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Abstract: In this paper the problem of tuning the parameters of the RBF networks by using optimization methods is 
investigated. Two modifications of the classical RBFN, called Reduced and Simplified RBFN are 
introduced and analysed in the paper. They have a smaller number of parameters. Three optimization 
strategies that perform one or two steps for tuning the parameters of the RBFN models are explained and 
investigated in the paper. They use the particle swarm optimization algorithm with constraints. The one-step 
Strategy 3 is a simultaneous optimization of all three groups of parameters, namely the Centers, Widths and 
the Weights of the RBFN. This strategy is used in the paper for performance evaluation of the Reduced and 
Simplified RBFN models. A test 2-dimensional example with high nonlinearity is used to create different 
RBFN models with different number of RBFs. It is shown that the Simplified RBFN models can achieve 
almost the same modelling accuracy as the Reduced RBFN models. This makes the Simplified RBFN 
models a preferable choice as a structure of the RBFN model.  

1 INTRODUCTION 

Radial Basis Function (RBF) Networks have been 
widely used for a long time as a power tool in 
modeling and simulation, because they are proven to 
be universal approximators of nonlinear input-output 
relationships with any complexity (Poggio, Girosi, 
1990; Park, Sandberg, 1993). In fact, the RBF 
Network (RBFN) is a composite multi-input, single 
output model, consisting of a predetermined number 
of N RBFs, each of them performing the role of a 
local model (Pedrycz, Park, Oh, 2008). Then the 
aggregation of all the local models in the form of a 
weighted sum of their output produces the nonlinear 
output of the RBFN.  

There are some important features that make the 
RBF networks diferent from the classical feed 
forward networks, such as the well known 
multilayer perceptron (MLP), often called back-
propagation neural network (Poggio, Girosi, 1990); 
Zhang, Zhang, Lok, Lyu, 2007). The biggest difference 
is  that the RBFN are heterogeneous in parameters. 
In fact they have three different groups of 
parameters, which normally require the use of 
different learning algorithms. This makes the total 

learning process of the RBFN more complex, 
because it is usually done as a sequence of several 
learning steps. This obviously affects the accuracy 
of the produced model. 

In this paper we investigate in details the internal 
structure of the RBFN and propose two 
modifications of the classical RBFN, called Reduced 
and Simplified RBFN. They have smaller number of 
tuning parameters, which makes the learning faster. 
As an universal optimization procedure for tuning all 
three groups of parameters we use in the paper a 
modified version of the classical Particle Swarm 
Optimization (PSO) (Eberhart, Kennedy, 1995) with 
specific constraints for each group of parameters. 
This constrained version produces more plasusible 
solutions of parameters with real physical meaning.  

The rest of the paper is organized as follows. 
Section 2 summarizes the basics of the classical 
RBFN model and Section 3 introduces the Reduced 
and Simplified RBFN wilth smaller number of 
parameters. Section 4 expalinjs three different 
optimization strategies for creating RBFN models 
that use a modification of the PSO algorithm with 
constraints. In Section 5 one-stap  optimization 
strategy is used for tuning the parameters of the 
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Reduced and Simplified RBFN models. Finally, 
Section 6 concludes the paper. 

2 THE CLASSICAL RBF 
NETWORK MODEL  

Our aim is to create a model of a real process 
(system) with K inputs and one output by using a 
collection of M available experiments (input-output 
pairs) in the form: 

1 1{( , ),..., ( , ),..., ( , )}i i M My y yX X X         (1) 

Here 1 2[ , ,..., ]Kx x xX is the vector of all K inputs 

and y  is the respective measured output from the 

process. 
The modelled output, calculated by the RBF 

network is as follows: 

( , )my f X P                             (2) 

Here 1 2[ , ,..., ]Lp p pP is the vector of all L 

parameters included in the RBFN.  
The classical RBFN has a three layer structure, 

namely input layer, hidden layer and output layer as 
shown in Fig. 1.  

