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Abstract: In this paper, we propose a non-parametric and noise resilient graph-based classification algorithm. In 
designing the proposed method, we represent each class of dataset as a set of sub-graphs. The main part of 
the training phase is how to build the classification graph based on the non-parametric k-associated optimal 
graph algorithm which is an extension of the parametric k-associated graph algorithm. In this paper, we 
propose a new extension and modification of the training phase of the k-associated optimal graph algorithm. 
We compare the modified version of the k-associated optimal graph (MKAOG) algorithm with the original 
k-associated optimal graph algorithm (KAOG). The experimental results demonstrate superior performance 
of our proposed method in the presence of different levels of noise on various datasets from the UCI 
repository. 

1 INTRODUCTION 

Graph structure has been used in machine learning 
to deal with different tasks such as clustering, 
classification and feature reduction (Belkin 2003, 
Vathy 2009, Dhanjala 2014). Graph representation 
has some specific characteristics. It can present the 
topological structure of the data. It can also propose 
a hierarchical structure by presenting a graph as a set 
of sub-graphs and it presents an arbitrary shape for a 
class or a cluster. This is why the graph structure has 
attracted a lot of attention in machine learning. 
Perhaps, graph clustering is the most important 
application of graph structure as it is able to extract 
the arbitrary and unknown shape of clusters 
(Dhanjala 2014, Jun 2014). Semi supervised 
learning is another application of graph structure 
(Zhu 2008, Chen 2009) in which only a small 
portion of the data is labeled. Based on the labeled 
data, a graph-based classifier is trained and then it 
predicts the label of unlabeled part of the data. The 
newly labeled data now can be added to the former 
labeled data to retrain the classifier and improve the 
model accuracy. Classification is another application 
of graph structure which has not been receiving 
much attention in comparison with graph clustering 
and semi supervised learning. The graph 
classification problem can be discussed in two 
different ways. The first one is about learning to 

classify separate, individual graphs in a graph 
database into two or more categories (Ketkar 2009).  

The other application is how to represent a vector 
dataset as a set of sub-graphs, each of which 
illustrates a class of training dataset. In other words, 
a graph-based classifier consists of some sub-graphs 
representing the training dataset.  

A number of algorithms have been introduced 
for building the set of sub-graphs for an input 
training dataset (Bertini Jr. et al 2011, Chatterjee 
2012, Marios 2011). In this paper, we focus on the 
later application of graph classification for machine 
learning. 

In (Bertini Jr. et al 2011), the authors propose a 
classifier based on K-associated graph which 
presents each class of data as a set of sub-graphs 
(components). Their proposed method is a non-
parametric algorithm contrasting to K-nearest 
neighbor classifier, no need for model selection, 
does not consider relational data and neither makes 
use of graph kernel nor Laplacian. They also 
introduced a new concept, called purity, which 
measures the connectivity level of samples in each 
component. The output of the proposed method is K-
Associated Optimal Graph (KAOG), based on K-
associated graph algorithm (KAG). The detail of the 
K-Associated Optimal Graph and K-associated 
graph algorithms is presented in sections 2.1 and 2.2. 
In this research, we modify the training phase of the 
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KAOG algorithm, and propose a modified graph-
based classifier which is more noise resilient than 
the KAOG.  

The rest of the paper is organized as follows: in 
the next section, we present an overview on graph-
based classifiers and relational data followed by 
explaining the KAOG algorithm. In section 3, we 
introduce the proposed algorithm. Section 4, is the 
experimental results and finally the last section is the 
conclusion. 

2 GRAPH CLASSIFICATION AND 
RELATIONAL DATA 

The problem of graph classification was first studied 
by (Gonzalez 2002) as a greedy method for finding a 
sub-graph. In (Deshpande 2005), the authors resented 
a graph classification algorithm that uses frequent 
sub-graph discovery algorithms to find all 
topological substructures in the dataset. By using 
highly efficient frequent sub-graph discovery 
algorithms, they reduced the computational 
complexity of the proposed algorithm based on 
which they were able to select the most 
discriminative sub-graph candidate to improve the 
accuracy of the classifier. Chatterjee and Raghavan 
in (Chatterjee 2012) proposed a data transformation 
algorithm to improve the accuracy of two classifiers 
(LD and SVM). First, they employed a similarity 
graph neighbourhoods (SGN) in the training feature 
subspace and mapped the input dataset by 
determining displacements for each entity and then 
trained a classifier on the transferred data. On the 
other hand, there are some applications which use 
the graph structure directly as a classifier (Bertini Jr. 
et al 2011). 

In this paper, we combine the idea of relational 
data and graph classification to improve the 
accuracy of the KAOG classifier in the presence of 
noise. Since we compare the proposed method with 
KAOG algorithm, in the next sub-section, we 
explain the main concept and functionality of the 
KAOG algorithm. The main core of the KOAG 
algorithm is K-associated graph (KAG) which builds 
a graph for an input parameter K. KAG is explained 
in the following section. 

