five non-overlapping clusters,
one for the full sun motes, another for the full shade
motes, and one for each of the partial shade motes.
At level = 27 or d0 = 2488:63 (m = 893), the cluster
set includes two overlapping clusters, one for those
motes that were exposed to direct light during all or
part of the experiment (the full sun motes and the par-
tial shade motes) and the other for those motes that
were not exposed to direct light during all or part of
the experiment (the full shade motes and the partial
shade motes).

As the table in Fig. 6 illustrates, the cluster sets
for the meaningful levels have real world meaning.
The cluster sets for the other levels generally do not,
and the more so for levels that are not proximate to
the meaningful levels. When multiple classes of data
points have not finished linking to form a new config-
uration of clusters, the cluster sets are comprised of
overlapping clusters whose differences are not related
to inherent structure. These cluster sets are much less
transparent to domain experts.

6Seven packets from mote 9 were dropped during trans-
mission.
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Figure 5: Mean values and standard deviations, distance graph, and meaningful cluster sets for the seven kinds of measure-
ments that were excerpted from the NIST data sets.

Figure 6: Configuration, dendrogram, distance graphs, and exemplary cluster sets for the nine motes data set. The motes are
classified according to the data sequences that are collected. The different colors (gray scales) represent the different clusters
at level = 6. The meaningful cluster sets have asterisks.

The number of meaningful levels does not appear
to be a limiting factor. In experiments involving com-
plex geometric patterns, as many as 19 meaningful
levels have been found. In contrast, the post hoc
heuristics are designed to find one or maybe a few
cluster sets. The gap statistic found the cluster set at
level = 6 but not that at level = 27, because the latter
cluster set includes overlapping clusters.

When the standard complete linkage method is
used to cluster a data set, some cluster sets that should

be meaningful are obscure. As the dendrogram in Fig.
6 shows, while mote 7 combines with the full sun
motes at d0 = 2488.63, motes 3 and 5 combine with
the full shade motes. This disparity among the partial
shade motes is difficult to understand without taking
into consideration how the standard complete linkage
method imposes taxonomic structure onto data sets.
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Figure 7: ECG and distance graphs for the data that are
excerpted from file 16265 of the MIT-BIH Normal Sinus
Rhythm database.

5.4 Health Monitoring

The data used in this experiment come from file
16265 of the MIT-BIH PhysioNet Normal Sinus
Rhythm database (Goldberger et al., 2000). This file
contains ECG readings collected at 128 hertz. The
P,Q,R,S,T interval of each heart beat, illustrated by
the first two graphs in the top row of Fig. 7, describes
how a heart pumps blood to other parts of a body.
Here, 25 samples per beat that include the Q,R,S com-
plex and at least the left side of the ST element are ex-
cerpted from the first 300 consecutive beats of the file,
and the data set is divided into ten segments (approx.
25 seconds each). The last graph in the first row of
Fig. 7 shows that this data set has almost no inherent
structure.

An elevating ST element is simulated by adding
a constant celevST to samples 11-22 of the excerpts
in the last five segments. Increasing celevST from 10
mV to 150 mV adds structure to the data set. The
graphs in the second row show that the elevating ST
is detectable as early as 80 mV, when the first five
segments and the last five segments are grouped into
different clusters. The graphs in the bottom row show
how inherent structure emerges as the dimensionality
of the segments increases. Increasing the dimension-
ality of the segments does not add structure to the data
set, however, and the law of diminishing returns even-
tually sets in. At these elevations, the damage from
ischemia and the risk of sudden death still are low.

