
Towards Real-time Collaboration in User Interface Mashups

Alexey Tschudnowsky, Michael Hertel, Fabian Wiedemann and Martin Gaedke
Department of Computer Science, Technische Universitt Chemnitz, Str. der Nationen 62, Chemnitz, Germany

Keywords: User Interface Mashup, Widgets, End-user Development.

Abstract: Recently, user interface mashups have become a popular approach for covering the long tail of end-user needs.
The simple composition paradigm and rich tool support aim at enabling even non-programmers to aggregate
data and application logic to solve situational business tasks. Despite of existing assistance mechanisms, both
development and usage of UI mashups remain mostly asingle-user activity. As a result, novices are usually
left alone in case of configuration problems or unexpected errors. Furthermore, the work cannot be distributed
efficiently to solve tasks faster. This paper presents an approach to make development of and interaction with
mashups a collaborative process. We show, how one can extend today’s composition platforms towards real-
time collaboration and demonstrate the approach in the context of the open-source mashup platform Apache
Rave.

1 INTRODUCTION

Dashboard-like applications (known also as user in-
terface mashups or, shortly, UI mashups) have been
widely adopted in enterprises (Hurwitz et al., 2005).
They enable management of complex, heterogeneous
and scattered information by end-users, so that situ-
ational problems can be solved faster and more ef-
ficiently (Cappiello et al., 2011). UI mashups con-
sist of autonomous but cooperative visual components
called widgets, which aggregate data from various
sources and enable access to often used functionali-
ties. Within a mashup widgets are able to synchronize
their views using a dedicated messaging infrastruc-
ture. Though the development process is rather sim-
ple, novice users still lack initial knowledge on how
particular mashup platform works and have little sup-
port in case of configuration problems. Furthermore,
if working in teams, users can hardly parallelize their
activities, as the majority of today’s mashup tools are
single-user applications.

The following scenario illustrates the problem.
Alice and Bob, two company employees, plan a joint
business trip to Vienna, Austria. To prepare the trip
they want to collect information about their desti-
nation, perform various bookings and agree on the
schedule. In contrast to Bob, Alice is already experi-
enced in developing mashups, and, thus, she quickly
constructs a dashboard, which aggregates and com-
pares data from different Web sources. If working

at the office, Alice explains to Bob capabilities of
the composition platform and they use the resulting
mashup to prepare the trip. However, the planning
becomes much more challenging if the employees
work remotely. Without appropriate collaboration fa-
cilities, Alice cannot efficiently share her view on a
mashup and explain required configuration. For the
same reason Bob can neither participate in the com-
position nor speed up the process.

We believe that real-time collaboration and com-
munication facilities can efficiently support situations
like this. However, equipping Web applications (and
mashup platforms in particular) with collaboration fa-
cilities is challenging and requires careful design of
synchronization algorithms, conflict resolution and
awareness services (Heinrich et al., 2012b). The pe-
culiarity of the UI mashup domain lies, additionally,
in the fact that the aggregated components, i.e. wid-
gets, can originate from third party developers and,
thus, be highly heterogeneous. Furthermore, many
mashup platforms host widgets in isolated security
contexts (e.g. iframes), so that Same-Origin-Policy
hinders direct access to their internal data or UI.
While isolation helps to prevent possible leak of data,
it represents a serious obstacle for synchronization of
widgets across mashup boundaries.

This paper tackles the above challenges by deriv-
ing a reference architecture and guidelines to enable
real-time collaboration in UI mashups. The main con-
tributions are threefold: First, a terminology and con-

193Tschudnowsky A., Hertel M., Wiedemann F. and Gaedke M..
Towards Real-time Collaboration in User Interface Mashups.
DOI: 10.5220/0005049001930200
In Proceedings of the 11th International Conference on e-Business (ICE-B-2014), pages 193-200
ISBN: 978-989-758-043-7
Copyright c
 2014 SCITEPRESS (Science and Technology Publications, Lda.)



ceptual approach to synchronize UI mashups is pre-
sented (Section 2 and 3); second, a reference archi-
tecture for integration of real-time collaboration facil-
ities into mashup platforms is derived (Section 4); and
finally, implementation of the approach in the con-
text of an existing open-source mashup platform is
demonstrated (Section 5). A review of related work
is given in Section 6. Section 7 concludes the paper
and gives an outlook on the planned evaluation and
future research.

