
Secure Video Player for Mobile Devices
Integrating a Watermarking-based Tracing Mechanism

Pablo Antón del Pino, Antoine Monsifrot, Charles Salmon-Legagneur and Gwenaël Doërr
Technicolor R&D France, 975, avenue des Champs Blancs, 35576 Cesson Sévigné, France

Keywords: Digital Right Management, Trusted Execution Environment, Secure Boot, Watermarking.

Abstract: Content protection relies on several security mechanisms: (i) encryption to prevent access to the content during
transport, (ii) trusted computation environment to prevent access during decoding, and we can also add (iii)
forensic watermarking to deter content re-acquisition at rendering. With the advent of next generation video
and the ever increasing popularity of embedded devices for content consumption, there is a need for new con-
tent protection solutions that rely less on hardware. In this context, we propose an architecture that combines
the ARM TrustZone technology, an hypervised environment built on Genode and a bit stream watermarking
algorithm that inserts serialization marks on the fly in an embedded device. As a result, an attacker cannot get
access to video assets in clear form and not watermarked. Reported performances measurements indicate that
the induced computational overhead is reasonable.

1 INTRODUCTION

Digital Rights Management (DRM) systems protect
multimedia content all along the content distribution
chain. In a typical DRM infrastructure (OMA, 2008),
video content is encrypted on the server side and de-
crypted locally on a consumer device. The distribu-
tion itself is considered to be a flawless process thanks
to the security provided by cryptography. Neverthe-
less, at consumption time, a video player is subject to
two major threats: (i) access to clear text video con-
tent (compressed or uncompressed) in memory and
(ii) acquisition of rendered content e.g. with screen-
casting tools or camcorders.

To protect against such attacks, each DRM so-
lution defines some specific robustness rules. Next
generation video (ultra high definition, high dynamic
range, ultra wide gamut) is emerging and MovieLabs,
a R&D consortium sponsored by six major Holly-
wood studio, is pushing some requirements to harden
client platforms. For instance, a key requirement is
the presence of a hardware root of trust, an embed-
ded secret that cannot be read or replaced (Microsoft,
2010; MovieLabs, 2013). This forms the basis for a
chain of trust, to verify the signature and the integrity
of running software, e.g. a video player. As a result,
it is impossible to modify the source code to hook the
video pipeline.

To prevent an external program to directly tap

into memory where video may transit in clear, the
media data pipeline is also required to be secure.
For instance, one could provide memory scrambling
protection and protection of uncompressed content
to the output (HDCP) (Microsoft, 2013). Actually,
MovieLabs is going even one step further and requires
a secure computation environment, isolated by a hard-
ware mechanism for critical operations, and a mem-
ory protection for this secure environment. This ex-
tends on a larger scale what Conditional Access ven-
dors already provide in set-top boxes with hardware
security modules. Such secure environment can then
be used to run sensitive applications e.g. video de-
coding that necessarily operates on decrypted video
content.

These security solutions are now well established,
e.g. with TrustZoneR© technology largely deployed by
ARM silicon partners. However, they do not address
the threat of content re-acquisition after rendering. As
a matter of fact, it is impossible to prevent somebody
from placing a camera in front of a screen. Common
practice is therefore to rely on signal processing de-
terrence mechanism referred to asdigital watermark-
ing (Cox et al., 2007). In a nutshell, video content
is imperceptibly modified to convey some informa-
tion and this information can be recovered even if the
content has been further processed afterwards. In par-
ticular, this auxiliary communications channel can be
exploited to transmit a binary code that uniquely iden-

253Antón del Pino P., Monsifrot A., Salmon-Legagneur C. and Doërr G..
Secure Video Player for Mobile Devices Integrating a Watermarking-based Tracing Mechanism.
DOI: 10.5220/0005042502530260
In Proceedings of the 11th International Conference on Security and Cryptography (SECRYPT-2014), pages 253-260
ISBN: 978-989-758-045-1
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)



tifies the recipient of the video. As a result, if a copy
of a movie surfaces on some unauthorized distribution
network, content owners can trace back to the source
of the leak based on the watermark information. This
strategy is routinely used today to distribute DVD/BD
screeners prior to theatrical release or in digital cin-
ema (EDCINE, 2007).