6 CONCLUSION

When the assumptions underlying the standard com-
plete linkage method are unwound, the size of a
hierarchical sequence reverts back from n levels to
n�(n�1)

2 + 1 levels, and the time complexity to con-
struct a hierarchical sequence of cluster sets becomes
O(n4). Moreover, the post hoc heuristics for cut-
ting dendrograms are not suitable for finding mean-
ingful cluster sets of an n�(n�1)

2 + 1-level hierarchical
sequence. To overcome these problems, this paper
presents three contributions. First, using the 2-norm
distance measure as an example, it presents a means
for finding meaningful levels of an n�(n�1)

2 + 1-level
hierarchical sequence prior to performing a cluster
analysis. By finding meaningful levels of such a hier-
archical sequence prior to performing a cluster anal-
ysis, it is possible to know which cluster sets to con-
struct and construct only these cluster sets. This re-
duces the time complexity to construct cluster sets
from O(n4) to O(ln2). Second, it shows how increas-
ing the dimensionality of the data points helps re-
veal inherent structure in noisy data. Third, it pro-
vides working definitions for the notions “meaningful
level” and “meaningful cluster set”. The empirical re-
sults from four experiments show that finding mean-
ingful levels of a hierarchical sequence is easy and
yields results that can have real world meaning. Fu-
ture work includes mathematically capturing and in-
tegrating the means into the new clustering method,
so that the new clustering method is self-contained,
and working with more complex beta applications.
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APPENDIX

Proof for Theorem 1. (sketch only)
Assume that the stated conditions are true. The
second moment of

Zm;(i; j) is E[Z2
m;(i; j)] = E[(åm

k=1 Y 2
k;(i; j))

1
2 �2]

= å
m
k=1 E[Y 2

k;(i; j)]

= å
m
k=1 E[(sk;(i; j)Wk;(i; j)+µk;(i; j))

2]

=å
m
k=1 E[(sk;(i; j)Wk;(i; j))

2+ 2sk;(i; j)Wk;(i; j)µk;(i; j)+

µ2
k;(i; j)]

= å
m
k=1 E[(sk;(i; j)Wk;(i; j))

2] +

å
m
k=1 E[2sk;(i; j)Wk;(i; j)µk;(i; j)]+å

m
k=1 E[µ2

k;(i; j)],

where W is a normally distributed random vari-
able. The expected value of the middle term in the
last expression equals zero and drops out, so

E[Z2
m;(i; j)] = å

m
k=1 s2

k;(i; j)+å
m
k=1 µ2

k;(i; j).

To find the expected value E[Zm;(i; j)] in terms
of the standard deviations sk;(i; j) and mean values
µk;(i; j), Taylor’s series is used to expand E[Zm;(i; j)].

Let

x0 = å
m
k=1((sk;(i; j)Wk;(i; j))

2 +µ2
k;(i; j))

and

h = å
m
k=1 2sk;(i; j)Wk;(i; j)µk;(i; j).
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Then,

E[Zm;(i; j)] = E[(
m

å
k=1

Y 2
k;(i; j))

1
2 ]

= E[(
m

å
k=1
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1
2 ]
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h
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� h2
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3
2
+

3h3
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5
2
+ :::] (6)
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å
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k;(i; j)))
1
2 ]�E[
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3
2
]: (7)

In Equation 6, 2sk;(i; j)Wk;(i; j)µk;(i; j) is symmetric, so E[ h

2(åm
k=1((sk;(i; j)Wk;(i; j))

2+µ2
k;(i; j)))

1
2
] = 0 and drops out. As

m! ¥, the third-order term and all higher order terms converge to 0. Thus,
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Using the dominated convergence theorem and Taylor’s series, where g = å
m
k=1((sk;(i; j)Wk;(i; j))

2�s2
k;(i; j)), the

first term in Equation 8 evaluates to
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m
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When h2 is expanded, the terms with (åm
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m
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ator drop out, leaving only those terms with 4å
m
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2 in the numerator. Using the dominated
convergence theorem and Taylor’s series once more, where g = å

m
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in Equation 8 evaluates to
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As m! ¥, the third term in Equation 8 converges to 0.
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Thus, the variance s2
Zm;(i; j)

of Zm;(i; j) is
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QED
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