 

Figure 1: Structure of the Classical Radial Basis Function 
Network with K inputs and N RBFs.  

Then the modelled output from the RBFN with fixed 
number of N Radial Basis Functions will be:  
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Here , 1, 2,...,iu i N are the outputs of each RBF 

based on its K inputs 
 

and 

, 0,1, 2,...,iw i N are the weights associated with 

the RBFs, including the offset weight 0w  as seen in 

the figure.  
Each RBF is determined in the K-dimensional 

space by two groups (vectors) of parameters, namely 
the center (location) 1 2[ , ,..., ]Kc c cC and the 

width (spread) 1 2[ , ,..., ]K  σ . Then the output 

u of each RBF is calculated as: 
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Figure 2 shows a 3-dimensional plot of one RBF 
calculated by (4) with K=2 inputs and the following 
vectors for the center and width in the input space: 

[0.4,0.6]; [0.10,0.20] C σ .  

 

Figure 2: Example of a RBF with K=2 Inputs, center 
location at [0.4, 0.6] and two different widths: [0.10, 0.20]. 

It is now clear that all parameters form the following 
3 groups in the parameter vector P, namely: Centers, 
Widths and Weights, as follows:   

1 2[ , ,..., ]Lp p p P C σ W             (5) 

 
Then, for a RBFN with K inputs and N RBFs, the 
total number L of the parameters to be tuned will be:  

( 1) 2( ) 1L N K N K N N K N           (6)  

It is obvious that the number of all L parameters will 
rapidly grow with increasing the complexity of the 
RBFN model, i.e. the number of RBFs and the 
number of inputs. This possesses a challenge to the 
selected learning algorithm.  

1 2, ,..., Kx x x
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3 TWO MODIFICATIONS OF 
THE RBF NETWORK MODEL  

In order to reduce the total number L of parameters 
that have to be tuned (optimized), we propose and 
use in this paper two modifications of the classical 
RBFN model from (3) and (4) shown in Fig. 1.  

3.1 The Reduced RBF Network   

The reduction of the number of parameters here is 
achieved by assuming that the RBF has a scalar 
width instead of a K-dimensional vector width 

1 2[ , ,..., ]K  σ as in (4). Then the calculation 

of the output for each RBF is performed according 
to the Euclidean distance between the input vector X 
and the center C of the RBF, as follows: 

2 2

1

exp ( ) (2 ) [0,1]
K

j j
j

u x c 


 
    

 
     (7)      

An example of one RBF with a scalar width 
0.15  and center [0.4,0.6]C  is shown in Fig. 3. 

It is easy to notice the difference in the shape with 
the RBF in Fig. 2.  

 

Figure 3: Example of a RBF with K=2 Inputs, center 
location at [0.4, 0.6] and a single width of 0.15.  

Now the total number L of the parameters in the 
proposed Reduced RBFN is calculated as: 

( 1) 2 1L N K N N N K N              (8)  

3.2 The Simplified RBF Network   

This is a further step in reducing the number L of all 
parameters of the RBF network. Here an assumption 
of one common width  for all N RBFs is made. 
This means that the calculation of each RBF is 
performed by the same equation (7), as in the 

Reduced RBFN, but with one common width  for 
all RBFs. Now the total number L of the parameters 
in the proposed Simplified RBFN will be: 

1 ( 1) 2L N K N N K N              (9)  

The idea of creating a model by the Simplified RBF 
Network is that that all N RBFs will be located (in 
general) at different locations (centers) in the K-
dimensional input space, but will have one common 
width Sigma. Here it could be expected that a large 
number of RBFs will be needed (compared with the 
case of Reduced RBFN) in order to achieve the same 
or similar model accuracy. However this speculation 
needs to be proven experimentally.   

4 OPTIMIZATION STRATEGIES 
FOR PARAMETER TUNING OF 
THE RBF NETWORK MODEL  

Further on we assume that the collection (1) of M 
input-output pairs of experiments is available and 
the structure of the RBFN is fixed prior to the 
learning process. This means that the number N of 
the RBFs is fixed and the structure of the RBFN 
(Classical, Reduced or Simplified) is decided.  