With the coming next generation video,
MovieLabs promotes the use of such forensics
watermark at a larger scale. “The system shall have
the ability to securely forensically mark video at
the server and/or client side to recover information
necessary to address breaches” (MovieLabs, 2013).
The objective of this paper is to propose a secure
player that would combine both security mechanisms:
video watermarking and decoding at the client side
in a trusted environment. The proposed architecture
establishes a secure media data path so that, at any
time, an attacker could not get access to video assets
in clear form and not watermarked.

In Section 2, we briefly review background ele-
ments that will be necessary for the proposed archi-
tecture. In Section 3, we outline the architecture of a
secure video player that incorporate a watermarking-
based serialization module and details a number of
implementation detailed in Section 4. Performances
measurements reported in Section 5 suggest that the
computational overhead of our solution remains ac-
ceptable. Eventually, perspectives for future work are
outlined in Section 6.

2 BACKGROUND

2.1 GlobalPlatform TEE

GlobalPlatform defines a Rich Execution Environ-
ment (REE) and a Trusted Execution Environment
(TEE). The TEE is a secure area in the main proces-
sor of an embedded device whose task is to store, pro-
cess, and protect sensitive data. In particular, the TEE
is expected to resist to all known remote and software
attacks, and a set of external hardware attacks. Any
code running inside the TEE is trusted in authenticity
and integrity, thereby protecting assets and code from
unauthorized tracing and control through debug and
test features.

Client applications running in the REE make use
of a TEE client API to communicate with their asso-
ciated trusted application (GlobalPlatform, 2010). A
salient feature of the model is the ability to commu-
nicate large amounts of data using a memory area ac-
cessible to both the TEE and the REE, thus avoiding
unnecessary copies of data. In our development, the

Figure 1: TrustZone operation modes

TEE Client API and Communication Stack is based
on the Open Virtualization TEE solution (Sierraware,
2012).

2.2 Secure Boot

GlobalPlatform specifies that the TEE must be in-
stantiated through a secure boot process using assets
bound to the system on chip (SoC) and isolated from
the REE. The role of a secure boot is to implement
a chain of trust (Arbaugh et al., 1997). The ROM of
the SoC is usually the only component in the system
that cannot be trivially modified or replaced by sim-
ple reprogramming attacks. As a result, it routinely
hosts the first stage boot-loader that acts as the root of
trust. Subsequent components are then authenticated
before being executed. In this study, we will use the
Freescale i.MX53 low cost SoC, that provides a multi-
stage secure boot process based on the high assurance
boot library (HAB).

2.3 TrustZone

The implementation of a TEE depends on the plat-
form architecture. The i.MX53 is equipped with the
ARM TrustZone technology, which offers a hard-
ware solution to obtain a rich open operating envi-
ronment with a robust security solution (ARM, 2009).
In TrustZone terminology, the domains for REE and
TEE environment are referred to asNormal Worldand
Secure Worldrespectively. The security of the system
is achieved by partitioning all of the SoCs hardware
and software resources so that they exist in one of the
two worlds – the Secure World for the security sub-
system, and the Normal World for everything else.

For instance, two virtual cores are associated to
each physical processor core. A mechanism known as
Monitor Modethen allows to robustly context switch
between worlds, as illustrated in Figure 1. Trigger-
ing the context switch requires the execution of a
specific processor instruction that only runs in priv-
ilege modes. The execution of a Secure Monitor Call
(SMC) instruction causes a processor exception that
is handled by a routine defined on the Monitor excep-
tion table.