2 UI MASHUPS: STATE OF THE
ART

In the following, we introduce terminology of UI
mashups by adapting the definitions introduced by
Wilson et.al. in (Wilson et al., 2012). The terminol-
ogy is used for analysis, which artefacts are involved
into real-time collaboration and helps to define syn-
chronization algorithms for UI mashups.

Conceptually, a UI mashup is a tuple
m =< M,W, I > with:

• M =< name,description > being a basic meta-
data of the mashup

• W = {wi : wi =< Si,Ai,Posi,Dimi >} being
a set of widgetswi with relative position in
a mashupPosi =< le f ti, topi >, dimensions
Dimi =< widthi,heighti >, internal stateSi, and
inter-widget communication (IWC) affordances
Ai. The internal stateSi describes, for exam-
ple, current focus of a map widget or its cur-
rent zoom level. AffordancesAi are specific to
the concrete strategy used for IWC. In (Wilson
et al., 2012) authors distinguish between chore-
ographed, orchestrated or hybrid ones. In case of
the choreographed and hybrid IWC strategies the
affordances are defined asAi =< Ei,Oi > with
Ei = {eil : eil =< nameil, topicil >} being a set
of events generated by a widget andOi = {oil :
oil =< nameil , til >} being a set of supported op-
erations (Wilson et al., 2012).til ∈ T are well-
known communication channles (topics) defined
by a topic ontologyT . On occurance of internal
eventeil , widget publishes a message on topictil .
Other widgets, which support operations for the
same topic, i.e.subscribe to til , are notified about
the new message and execute their respective op-
erations automatically.

• I being an IWC configuration of a mashup spe-
cific to the utilized IWC strategy. For hy-
brid IWC strategy it contains restrictions put by

user on communication between a pair of wid-
gets:I = {r j : r j =<w jsender,w jreceiver , t j >} with
w jsender,w jreceiver ∈W andt j ∈ T .

From the implementation point of view, a wid-
get w is considered to be a standalone, autonomous
Web application with its own user interface, applica-
tion logic and persistence layer. The source code of a
widget is usually packaged for distribution, e.g. in a
dedicated ZIP archive (cf. W3C Web Apps1) or mod-
ularized XML file (cf. OpenSocial2). To be composed
with others, a widget needs to be first instantiated and
integrated into the hosting Web application. The state
S of an aggregated widget is, conceptually, the same
as the state of a traditional Web application (Lo et al.,
2013). It reflects the widget’s current DOM tree and
states of Javascript objects. The hosting mashup acts
as runtime environment for the aggregated widgets
and operates among others a messaging infrastruc-
ture, which enables widgets to notify each other about
internal state changes. Usually, widgets do not ex-
change data on low-level events (such as button clicks
or text input), but rather on domain-specific ones such
as form submissions or domain object selections. De-
pending on the utilized IWC strategy the infrastruc-
ture can either a global message bus, shared memory
or registry of communication endpoints.

Lifecycle of a mashup can be roughly divided into
a development and an execution phases. During a de-
velopment phase mashup designer specifies mashup
metadata, selects widgets for composition, configures
their dimensions and initial state and specifies mashup
IWC configuration. The result of the development
phase is a specification, which can used by mashup
runtime environment to instantiate the Web applica-
tion. During the execution phase, mashup designer
(or any other user) consumes information presented
by the aggregated widgets and interacts with them to
accomplish domain-specific tasks.

Despite the formal separation, development and
execution phases of UI mashups are usually inter-
weaved. The so called ”live development” paradigm
promotes smooth transition between the both in order
to lower the barrier of mashup development(Aghaee
and Pautasso, 2013). Many platforms and tools
emerged, which enable runtime mashup reconfigura-
tion. One reference architecture for such develop-
ment and execution approach has been developed in
the FP7 EU Project OMELETTE (OMELETTE Con-
sortium, 2013) and its excerpt is presented in Figure
1.

1http://www.w3.org/TR/widgets/
2http://opensocial.github.io/spec/2.5.1/Core-

Gadget.xml

ICE-B�2014�-�International�Conference�on�e-Business

194



Figure 1: Reference architecture for UI mashups (terminology adjusted).