The next step is to tune in off-line mode all L 
parameters (5) of the RBFN model so that to 
minimize a preliminary formulated performance 
index. Since this is a typical supervised learning 
problem, the objective here is to minimize the total 
prediction error (RMSE) by the RBFN model, as 
follows:  

2

1

1
( ) min

M

i im
i

RMSE y y
M 

        (10) 

The problem of tuning (training) the parameters of 
the RBF network is a typical (off-line or online) 
supervised learning problem, which can be solved 
by a nonlinear optimization method. This problem 
has been investigated by many authors for a long 
time by using different algorithms (Musavi, Ahmed, 
Chan, Faris, Hummels, 1992; Yousef, 2005). The 
work presented in this paper is considered as our 
viewpoint and approach to solving the problem.   

As mentioned in Section 2, there are 3 different 
groups of parameters in the RBFN model, namely 
centers, widths and weights, according to the 
notations in (3). The objective of minimizing the 
RMSE in (10) can be achieved by use of different 
learning and optimization strategies. They are 
summarized briefly as follows:  
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Strategy 1. This is a two-step strategy. First the 
vector P of all parameters from (5) is divided into 
two groups: Group1, consisting of the centers C and 
widths   and Group2, consisting of the weights W. 
Then the first step of the Strategy 1 performs 
unsupervised learning algorithm (such as the C-
means clustering algorithm) to find the locations of 
the centers in the input space. Then an approximate 
estimation of the widths is performed as a post-
processing heuristic procedure. The second step is 
an optimization procedure of the Group 3 parameters 
- the weights, according to the criterion in (10).  

Strategy 2. This is another two step strategy. The 
first step performs the same unsupervised clustering 
algorithm, as in Strategy 1, but this time for finding 
the location of the centers only. Then the second 
step performs optimization on the remaining two 
groups or parameters: the widths and the weights.  

Strategy 3. This is a one-step optimization strategy 
that is performed on all three groups of parameters 
in (5), namely the centers, widths and weights.  

It is expected that the Strategy 3 has the potential 
to be the best one, since here all 3 groups of 
parameters are being optimized simultaneously. 
However the actual practical results will strongly 
depend on the quality of the algorithm for 
multidimensional optimization, as well as on the 
proper definition of the boundaries for all three 
groups of parameters.  

The sequel of the paper is focused mainly on the 
use of Strategy 3 for tuning the parameters of the 
Reduced and the Simplified RBFN models and on 
the analysis of their performance. The widely 
popular Particle Swarm Optimization (PSO) (Poli, 
Kennedy, Blackwell, 2007) is used as a basic 
optimization algorithm with some modifications for 
Strategy 3.    

4.1 Basics of the Standard Particle 
Swarm Optimization (PSO) 
Algorithm. 

The PSO belongs to the group of the multi-agent 
optimization algorithms. It uses a heuristics that 
mimics the behaviour of flocks of flying birds 
(particles) in their collective search for a food. The 
main concept of this algorithm is that a single bird 
has no enough power to find the best solution, but in 
cooperation and exchanging information with other 
birds in the neighbourhood the swarm is likely to 
find the best (global) solution. The swarm consists 
of a predetermined number n of particles (birds) that 
perform a limited cooperation at each iteration of the 

search.   
At each iteration the PSO algorithm changes the 

velocity (step) iv and the position ix of the particles 

1, 2,...,i n according to the following equations: 

1

2

(0, ) ( )

(0, ) ( )
i i i i

g i

i i i

 


    

 

 

v v U p x

U p x

x x v

             (11) 