SECRYPT�2014�-�International�Conference�on�Security�and�Cryptography

254



Rich

Execution

Environment

Trusted

Execution

Environment

Video client application (ffplay)

Protected Video

Content

DRM application

DEMUX

Decryption

Key Mgt

HW

Decoder

Encrypted

compressed

Decrypted

Decoded

Watermarked

SW

Decoder

Decrypted

Compressed

HDCP

Encryption

Decrypted

Compressed

Watermarked

Decrypted

Compressed

Watermarked

HDCP

Encryption

DTCP Link

Encryption

Decrypted

Decoded

Watermarked

HW Hardware components

SW Software components

Video

sink

Link

sink

Protected

Clear and watermarked

Clear and not watermarked

Watermark

Figure 2: Secure data path in the proposed architecture. Video content is never accessible in clear and without a forensic
watermark. Performing watermarking at the bit stream leveloffers the possibility to shift the decoding process in the non-
trusted environment and thereby lighten the load of the TEE.

2.4 TrustZone VMM

Managing both environments requires a software
layer that supports two features: a kernel to run ap-
plications in the trusted environment and a virtual
machine monitor (VMM) to switch between envi-
ronments. In order to reduce the attack surface,
µ-kernels are usually preferred. Several commer-
cial solutions based on TrustZone security exten-
sion instruction set exist: Trusted Foundations from
Trusted Logic Mobility in Tegra-powered tablets,
MobicoreTM from Giesecke & Devrient in the Galaxy
SIII, and more recently<tTM-base-300, from the
joint-venture Trustonic. On the open source side, a
good alternative would be L4Android (Lange et al.,
2011) but it does not manage TrustZone security ex-
tension. In contrast, Genode is an operating system
framework that implements a VMM on top of the
TrustZone hardware and that could be based on var-
ious µ-kernels, e.g. L4, Fiasco and Genode. Since
version 13.11, Genode’s hardware-basedµ-kernel has
been supporting Freescale i.MX53 with TrustZone
and we therefore adopted this full Genode setup.

3 SECURE VIDEO PLAYER

Figure 2 depicts the overall architecture for the se-
cure player that we are proposing. The video client
application runs in a regular Linux environment, and
is extended with some secure components within a

TEE. Following the principle of isolation for ARM
TrustZoneTM, the most sensitive tasks (key manage-
ment, decryption and watermarking) are performed
inside the TEE. Since they run in a confined mem-
ory space which is not physically accessible from the
regular environment, capture of decrypted and non-
watermarked content is prevented.

3.1 DRM Module in TrustZone

TrustZone architecture differs from traditional pro-
tection in set-top boxes. Instead of encapsulating
security critical processes in extra dedicated chips,
the main processor is enhanced by the addition of
a new secure execution mode and a specific mem-
ory controller for memory partitioning. An important
by-product is that key management can now be per-
formed in software in the TEE, which significantly
facilitates the design of new products that would re-
quire otherwise the collaboration from chip vendors.

The video-on demand player Video Hub on Sam-
sung’s Galaxy SIII, developed by Discretix, provides
a good illustration of how TEE may be used for con-
tent protection. Several trusted components, also re-
ferred to astrustlets, embeds DRM modules such
as PlayReadyR© or WidevineR© inside the Mobicore
framework. Discretix’s secure PlayReady DRM so-
lution (Discretix, 2011) includes the truslet itself, but
also a secure user interface, a secure storage, access to
cryptographic engines and hardware codecs. In other
words, it implements a secure media pipeline totally

Secure�Video�Player�for�Mobile�Devices�Integrating�a�Watermarking-based�Tracing�Mechanism

255



enclosed into the TEE secure world.
The number of features handled in the secure

world is significant and one may wonder if it may
not yield any vulnerability. A software level analysis
of TrustZone OS and trustlets (Behrang, 2013) actu-
ally revealed an issue that could allow unauthorized
communication between low privileged Android pro-
cesses and Mobicore kernel. Now, even if such in-
tegration vulnerabilities were fixed, there would still
be the risk of unauthorized re-acquisition. Content
decoded in the TEE is either forwarded to another de-
vices through a protected link or to the rendering en-
gine. Security flaw or not, content will eventually be
left unprotected, and thus vulnerable, at some point to
be presented in clear to human beings.