In the figure, theWidget Runtime Environment
persists, instantiates and manages widgets. The
Mashup Runtime Environment enables composition
of widgets based on end-user-oriented programming
techniques, e.g., using visual metaphors or natu-
ral language. Its submodules persist mashup mod-
els, manage user profiles and operate messaging in-
frastructure for IWC.Widget Browser enables man-
ual discovery of widgets. To ease mashup devel-
opment the runtime environment can be equipped
with composition assistance services such asMashup
Pattern Recommender and Automatic Composer
(Roy Chowdhury et al., 2013). Concrete Web im-
plementations of the reference architecture are usu-
ally split into a server and a client sides. The server
side is responsible for mashup persistence and man-
agement, while the client side renders a representation
of a mashup, provides the IWC infrastructure and en-
ables interaction with user.

3 REAL-TIME COLLABORATION
IN UI MASHUPS

In the following, we analyze end-user and technolog-
ical requirements on collaborative mashup develop-
ment and usage. Afterwards, synchronization algo-
rithms for both mashups and single widgets are pre-
sented.

3.1 Requirements Analysis

From a mashup designer’s point of view, the main
requirement is the ability to ”share” his view on a
mashup with one or more collaborators and to in-
teract with the mashup simultaneously. All changes
to mashup structure and all interactions with widgets

should be propagated and made visible to all collab-
orators in real-time. The awareness of mutual in-
teractions should help to distribute work more effi-
ciently and to minimize the number of possible con-
flicts. Finally, real-time communication facilities are
desired to support coordination of actions during de-
velopment and usage phases.

From the technical point of view, the main require-
ment for enabling real-time collaboration is the abil-
ity to keep mashup representations rendered in dif-
ferent contexts, i.e. browser instances, synchronized
over time. Interactions with mashup and with widgets
must be tracked, propagated and replayed in all con-
texts in real-time. Possible conflicts should be auto-
matically resolved to keep all mashup representations
in a consistent state. To support awareness of mu-
tual presence and interactions, information about col-
laborators and about origin of remote changes should
be visualized. Also interactions, which do not nec-
essarily result in changes in mashup or widget UI
(such as mouse movements or clicks), should be prop-
agated. Finally, the platform should enable an on-
demand transfer of text and multimedia data between
collaborators with acceptable quality.

3.2 Real-Time Collaboration Facilities

According to the requirements above, integration of
real-time collaboration facilities requires considera-
tion of the following three aspects:

• Synchronization of mashups being rendered in
different browser instances

• Tracking and visualization of active collaborators
and their interactions

• Capturing, propagation and replay of media
streams between collaborators

Towards�Real-time�Collaboration�in�User�Interface�Mashups

195



In the following, the three tasks and their concep-
tual realization are discussed in details.

3.3 Mashup Synchronization

First, we assume, that mashups representations be-
ing rendered in two browser instances of different
users can be described as mashups from Section 2.
We say, two mashup representationsm1 andm2 are
synchronized at some point of timet, if m1.M =
m2.M ∧m1.W = m2.W ∧m1.I = m2.I. The real-time
synchronization takes place, if changes to one mashup
representation are applied or made visible to all oth-
ers within some pre-defined time limit∆t. The real-
time synchronization constraint creates an illusion of
working on the same mashup, while in reality users
interact only with local representations.

To keep all representations synchronized, we pro-
pose to apply the Operational Transformation (OT)
algorithm (Ellis and Gibbs, 1989). Local modifica-
tions to metadata, widgets or IWC configuration of
a mashup should be modelled as operations, which
are observed and propagated to the master copy of the
mashup representation. Each local mashup represen-
tation is assigned a revision number, which identifies
a particular state of the mashup. Two mashup repre-
sentations are considered to be synchronized if their
revision numbers are equal. A conflict resolution en-
gine should apply dedicated transformation functions
to operations of different revisions, incorporate them
into the master copy and propagate the transformed
operations to all clients. Based on the mashup defi-
nition above the following operations have been iden-
tified (hybrid IWC strategy (Wilson et al., 2012) is
assumed):
Op 1. SetMashupName(name : string)

Op 2. SetMashupDescription(desc : string)

Op 3. CreateNewWidget()

Op 4. MoveWidget(w : Widget; le f t, top : int)

Op 5. ResizeWidget(w : Widget;width,height : int)

Op 6. DeleteWidget(w : Widget)

Op 7. AllowTopicBetweenWidgets(w1,w2 : Widget,
topic : Topic)

Op 8. ForbidTopicBetweenWidgets(w1,w2 : Widget,
topic : Topic)

The transformation function for two operations
(o1,o2) (o1 having a higher revision) is defined as fol-
lows:

1. If o1 = o2 including all parameter witho1,o2 ∈
{Op1,Op2,Op4,Op5,Op7,Op8}, then the result
of the tranformation function is(NoOp,o1) with
NoOp being the nothing affecting operation.