Here (0, )U  is a vector of random numbers 

uniformly distributed in the range [0, ].  At each 

iteration one number is randomly generated for each 
particle. 
  is a component-wise multiplication; 

ip is the coordinate (location) of the personal best 

success of the i-th particle; 

gp  is the coordinate (location) of the global best 

success so far and g is the index of this particle;  
 is the so called “inertia weight”. The introduction 
of this parameter in the main equation (11) is the 
most popular modification of the classical PSO 
algorithm. In fact the inertia weight parameter 
controls the power of the particles during the search. 
In order to make a proper ratio and plausible balance 
between the two stages: exploration and exploitation 
in the search, this coefficient is initially set to a 
relatively high value ( 0.9, 1.0 or higher) and then is 
gradually decreased by each iteration to another, 
lower value (e.g. 0.3). This represents the physical 
meaning of birds being gradually exhausted (tired) 
during search. Most often a predefined linear 
decreasing function is used to change the inertia 
weight.      

Normally the PSO algorithm stops when a given 
criterion, such as maximal fitness or minimal error is 
met. Since it cannot be always guaranteed, in the 
practical implementations of the PSO additional 
safety measure, namely a predetermined number of 
iterations is used to terminate the algorithm.  

4.2 Modified Version of the PSO 
Algorithm with Constraints 

It is important to note that the classical version of 
the PSO does not include constraints (boundaries) on 
the search in the input space. This is because of the 
general assumption that birds are free to explore the 
whole unlimited space so that eventually they can 
find the global optimum. It is clear that the width of 
the exploration area and the exploration success of 
the birds will depend on their current “power”, 
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which is defined by the amount of the velocity (step) 
at the current iteration, according to (11).     

In almost all practical engineering problems it is 
mandatory to impose certain constraints (limits) to 
the parameters of the input space 1 2[ , ,..., ]Kx x x  in 

order to produce an optimal solution with a clear 
physical meaning that can be practically realized. 
Therefore we have made here a slight modification 
in the original version of the PSO algorithm with 
inertia weight in order to consider both constraints 
(minimum and maximum) on the input parameters, as 
follows:     

1min 2min min[ , ,..., ]Kx x x 1max 2max max[ , ,..., ]Kx x x  (12) 

The idea here is very simple, namely the respective 

input parameter from 1 2[ , ,..., ]Kx x x which has 

violated the input space is moved back to its 
boundary value from (11), as follows: 

        min min( )j j j jIF x x THEN x x    and 

  max max( )j j j jIF x x THEN x x  .            (13) 

In such way, at the next iteration a new velocity 
(step) from (11) will be generated that has different 
amount and direction in the input space. As a result 
the particle is likely to escape from being trapped in 
the area beyond the boundary. This of course, could 
take sometimes not one, but a few iterations.   
The next subsection displays some results from the 
performance of the constraint version of the PSO.  

4.3 PSO Performance Evaluation on a 
Test Nonlinear Example 

A highly nonlinear test example with 2 inputs and 
one output is shown in Fig. 4. It was specially 
generated in order to evaluate the performance of the 
PSO algorithm with constraints.  

 
Figure 4: The test nonlinear example used for performance 
evaluation of the PSO algorithm with constraints. 

The example is synthetic and constructed by 
using 3 RBFs with special overlapping, as seen from 
the figure. As a result the response surface (the 
output) has 3 maximums (two local and one global) 
and the value of the global maximum is 0.4.    

The normal range of the input parameters is [0,1] 
and the results from two runs of the PSO algorithm 
with constraints is shown in Fig. 5.  The algorithm 
succeeded to find the global maximum of 0.4 after 
respective corrections in the trajectories at the 
boundary of 

1max 1.0x   according to (13).  

The next Fig. 6 depicts a case of constrained 
optimization, where the PSO algorithm succeeded to 
find a conditional maximum at the “wall” of the 
constraint.   

 
Figure 5: Two different trajectories, produced by two runs 
of the PSO algorithm with constraints at the boundary 1.0 
for finding the global maximum of 0.4.  

 
Figure 6: A conditional maximum found by the PSO with 
constraints at the boundary 0.8 for the input x1.  