3.2 Bit Stream Watermarking

Digital watermarking is the technology of choice to
deter content re-acquisition. This being said, most
video watermarking algorithms feature too much
complexity to be able to watermark content on the fly
on resources-constrained mobile devices. Still, a new
breed of watermarking systems recently emerged that
separate the watermarking process in two elementary
steps (Zou and Bloom, 2008; Zou and Bloom, 2010).

The main objective is to make the watermark em-
bedding module as simple as possible for efficiency.
This calls for watermarking systems that operate prior
to decompression, e.g. by swapping a few bytes at dif-
ferent locations directly at the bit stream level. How-
ever, random alterations of the bit stream is prone to
significantly impair the quality of rendered video. It is
therefore necessary to perform a computationally in-
tensive profiling of the original bit stream to identify
locations that could be modified as well as the asso-
ciated replacement bytes that could be used without
introducing noticeable visual degradation. A key fea-
ture is that this profiling operation only needs to be
performed once, regardless of the number of recipi-
ents whom the video will be sent to.

While the proposed architecture is applicable for
any bit stream watermarking system, we will fo-
cus in the remainder of the article on an algorithm
that operates directly in the H.264 AVC/CABAC bit
stream (Robert and Doërr, 2013). The profiling mod-
ule essentially generates a sequence of instructions
that will be consumed by the embedding module.
Most instructions can be viewed as a triplet contain-
ing (i) an offset where the modification can be made,
(ii) a 2-bytes word to use to embed a ‘0’, and (iii) a 2-
bytes word to embed a ‘1’. To avoid synchronization
problems, these instructions are finally interleaved at
the H.264 signaling level. An H.264 bit stream is es-
sentially composed of a network abstraction layer unit

(NALU). If a NALU is found to host watermarking
locations, it is preceded by a NALU whose header in-
dicates that it contains supplemental enhancement in-
formation (SEI), namely the instructions required to
watermark the next NALU.

As a result, the embedding module operates
NALU by NALU. If the incoming NALU is a SEI
containing watermarking instructions, the payload of
the NALU is stored in memory. If it is a NALU con-
taining video information, the swaps necessary to em-
bed the bits of the locally stored identifier are per-
formed using the instructions in memory (if there is
any) and the memory is reset afterwards. The local
identifier is loaded at startup in a secure way i.e. it is
impossible to modify the identifier that will be subse-
quently embedded in videos. This identifier can point
to a user/device whose privileges need to be revoked
or the built of a software that needs to be updated. In
some sense, this watermarking system is very similar
to SequenceKey proposed by IBM for optical disks
protection (Jin et al., 2004), although it operates at a
much finer granularity.

3.3 Analysis

Figure 2 depicts two alternate media data path im-
plementations. The first one embeds the full video
pipeline, from decryption to rendering, inside the
TEE. In the second one, only the critical path, from
decryption to watermarking is included into the TEE.
The forensic watermarking provides a tracing mecha-
nism in case of leak and subsequent operations, from
decoding to output protection, can be done ‘safely’ in
the REE.

The first solution avoids additional memory trans-
fers and the clear content, compressed or uncom-
pressed, is never accessible from the REE. From a se-
curity and performance perspective, it looks like the
perfect solution. However, it also comes with some
inherent drawbacks. The large number of system fea-
tures in the TEE (secure video driver, decoding, sink
encryption) significantly increases the amount of code
to secure, which exposes to more risks and potential
maintainability issues.

In contrast, the second solution offers a good
trade-off between a good level of security and an
open customizable architecture. The main objective
is to keep the DRM module running in the TEE min-
imal and non CPU intensive. As such, the chosen
bit stream watermarking technology is perfectly in
line with this strategy. Moreover, since the decryp-
tion and watermarking tasks do not require decoding
video content, the proposed DRM module is not tied
to a specific hardware or software codec implementa-
tion or to a system component. The clear separation

SECRYPT�2014�-�International�Conference�on�Security�and�Cryptography

256



of the security features grants the flexibility to shift all
application features, such as decoding and rendering,
in the normal world. Software maintenance is thereby
greatly facilitated. For instance, the video rendering
module, subject to bug fixes and upgrades, can be eas-
ily updated while the DRM module remains stable
and unchanged.