2. If o1 ando2 do not possess any equal parameters
(meaning they do not affect the same artefact),
then they are transformed to(o2,o1).

3. (o1,o2) with o1,o2 ∈ {Op4(wi, ...),Op5(wi, ...),
Op7(wi, ...),Op8(wi, ...)} except(Op7(wi, ...),
Op8(wi, ...)) and (Op8(wi, ...),Op7(wi, ...)) is
transformed to(o2,o1) as the affected widget
properties are independent.

4. (Op6(wi),o) with o ∈ (Op4(wi, ...),Op5(wi, ...),
Op7(wi, ...),Op8(wi, ...) is transformed to
(NoOp,Op6(wi)), which avoids any operations
on widgets, which have been deleted locally.

5. (o1,o2) with o1,o2 ∈ (Op7,Op8) is transformed
to (NoOp,o1).

Synchronization of widget states requires sepa-
rate consideration. A complete synchronization can
be achieved by exchange of complete DOM trees
and Javascript objects of Web applications (Lo et al.,
2013). However, if applied often, significant overhead
especially in the context of complex HTML5 appli-
cations can be caused. Second, access both to wid-
get DOM tree and Javascript variables is usually re-
stricted for security reasons and, thus, generic change
listeners and object modifiers would not work. To
tackle the above challenges, we propose to use alter-
native synchronization mechanism for widgets. Wid-
gets should reuse the existing IWC interface and no-
tify their hosting environment aboutdomain-relevant
state changes only. The IWC interface is usually de-
signed to bridge different security contexts by offer-
ing high level messaging operations. The mashup
communication infrastructure should propagate the
issued notifications to runtimes of other collaborators
and invoke special IWC operations to apply the up-
dates to corresponding widgets. The IWC operation
to be invoked is the one, which has been assigned
to a topic with an agreed naming convention (e.g.,
original − topic− name concatenated with the suf-
fix −sync). The operation (implemented by widget
developer) should update widget UI and internal vari-
ables according to the incoming data.

To illustrate the synchronization of widget states,
consider the example from Section 1. Every time Al-
ice selects a new city on the map widget, the wid-
get issues notifications about its internal state change
(e.g., an IWC event on topiccity andVienna as pay-
load). To display the same city in the Bob’s map wid-
get, the Alice’s mashup runtime environment propa-
gates the event to the Bob’s one, which in turn noti-
fies the local map widget about incoming update. The
data is propagated on the topiccity-sync and the Bob’s
map widget triggers a dedicated operation subscribed

ICE-B�2014�-�International�Conference�on�e-Business

196



to this topic. It updates widget UI and internal objects
to set the map focus on the new location.

The advantage of the method is that users can si-
multaneously interact with widgets. The drawback is,
however, that they may put widgets into an inconsis-
tent state. The reason is that events and operations
affect only parts of the state, which might have inter-
dependencies (e.g. selected city and country). To
guarantee consistent widget state is in general chal-
lenging, as semantics of the events is domain-specific.
Inconsistent states can be avoided on costs of simul-
taneous modification, e.g. by designing event param-
eters in the way, so that they reflect the most of the
internal widget state. In best case, widgets propagate
representations of the whole state, so that any even-
tual inconsistencies produced by local modifications
are overwritten by incoming updates (last state update
wins). Nevertheless, generic consistency preservation
in widgets is still an open issue and should be consid-
ered in future research.

3.4 Presence and Awareness

As mentioned earlier, mashup runtime environments
usually keep track of user profiles and mashup mod-
els. To take collaboration sessions with involved users
and mashups into account, we propose to put the list
of mashups shared to a particular user directly into his
profile. While instantiating a certain mashup speci-
fication, runtime environment may check how many
users have requested the same mashup and if they are
still reading/writing the master representation. The
check should result in a list of active collaborators,
which can be displayed to all users to indicate pres-
ence information. The awareness of users about mu-
tual activities should be established by visualizing
their mouse movements and clicks to other users. One
possibility to capture and display the mouse position
is to track the identifier or XPath location of the ele-
ment, where the cursor of a user is currently located
and to propagate this information to other runtime
environments for visualization. The same should be
done for single and double mouse clicks. The method
supports heterogeneous devices with different display
as it doesn’t stick to any absolute coordinates but
rather to the DOM tree. The drawback is, however,
that awareness inside of widgets in isolated security
contexts cannot be established as such widgets hinder
any access to internal mouse interactions.