The convergence curve for the PSO algorithm, based 
on the test example is shown in Fig. 7. 

 
Figure 7: Convergence curve that shows the performance 
of the PSO algorithm on the test example.  
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5 EXPERIMENTAL RESULTS 
FROM OPTIMIZATION OF 
REDUCED AND SIMPLIFIED 
RBFN MODELS  

5.1 The Experimental Setup 

The main goal in this section is to compare the 
performance of the Reduced RBFN model (Section 
3.1) with the Simplified RBFN model (Section 3.2). 
As seen from (6), (8) and (9), both models have a 
smaller number of parameters, compared with the 
parameters in the classical RBFN from Section 2.  

The comparison was performed on the same 
synthetic test nonlinear example from Fig. 4 that was 
used in Section 4 to evaluate the performance of the 
PSO algorithm with constraints. The difference is 
that now our aim is to create two models, namely 
Reduced RBFN and Simplified RBFN of the same 
2-dimensional process from Fig. 4 by using a given 
set of M input-output experimental data.  

For solving this supervised learning problem, we 
use the one-step Strategy 3, explained in Section 4 
for simultaneous tuning in off-line mode the all 3 
groups of parameters. Here the PSO algorithm with 
constraints from Section 4.2 was used.  

It is seen from (8) and (9) that the Simplified 
RBFN model has smaller number of parameters than 
the Reduced RBFN model. In fact, if the selected 
number of RBFs is N = 8, the Reduced RBFN will 
have L=33 parameters, while the Simplified RBFN 
will need only L=26 parameters for tuning.  

We would like to see whether the Simplified 
RBFN is able to produce a model with a similar 
(without significant deterioration) performance to 
that one of the Reduced RBFN model. A positive 
answer to this question would be beneficial for the 
Simplified RBFN models.   

We use in this paper a set of M=441 uniformly 
distributed experimental data in the two-dimensional 
space [X1, X2] produced by scanning.         

Due to the random nature of the PSO algorithm, 
it cannot be expected that one single run will 
necessarily produce the absolute global optimum. 
Therefore we have performed several (six in this 
paper) runs of the algorithm for the same pre-
selected number N of RBFs. At each run the 
parameters of the PSO algorithm were slightly 
varied. Then the mean value of the RMSE in (10) 
from all six runs was assumed as a final 
representative value of the error for this number N.    

All the experiments were performed separately 
for the Reduced and Simplified RBFN with the 

following numbers of RBFs: N = 3,4,5,6 and 8. The 
constraints imposed to each of the 3 groups of 
parameters in (5) were as follows: 
- The group of Centers: min max0, 1c c  ;   

- The group of Widths: min max0.02, 0.7   ;  

- The group of Weights: min max1, 1w w   . 

The tuning parameters of the PSO algorithm with 
constraints were varied during the multiple runs in 
following ranges:  
- Number of particles:15 40n   ; 

- Number of iterations: 12000 15000MAXIT  ; 

- Acceleration Coefficients: 1 2, [1.8, 2.1]   ;   

- Inertia Weight parameter : linearly decreasing 
from initial values [0.9,1.2]   at the first 

iteration, to [0.3,0.4]  at the last iteration.   

5.2 Experiments with the Reduced 
RBFN Model  

The main results from these experiments are 
displayed in a graphical way in Fig. 8. It is seen 
from the figure that the accuracy of the models is 
steadily improved with increasing the number of the 
RBFs, which is a logical and understandable.   

 

Figure 8: Experimental results obtained from Reduced 
RBFN models with different number of RBFs.  

For one intermediate RBFN model with N=4 and 
respective RMSE=0.0428 the response surface (the 
outputs of the model) is shown in Fig. 9. A visual 
comparison of the shape of this surface with the 
surface for the original process in Fig. 4 reveals 
relatively large difference, i.e. the model is not yet 
suitable for a good prediction.   