Another advantage of introducing a
watermarking-based tracing mechanism in a se-
cure player is related to the protection of the output
sink that is routinely found to be the weakest link of
the system. For instance, numerous attacks against
high definition copy protection (HDCP) have been
publicized in 2010 due to software key discovery,
lack of diversity and broken root of trusts (Rosenblatt,
2011). Watermarking does not prevent copyright
material to be pirated through a broken link but at
least provides a tracing mechanism to identify the
source of the leak. It exemplifies the virtue of having
multiple lines of defense in order to avoid single
points of failure.

4 IMPLEMENTATION DETAILS

Figure 3 depicts the interactions between the differ-
ent software modules that we have implemented to
instantiate the video player design proposed in Sec-
tion 3. It closely follows the generic architecture ad-
vocated by Global Platform. On the left hand side,
the REE stands for a Linux Kernel and arootfs that
offer a complete execution environment for user ap-
plications. On the right hand side, the TEE is com-
posed of the Genode API and two Genode user ap-
plications (VMM-TEE and DRM Trusted Applica-
tion). In between, a low-level piece of software is in
charge of several hardware-dependent tasks, includ-
ing in particular communication processes between
the non-secure and secure domains.

4.1 TEE Modules

Genode’sµ-kernel supports TrustZone and can man-
age context switches between worlds from the appli-
cation Virtual Machine Monitor (VMM). VMM han-
dles all aspects related to the para-virtualization of the
REE (memory management, exception handling, se-
cure access to hardware, etc). We complemented this
application with a module called Genode TEE that is
in charge of the interactions between the TEE Client
in the normal world and the trusted application (DRM
Trusted Application in our case) in the secure world.
The resulting joint-application is VMM TEE.

The VMM has two main duties. First, it is in

Figure 3: Software architecture of the proposed secure
video player.

charge of configuring the platform to load and run
the REE Linux kernel. It sets up the memory regions
where the kernel image will be loaded, configures the
security properties to keep the TEE isolated from the
REE, launches the Linux kernel image, and gives it
the control of the machine. The second task of the
VMM is to listen for context switch requests emitted
by the TEE Client Driver. Whenever they occur, it
looks up some parameter values and decides whether
to transfer control or not to Genode TEE handler func-
tion.

On its side, Genode TEE serves as an interface
between the TrustZone hardware and the trusted ap-
plication running in the TEE. In particular, it pro-
cesses a number of commands, e.g. open session with
trusted application, send command to trusted appli-
cation, close session with trusted application, etc. In
addition to such default command, each trusted ap-
plication can define its own set of command. In the
case of our DRM trusted application, we defined three
commands as well as their associated behavior:

1. TEE DRM SET LICENCE command is sent when the
secure player attempt accessing protected content.
It is in charge of extracting relevant information
securely stored in the associated content license,
e.g. content decryption keys and usage rights.

2. TEE DRM INIT WM command is issued once when
the secure player is launched to initialize re-
sources allocated to the watermarking module. In
particular, it allocates some buffers to temporarily
store watermarking instructions and securely load
the serialization payload that will be embedded by
the watermarking routine.

3. TEE DRM DECWM PACKET is a recurring command
that triggers the decryption and watermarking of
a video packet. The pointer to the region in the
shared memory where the video packet is accessi-

Secure�Video�Player�for�Mobile�Devices�Integrating�a�Watermarking-based�Tracing�Mechanism

257



ble must be sent in parameter.

For the sake of clarity, the interactions between the
REE and the TEE will be further detailed in the next
subsection with the workflow of our secure player.