2.1 Constructing the K-associated 
Graph (KAG) 

The following (Algorithm 1) illustrates the K-
associated graph construction phase in which a 

graph is built based on a fix value of K. 

Algorithm 1. Constructing the K-associated graph 
from a data set (Bertini Jr. et al 2011) 

Input: A constant K and a data set X = {(x1, c1), . . . 
, (xi, ci), . . . , (xN,cN)} 
Symbols: Dvi ;K is the label-dependent K-
neighborhood set of vertex vi 
findComponents( ) is a function that returns the 
components of a giving graph; 
purity( ) is a function that calculates the purity 
measure; 

ܥ :1 ← ∅ 
ሺሻܩ :2 ← ∅ 
3: for all ݒܸ߳ do 
4: 			∆௩,← ሼݒ|ݒ߳Λ௩ೕ,	ܽ݊݀	 ܿ ൌ ܿሽ 

ܧ			 :5 ← ܧ ∪ ൛݁ห ܸ	߳Δ௩,ሽ 
6: end for 
ܥ :7 ← ,ሺܸݏݐ݊݁݊݉ܥ݂݀݊݅  ሻܧ
8: for all ܥఈ߳ܥ do 
9: 				߶ఈ ←  ఈሻܥሺ	ݕݐ݅ݎݑ
ሺሻܩ		 :10 ← ሺሻܩ 	∪ ሼሺܥఈሺܸ`, ;ሻ`ܧ ∅ఈሻሽ 
11: end for 
12: Output: The K-associated graph ܩሺሻ ൌ

ሼܥଵ,… , …,ఈܥ , ఈܥ ோሽ where componentܥ ൌ
ሺܩ`ሺܸ`, ;ሻ`ܧ ߶ఈሻ and ߶ఈ represents the purity of ܥఈ 

 

The input of the KAG training phase is a 
constant value K and the training dataset X, in which 
xi shows the ith sample of the training set and ci 
shows the corresponding label. 

Basically, the KAOG algorithm consists of three 
main parts. In the first part, for each vertex vi, based 
on the input K, the k nearest neighbours of vi is 
calculated (Λ௩ೕ,). In the next step, from Λ௩ೕ,, the 

samples which have the same label as vi are selected 
as Δ௩, 

Based on the∆௩,, some edges are built, starting 
at vi and ending at ∆௩, members. 

In the next step, the findcomponent(V,E) 
function is responsible for finding the components 
(sub-graphs) which are built in previous step. Each 
component consists of some samples from the same 
class which form a component. Each class may have 
some components which are not connected to each 
other. In this function, V is the vertices of the graph 
and E is the edges that are generated in previous 
step.  

In last step, based on Equations (1) and (2) the 
purity measure for each component is calculated. 
The purity measure illustrates how members of a 
component are well connected to each other. 

ఈܦ ൌ
1

ఈܰ
 ሺ݀݅

݅݊  ݀݅
ሻݐݑ

ߙܿ߳݅ݒ

 (1)
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In this equation Cα shows a component, vi is a 
vertex which belongs to Cα, di

in shows the number of 
edges in Cα which start from vi (in degree), di

out is the 
number of edges in Cα which end to vi (out degree) 
and Nα is the number of vertices in Cα. Dα shows the 
average degree for Cα and more value shows the 
more number of connections and edges in the 
component. Based on Dα, the purity measure is 
calculated. Equation (2) illustrates the calculation of 
the purity measure for the current component. 

߶ఈ ൌ
ఈܦ
ܭ2

 (2)

The maximum value for ߶ఈis one and the minimum 
value is zero. The value one shows that the 
component is fully connected and all the vertices are 
connected to each other. On the other side, the value 
zero shows a distinct vertex which is not connected 
to any other vertices. The more value of ߶ఈ, the 
better and more well-connected component. 

As K is the input parameter of KAG algorithm, 
the KAG is a parametric algorithm. In the next 
section, the K-associated optimal graph (KAOG) 
algorithm is described. KAOG is a non-parametric 
algorithm. 

2.2 Constructing the K-associated 
Optimal Graph -KAOG 

KAG algorithm constructs a K-associated graph, 
based on a given input K consisting of some sub- 
graphs called components. The components 
constructed using a specific value of K can be 
different from the ones built by another value of K. 
As the components play a key role in classification 
task, the accuracy and the performance of the 
classification task may different. 

KAOG starts building the components based on 
the value of K=1 and increase the value of K for the 
components as long as the increment causes a better 
value for purity. Algorithm (2) shows the process in 
details. 