3.5 Real-time Communication

For the communication of users during development
and usage of mashups, we propose to utilize instant

messaging, audio and video chat facilities. The three
methods have been proven to be highly efficient on
the Web and can be easily integrated into today’s
Web applications using latest HTML5 specifications.
Communication endpoints correspond to browser in-
stances of active collaborators. The functionalities are
accessible on demand using a dedicated control panel
in the mashup runtime environment.

4 REFERENCE ARCHITECTURE

The integration of the above facilities results in a new
updated reference architecture illustrated in the Fig-
ure 2.

The commonAuthentication Manager now keeps
track of shared mashups and takes care of collabo-
ration sessions. TheLocal State Manager observes
changes in mashup structure and listens to notifica-
tions issued by widgets. The data is forwarded to the
Global State Manager, which maintains the master
representation of the shared mashup, performs even-
tual conflict resolution (OT transformations as de-
scribed in section 3.3) and propagates the updates
to other Local State Managers. On receipt,Local
State Managers apply the changes to local mashups
and invoke dedicated IWC primitives to update states
of their widgets. Interactions, which affect neither
mashup nor states of widgets, such as mouse move-
ments, clicks or presence changes, are observed and
visualized in all mashup instances by a dedicated
Awareness Manager. Finally,RTC Manager provides
instant messaging, audio and video chat services to
collaborating participants. Depending on the direc-
tion of communication (uni- or broadcast), messages
and multimedia data are transferred to one or more
mashup runtime environments.

5 IMPLEMENTATION

To demonstrate the proposed concepts we extended
the open source UI mashup platform Apache Rave3

towards real-time collaboration. Apache Rave en-
ables aggregation of W3C and OpenSocial widgets
on one canvas and provides IWC infrastructure based
on OpenAjaxHub4 (choreographed model). Wid-
gets’ source code is deployed to Apache Wookie5,

3http://rave.apache.org
4http://www.openajax.org/member/wiki/

OpenAjaxHub 2.0 Specification
5http://wookie.apache.org

Towards�Real-time�Collaboration�in�User�Interface�Mashups

197



Figure 2: Reference architecture of UI mashups with integrated real-time collaboration facilities.

which enables their instantiation and provides vari-
ous runtime services such as persistence or proxy fa-
cilities. Widgets can autonomously publish and sub-
scribe messages on a shared message bus. With ac-
tivated IWC configuration extension (Tschudnowsky
et al., 2014), mashup designers are able to adjust
IWC using widget isolations and topic blockades.
In its current version, Apache Rave provides only
rudimental collaboration facilities - mashups can be
shared among users, but no real-time synchronization,
awareness or communication services are provided.
Updates to shared mashup instances become visible
only on the next page reload (mashup specification is
used as a master model of mashups). No conflict res-
olution mechanism exists.

The platform has been extended towards the refer-
ence architecture from Section 4 (cf. Figure 3).

Awareness and RTC Manager are implemented
using the TogetherJS6 framework, which also acts
as messaging infrastructure for global state manage-
ment. TogetherJS consists of a JavaScript library and
a messaging server, calledTogetherJS Hub. The de-
cision to use this particular framework was motivated
by the fact, that the framework offered infrastructure,
which could be easily reused and extended towards
the peculiarities of the UI mashup domain.

The client library has been integrated into the
front-end of Apache Rave. Upon loading, all local
mashups connect to the TogetherJS hub and join a
commonsession, which is used to group collaborators
and to broadcast update notifications. Client library
enables message exchange using publish-subscribe
strategy. Local State Managers are implemented as a
set of callback routines, which are invoked on changes

6https://togetherjs.com

to mashup structure, layout and IWC configuration.
These changes and IWC notifications of widgets on
internal updates are recorded and are propagated to
the TogetherJS hub, which routes them to Local State
Managers of shared instances. The updates are then
either applied directly to corresponding local models
or passed to IWC state-update operations of widgets
(cf. Section 3.3). Mouse movements, clicks and pres-
ence changes are tracked and visualized. Real-time
communication facilities include text and audio chat
implemented using WebSockets7 and WebRTC8 pro-
tocols respectively.