Security provided by the DRM trusted applica-
tion is twofold. The content decryption key is re-
trieved from the associated content license, which are
encrypted using a platform/device-dependent public
key. The corresponding private key, which will be
used to decrypt the license and thereby get access to
the content decryption key, is installed by the man-
ufacturer in each consumer board and is only acces-
sible in the TEE. Thanks to TrustZone’s isolation, it
guarantees that crypto-credentials will never leave the
secure world. The second security mechanism comes
from the memory management. The DRM trusted
applications reads encrypted video packets from the
shared memory but stores the decrypted packet in a
private memory that is unaccessible from the REE.
The application pushes the decrypted content back
into the shared memory, only after it has been wa-
termarked. Thus, unencrypted content without water-
mark is never accessible from the non-secure domain.

4.2 Secure Video Player Workflow

In our implementation, we are using the FFPlay appli-
cation1, a portable media player combining FFmpeg
and SDL libraries2. Due to its simplicity, establishing
the communication with the TEE Client API shared
library is reasonably easy.

When FFPlay is launched, it issues a com-
mandTEEC InitializeContext that prepares driver
structures and buffers, i.e. it initializes the TEE. Im-
mediately afterwards, a commandEEC OpenSession
creates a session with the DRM Trusted Application
located in the TEE. Everything is fairly standard so
far and would be the same for any trusted application.
From this point onward, though, the interactions be-
come application specific and are triggered with the
TEEC InvokeCommand function, that can specify any
application command which has been defined.

To set up the watermarking environment, FFPlay
first invokes the commandTEE DRM INIT WM. On the
TEE side, the DRM Trusted Application allocates a
number of buffers, e.g. to temporarily store water-
mark embedding instructions, and places in some se-
cure memory the serialization identifier that will be
embedded by the watermarking module. When the
VMM handles back control to FFPlay, the water-
marking module of the DRM Trusted Application is

1http://www.ffmpeg.org/
2http://www.libsdl.org/

Table 1: Percentage of processing time devoted to security
tasks along the video processing pipeline of the proposed
secure player for different setups and H.264 profiles.

Decryption
REE TEE

Main High Main High

No watermark 0.04 1.03 2.25 5.87
Watermark N/A N/A 2.61 6.83

ready to process any incoming video packet. Still, it
can only handle decrypted content. When FFPlay at-
tempts playing protected content, it therefore invokes
a commandTEE DRM SET LICENCE to tell the DRM
Trusted application to use the platform/device key to
recover the content decryption keys from the license
that is passed in argument.

Equipped with content decryption keys and a wa-
termarking module ready to go in the TEE, FFPlay
can enter its nominal regime. It reads protected video
packets from the video file and issue a command
TEE DRM DECWM PACKET to the DRM Trusted Appli-
cation. On the TEE side, the decryption module first
decrypts the video packet accessible in the shared
memory and stores the result in private memory. For
simplicity, in our implementation, a video packet ac-
counts for an integer number of H.264 NALUs. In
the general case, one would need either to introduce
a new module in the TEE to parse video packets and
forward full NALUs to the watermarking module, or
to interleave watermarking instructions at the con-
tainer level so that the watermarking module can op-
erate packet by packet instead of NALU by NALU.

When the watermarking module kicks in, it in-
spects the header of the decrypted H.264 NALU. If
it is a SEI containing watermarking instructions, the
payload of the NALU is copied in a dedicated buffer
and the NALU itself is filled with dummy bytes to
prevent access to watermarking instructions outside
the TEE. If it is a regular NALU, it consumes the
instructions (if there are any) stored in the buffer to
watermark the NALU located in the private mem-
ory. Once the video packet (containing one or several
NALUs) is fully processed, the resulting decrypted
and watermarked packet located in private memory is
copied back in the shared memory at the exact same
location that it comes from. When the VMM gives
the control back to FFPlay, it can forward the pro-
cessed video packet further along the video pipeline,
e.g. video decoding and rendering.

When FFPlay is closed, it invokes a command
TEEC CloseSession to properly release resources on
the TEE side.