The best obtained model is with N=8 RBFs and 
has RMSE = 0.00826. Its response surface is 
displayed in Fig. 10. It is easy to notice that this 
surface practically coincides in shape with the 
surface produced by the original process from Fig. 4.  
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Figure 9: Response surface from the intermediate Reduced 
RBFN model with N = 4 RBFs and RMSE = 0.0428. 

 

Figure 10: Response surface from the best Reduced RBFN 
model with N = 8 RBFs and RMSE = 0.0083.  

The values of all parameters (Centers, Widths and 
Weights) for the best model from Fig. 10, are 
displayed in Fig. 11 and Fig. 12.  

 

Figure 11: The values of the Widths and Weights for the 
best Reduced RBFN model with N=8 RBFs. 

 

Figure 12: Locations of all 8 Centers of the best produced 
Type2 RBFN model with N=8 and RMSE = 0.0083.  

From Fig. 12 it is seen that some of the centers 
are placed at the boundaries of the input space and 
some others have insignificant widths (closer to 
zero). This shows that there is a redundancy in the 
number of the parameters or in the number of the 
RBFs.  

The convergence curve for the best Reduced 
RBFN model is shown in Fig. 15.  

 

Figure 13: Convergence curve for the PSO algorithm with 
constraints in the case of the best model with N=8 RBFs.  

5.3 Experiments with the Simplified 
RBFN Model  

The same structure of the experiments for the 
Reduced RBFN was used for producing the results 
for the Simplified RBFN models. The results with 
the respective RMSE of all the Simplified RBFN 
models are shown in Fig. 14 and the parameters of 
the best model with N=8 and RMSE=0.0104 are 
shown in Fig. 15 and Fig. 16.  Note that the 
Simplified RBFN model has one common width 
Sigma for all RBFs, with an optimal value of 
0.1494.   

 

Figure 14: Experimental results obtained from the 
Simplified RBFN models with different number of RBFs. 

The trend in Fig. 14 of a gradual decrease of the 
RMSE with increasing the number of the RBFs is 
similar to the trend shown in Fig. 8 for the Reduced 
RBFN models. Also, a comparison of the values for 
the mean RMSE in both figures reveals that there are 
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similar. Therefore a conclusion could be made that 
the Simplified RBFN model is able to achieve 
almost the same accuracy as the Reduced RBFN 
model, but with smaller number of parameters, 
namely  L=26 versus L=33.    

 

Figure 15: The values of the Weights for the best 
Simplified RBFN model with N=8 RBFs and one common 
Width.  

 

Figure 16: Locations of all 8 Centers of the best 
Simplified RBFN model with N=8 and RMSE = 0.0104.  

It is seen from Fig. 15 and Fig. 16 that RBF1 (shown 
as Center 1 in Fig. 16) is inactive, because its weight 
is zero (as seen from Fig. 15). This is another case of 
redundancy in the parameters (or in the number of 
RBFs) of the model.  

6 CONCLUSIONS 

The investigations in this paper were focused on the 
performance analysis of the RBFN models with two 
slightly different structures, namely the Reduced 
RBFN and Simplified RBFN models.  

One of the three optimization strategies 
explained in this paper is the one-step Strategy3, 
which optimizes simultaneously all three groups of 
parameters, namely the Centers of the RBFs, their 
Widths and the Weights. A modified version of the 
PSO algorithm with constraints was used for tuning 
the parameters of both Reduced and Simplified 
RBFN models on a test nonlinear example with 

different number of the RBFs.  
 

The Simplified RBFN model has the smallest 
number of parameters, because it uses one common 
width for all RBFs, unlike the Reduced RBFN 
model that uses different widths for the RBFs.   

The simulation results have shown that despite 
the smaller number of parameters, the Simplified 
RBFN models are able to achieve almost the same 
accuracy, as the Reduced RBFN models.  Therefore 
the Simplified RBFN could be the preferable choice 
for creating RBFN models.  

The further research is focused on solving 
another optimization problem such as the optimal 
selection of the RBF units used in creating the 
RBFN models.    
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