Online Demonstration. A demonstration of
the proposed facilities is available at http://vsr.cs.tu-
chemnitz.de/demos/collaborative-ui-mashups.

6 RELATED WORK

A number of frameworks emerged to support integra-
tion of real-time collaboration features into generic
Web applications. The frameworks implement op-
erational transformation (OT) algorithms on various
data structures (text, XML, JSON objects etc.) and
support concurrency control in real-time. ShareJS9,
OpenCoweb10 and Apache Wave11 are some of the
examples of such frameworks. However, peculiari-
ties of application domain should be considered dur-
ing their integration. A generic approach to transform

7http://dev.w3.org/2011/webrtc/editor/webrtc.html
8https://tools.ietf.org/html/rfc6455
9http://sharejs.org

10http://opencoweb.org
11http://incubator.apache.org/wave

ICE-B�2014�-�International�Conference�on�e-Business

198



Figure 3: Integration of real-time collaboration facilities into Apache Rave.

single-user Web applications into multi-user ones is
presented in (Heinrich et al., 2012b). Authors propose
to synchronize multiple copies of Web applications
on the DOM tree level. In (Heinrich et al., 2012a)
the approach is enriched with awareness widgets such
as telepointer or participant list. Though, the pre-
sented solution significantly simplifies implementa-
tion of collaborative applications, it doesn’t consider
synchronization of application-specific Javascript ob-
jects and widget being executed in isolated environ-
ments. A few commercial and open-source projects
integrated real-time collaboration facilities into the re-
spective mashup platforms. Adobe Genesis12 is one
commercial solution based on Adobe Air, which en-
ables composition of widgets (called tiles) and shar-
ing of the resulting view with other users. Liferay13

is an open-source Web-based portal software that can
be extended towards real-time collaboration using the
commercial plugin OpenScape Web Collaboration14.
Due to the lack of information on the internal imple-
mentation, it is difficult to compare or reuse utilized
solutions to the presented problems.

Several research projects attempted integration of
real-time collaboration facilities into UI platforms.
PEUDOM (Matera et al., 2013) is an end-user-
oriented UI mashup platform, which enables collab-
orative composition of widgets. Shared mashups are
synchronized in real-time - both their structure and
widget states. Authors apply a similar synchroniza-

12http://helpx.adobe.com/genesis/topics/getting-
started.html

13www.liferay.com
14http://www.unify.com/us/products-services/unified-

communications/applications/web-collaboration.aspx

tion approach based on explicit widget state exposure.
Similar approach for widgets described on an abstract
level has been considered by (Blichmann et al., 2013).

Fine-grained access control in mashups with real-
time collaboration support has been considered by
Sire et.al. in (Sire et al., 2009). Authors develop a
dedicated specification language and discuss various
use cases. The work doesn’t focus on engineering as-
pects of collaborative mashup platforms, but could be
used in conjunction with the presented work.

In contrast to existing projects, this paper uses
IWC as a mechanism for state observation, propaga-
tion and replay. If widgets support IWC, than the no-
tifications on state changes can be efficiently reused.
The interface requires only minimal changes (new
IWC operations) to incorporate those updates into
widgets of remote mashups. Additionally, this pa-
per considers the problem of keeping mashups in a
consistent state, which arises if users interact with a
mashup simultaneously.

7 CONCLUSIONS AND
OUTLOOK

Collaboration software has been widely applied
within enterprises and on the Web. However, only lit-
tle research can be found within UI mashup domain.
Peculiarities of Web mashups require special consid-
erations of involved data structures and synchroniza-
tion of heterogeneous and secured components. This
paper presented a systematic approach to integrate
real-time collaboration facilities into UI mashup plat-

Towards�Real-time�Collaboration�in�User�Interface�Mashups

199



forms. A conceptual approach including mashup and
widget synchronization algorithms, a reference archi-
tecture and an example implementation were given.
One lesson learned, is that though current technolo-
gies and protocols significantly simplify implementa-
tion of collaborative Web applications, a careful de-
sign is still needed if applied to a concrete domain.
By now, we haven’t found a generic automatic solu-
tion for syncronization of widgets being executed in
secured contextes. As a result widget developers are
required to extend the IWC interface manually. At
least for controlled environments, where source code
of widgets is available, we are exploring application
of automatic source code transformation towards the
extended IWC interface.