SECRYPT�2014�-�International�Conference�on�Security�and�Cryptography

258



5 PERFORMANCES
MEASUREMENTS

To evaluate the processing overhead induced by the
proposed architecture, we conducted a number mea-
surement campaigns with movies in high definition.
For completeness, the videos were compressed with
two different H.264 profiles that translate in various
bit rates and average NALU sizes. For instance, the
encoder bit rate is much higher for the high profile
than for the main profile. In our case, this translates
in NALUs being 27 times larger, in average, for the
high profile.

For each movie, we measured the percentage of
processing time dedicated to security tasks with re-
spect to the total processing time during playback. All
time measurements have been done using the function
gettimeofday(). Such measurements have been
performed for various placements and setup of the de-
cryption and watermarking modules and the average
results are reported in Table 1.

The upper left corner of the table reports perfor-
mances when the video player is fully implemented
in the REE realm without using TrustZone. In this
case, security features reduce to decryption only and
the first observation is that decryption processing task
is negligible with respect to decoding. The increase
from 0.04% to 1.03% between the main and high pro-
files accounts for the increase in size of the processed
NALUs. Decryption time is strictly proportional to
the NALU size, whereas decoding time is not.

The upper right corner of Table 1 showcases the
impact of shifting the decryption module inside the
TEE. It introduces significant overhead that is mostly
due to some limitations in the current implementation
of the TEE Client Driver. First, the shared memory
is not fully operational and we actually had to copy
encrypted video packets into the TEE private mem-
ory instead of simply reading from the shared mem-
ory. Moreover, a memory copy from the REE to the
TEE actually requires two memory copies: from the
user space to the kernel space and from the kernel
space to the DRM Trusted Application (or the other
around on the way back). All in all, it induces a total
of four memory copies for a decrypt-watermark loop
of a single video packet. Still, should these limita-
tions be fixed in the future, we could fully leverage
TrustZone’s shared memory. A priori, the processing
time overhead could be reduced to around 0.6% for
the Main profile and 2.25% for the High profile.

Finally, the lower right corner of the table reports
on the impact of introducing the proposed watermark-
ing module in the architecture. For both profiles,
the processing time overhead remains below 1% wich

clearly highlight the minimal footprint of this mod-
ule. Again, the overhead is larger for the high pro-
file. This is due to the fact that larger NALUs offer
more potential embedding sites that translates in byte
swaps for the embedding module. This being said, the
overhead of the watermarking process can easily be
limited if necessary by discarding embedding changes
when formating the watermarking instructions at the
profiling stage. The flip side of the coin is that it will
require more video time to embed a full identifier.

From the consumer’s perspective, the addition of
the security modules is transparent i.e. the media con-
sumption experience is the same. We did notice some
occasional freeze of the display but they were actually
due to FFPlay which was not always able to maintain
real-time decoding for high-definition content on the
i.MX53. This could be solved in the future by using
a more efficient software player or even a dedicated
video decoding chip.

6 CONCLUSION AND FUTURE
WORK

Forensic watermarking is currently used in profes-
sional environments. However, with the advent of
next generation entertainment content, there is mo-
mentum building to deploy such traitor tracing mech-
anism at a larger scale. Content serialization could
either be done on the server side or on the client
side. Solutions on the server side come with their
own shortcomings e.g. storage overhead and reduced
watermark granularity if video segments are precom-
puted (Jarnikov and Doumen, 2011) or computational
and bandwidth overhead if segments are watermarked
on the fly. On the other hand, solutions on the client
side most often rely on hardware to host their security
features (PRIMA Cinema, 2013).

In this paper, we intended to study an alternate
paradigm to design secure video players that would
rely on a software architecture in order to be possi-
bly embedded onto cheap consumers electronics de-
vices. It essentially leverages on two recent devel-
opments: (i) GlobalPlatform and its ARM TrustZone
incarnation that provides a trusted execution environ-
ment where sensitive processes can be run safely, and
(ii) 2-step bit stream watermarking that allows seam-
less integration along the video processing pipeline.
By combining these two elements, the attacker never
has access to clear video content that is not water-
marked with some serialization identifier.