A detailed evaluation of the integrated real-time
collaboration facilities is planned. A user study and
performance evaluations should help to assess usabil-
ity and efficiency of the current solution. The per-
formance evaluations should provide data on, how
fast updates are exchanged between mashups and how
many conflicts emerge in practice. The usability study
should unveil, how comfortable users are with the in-
tegrated mechanisms, and if the current tools suffi-
ciently support knowledge exchange and work distri-
bution.

REFERENCES

Aghaee, S. and Pautasso, C. (2013). Live mashup tools:
Challenges and opportunities. San Francisco, CA,
USA.

Blichmann, G., Radeck, C., and Meiner, K. (2013). En-
abling end users to build situational collaborative
mashups at runtime. In8th International Confer-
ence on Internet and Web Applications and Services
(ICIW2013).

Cappiello, C., Daniel, F., Matera, M., Picozzi, M., and
Weiss, M. (2011). Enabling end user development
through mashups: requirements, abstractions and in-
novation toolkits. InProceedings of the Third in-
ternational conference on End-user development, IS-
EUD’11, pages 9–24, Berlin, Heidelberg. Springer-
Verlag.

Ellis, C. A. and Gibbs, S. J. (1989). Concurrency control in
groupware systems.SIGMOD Rec., 18(2):399–407.

Heinrich, M., Grüneberger, F. J., Springer, T., and Gaedke,
M. (2012a). Reusable awareness widgets for collabo-
rative web applications - a non-invasive approach. In
ICWE, pages 1–15.

Heinrich, M., Lehmann, F., Springer, T., and Gaedke, M.
(2012b). Exploiting single-user web applications for
shared editing: a generic transformation approach. In
Mille, A., Gandon, F. L., Misselis, J., Rabinovich,
M., and Staab, S., editors,WWW, pages 1057–1066.
ACM.

Hurwitz, J., Halper, F., and Kaufman, M. (2005). Dash-
boardsenabling insight and action. Technical report,
Hurwitz and Associates.

Lo, J. T. K., Wohlstadter, E., and Mesbah, A. (2013).
Imagen: Runtime migration of browser sessions for
javascript web applications. InProceedings of the
22Nd International Conference on World Wide Web,
WWW ’13, pages 815–826, Republic and Canton of
Geneva, Switzerland. International World Wide Web
Conferences Steering Committee.

Matera, M., Picozzi, M., Pini, M., and Tonazzo, M. (2013).
Peudom: A mashup platform for the end user devel-
opment of common information spaces. In Daniel,
F., Dolog, P., and Li, Q., editors,Web Engineering,
volume 7977 ofLecture Notes in Computer Science,
pages 494–497. Springer Berlin Heidelberg.

OMELETTE Consortium (2013). D2.3 - final specifica-
tion of mashup description language and telco mashup
architecture. Public deliverable, The OMELETTE
Project (FP7/2010-2013 grant agreement n 257635).

Roy Chowdhury, S., Chudnovskyy, O., Niederhausen, M.,
Pietschmann, S., Sharples, P., Daniel, F., and Gaedke,
M. (2013). Complementary assistance mechanisms
for end user mashup composition. InProceedings
of the 22Nd International Conference on World Wide
Web Companion, WWW ’13 Companion, pages 269–
272, Republic and Canton of Geneva, Switzerland.
International World Wide Web Conferences Steering
Committee.

Sire, S., Palmr, M., Bogdanov, E., and Gillet, D. (2009).
Towards collaborative portable web spaces. InSecond
International Workshop on Mashup Personal Learn-
ing Environments (MUPPLE09), pages 80–88.

Tschudnowsky, A., Pietschmann, S., Niederhausen, M., and
Gaedke, M. (2014). Towards awareness and control
in choreographed user interface mashups. InProceed-
ings of the 23nd International Conference on World
Wide Web companion (to appear), WWW 14 Com-
panion.

Wilson, S., Daniel, F., Jugel, U., and Soi, S. (2012). Or-
chestrated user interface mashups using w3c widgets.
In Proceedings of the 11th International Vonference
on Web Engineering, ICWE’11, pages 49–61, Berlin,
Heidelberg. Springer-Verlag.

ICE-B�2014�-�International�Conference�on�e-Business

200