Our proof of concept using the i.MX53 board,
Genode’s environment and FFPlay video player
clearly demonstrated the feasibility of the proposed

Secure�Video�Player�for�Mobile�Devices�Integrating�a�Watermarking-based�Tracing�Mechanism

259



solution. While the processing time overhead may
first look significant, it comes for a large part from
suboptimal design choices that are likely to be fixed
in the future but that induce costly memory copies at
the moment. Moreover, the consumer experience is
more affected by FFPlay that struggles to keep the
real-time cadence for high-definition content. In the
future, we intend to replace FFPlay by a more effi-
cient player that could exploit hardware acceleration,
such as gstreamer-based player Totem.

Another avenue for future work is to lift the sim-
plifying assumption that an encrypted video packet
contains an integer number of NALUs. A first so-
lution is to insert an additional interface between the
decryption and watermarking modules, that would as-
semble NALUs from incoming decrypted video pack-
ets. An alternate, possibly more efficient, solution
would be to raise the transmission of the watermark-
ing instructions at the container level rather than the
video essence level. As a result, the watermark
embedding process, a simple byte swapping engine,
could operate video packet by video packet.

REFERENCES

Arbaugh, W. A., Farber, D. J., and Smith, J. M. (1997). A
secure and reliable bootstrap architecture. InProceed-
ings of the IEEE Symposium on Security and Privacy,
pages 65–71.

ARM (2009). ARM security technology – Building a secure
system using TrustZone technology. Technical report.

Behrang (2013). A software level analysis of TrustZone OS
and trustlets in Samsung Galaxy phone.

Cox, I. J., Miller, M. L., Bloom, J. A., Fridrich, J.,
and Kalker, T. (2007). Digital Watermarking and
Steganography. 2nd edition.

Discretix (2011). DRM, Ensuring secure content protection
solutions for next generation consumer device. Tech-
nical report.

EDCINE (2007).European Digital Cinema Security White
Book.

GlobalPlatform (2010). GlobalPlatform device technology
– TEE client API specification. Technical report.

Jarnikov, D. and Doumen, J. M. (2011). Watermarking for
adaptive streaming protocols. InProceedings of Se-
cure Data Management, volume 6933 ofLNCS, pages
101–113.

Jin, H., Lotspiech, J., and Nusser, S. (2004). Traitor tracing
for prerecorded and recordable media. InProceedings
of the 4th ACM Workshop on Digital Rights Manage-
ment, pages 83–90.

Lange, M., Liebergeld, S., Lackorzynski, A., Warg, A., and
Peter, M. (2011). L4Android: A generic operating
system framework for secure smartphones. InPro-
ceedings of the ACM CCS Workshop on Security and

Privacy in Smartphones and Mobile Devices, pages
39–50.

Microsoft (2010). Robustness rules for PlayReady final
products. Technical report.

Microsoft (2013). Compliance rules for PlayReady final
products. Technical report.

MovieLabs (2013). MovieLabs specifications for next gen-
eration of video and enhanced content protection.
Technical report.

OMA (2008). DRM architecture. Technical report.
PRIMA Cinema (2013). http://primacinema.com.
Robert, A. and Doërr, G. (2013). Impact of content master-

ing on the throughput of a bit stream video watermark-
ing system. InProceedings of the IEEE International
Conference on Image Processing, pages 4532–4535.

Rosenblatt, B. (2011). The new technologies for pay TV
content security. Technical report.

Sierraware (2012). Open virtualization for TrustZone
overview.

Zou, D. and Bloom, J. A. (2008). H.264/AVC stream
replacement technique for video watermarking. In
Proceedings of the IEEE International Conference
on Acoustics, Speech and Signal Processing, pages
1749–1752.

Zou, D. and Bloom, J. A. (2010). H.264 stream replacement
watermarking with CABAC encoding. InProceedings
of the IEEE International Conference on Multimedia
and Expo, pages 117–121.

SECRYPT�2014�-�International�Conference�on�Security�and�Cryptography

260