Algorithm 2. Constructing the K-associated 
optimal graph from a data set (Bertini Jr. et al 2011) 

Input: Data set X = {(x1, c1), . . . , (xi, ci), . . . , 
(xN,cN)} 
Symbols: Kac( ) function that creates the K-
associated graph (Algorithm 1) 

ܭ :1 ← 1 
௧ܩ :2 ← ,ሺܺܿܽܭ  ሻܭ
3: repeat 
4: 			lastAvgDegre ←  ሺሻܦ
5: 			݇ ← ݇  1 
ሺሻܩ :6 ← ,ሺܺܿܽܭ  ሻܭ

7: for all ܥఉ
ሺሻ ⊂  ሺሻ doܩ

8:    if(Φβ
(K) ≥ Φα

(opt)) for all Cα
(opt) ⊆ Φα

(opt)  then 
ሺ௧ሻܩ           :9 ← ሺ௧ሻܩ െ∪

ഀ
ሺሻ⊆ഁ

ሺೖሻ ఈܥ
ሺ௧ሻ 

ሺ௧ሻܩ          :10 ← ሺ௧ሻܩ ∪ ሼܥఉ
ሺሻሽ 

11:   end if 
12: end for 
11: until ܦሺሻ െ ݁݁ݎ݃݁ܦ݃ݒܣݐݏ݈ܽ ൏  ܭ/ሺሻܦ
12: Output: The K-associated optimal graph 

ሺ௧ሻܩ ൌ ሼܥଵ
ሺ௧ሻ, … , ఈܥ

ሺ௧ሻ, … , ோܥ
ሺ௧ሻሽ where 

component ܥఈ
ሺ௧ሻ ൌ ሺܩ`ሺܸ`, ;ሻ`ܧ ߶ఈ, ݇ఈሻ  

The only input for KAOG is the dataset and the 
output is the optimal graph consisting of a number of 
components (Cα

(opt)). Each component is a sub-graph 
built based on a value of K. This means that 
different components may have different values of 
K. The KAOG algorithm is described in (Bertini Jr. 
et al 2011) with more details. In our work, we 
modified the training phase and proposed Modified 
K-Association Optimal Graph (MKAOG). The next 
section presents the modified training phase in 
details. 

3 THE PROPOSED 
GRAPH-BASED CLASSIFIER 

The basis of the proposed method lies on 
representing the training set as a graph which 
consists of a number of components (sub-graphs). 
Each component is formed based on a subset of 
samples which are in the same class. In this section, 
we describe the modification applied on the original 
KAOG method to propose a new version of KAOG 
algorithm in the training phase, followed by a 
description of how the proposed classifier copes 
with the labelling process. Like any graph 
classification methods, MKAOG has two phases, 
building the graph based on the training samples 
(lies on KAOG) and assigning a label to each test 
sample.  

3.1 The Modified Training Phase 
of KAOG (MKAOG) 

Algorithm 2 starts with K=1 for all components. By 
increasing the value of K, some components are 
merged together generating a new component with a 
higher value of K. There is a condition based on 
which the new component is built by combining the 
old ones. The condition is explained in Algorithm 2, 
line 8, indicating that by adding the value of K, 
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some components from the same class tent to merge 
into a larger component. The newly built component 
has a new purity measure. If the purity of the new 
component is greater or equal to the purity of each 
component combined (which are now subset of the 
new component), then the old components can 
merge together. Otherwise the merging does not 
proceed. This condition cannot be satisfied in many 
situations. Figure (1) shows a syntactic but very 
close to a real situation in many datasets. 

 

Figure 1: The components which are not allowed to be 
merged with each other in KAOG. 

As shown in Figure (1), the samples indicated by 
“circle” come from the same class, based on which 
four components are built (C1, C2, C3, C4). The value 
of K for this figure is 3. The purity measure for C1 is 
1 as all the samples in this component are connected 
to each other with in and out degree of 3. The other 
components have the purity value of 0.88 because 
some samples connect to the samples from the other 
class. A purity value of 0.88 indicates that the 
majority of samples in the components are well-
connected to each other. These components are 
potentially good candidates to connect to each other 
and create a larger component. But based on 
Algorithm 2 and its merging condition (line 8), it is 
impossible to merge these components because C1, 
with purity measure of 1, cannot be merged with any 
other components which have the purity measure 
lower than one (such as the one with purity measure 
of 0.88). This is why the algorithm does not permit 
the components to be merged. 

Based on our experiments with real datasets, 
there are too many small components which are not 
allowed to be merged with each other. Even for 
small datasets like Iris, there are 16 components 
most of which are small and consist of only two or 
three samples. In our proposed modification, we 
change the merging condition and replace line 8 in 
algorithm 2 with the following condition: 

If (∅ࢼ
ሺࡷሻ 



ࡺ
ࢻ∅∑

ሺ࢚ሻ) for all ࢻ
ሺ࢚ሻ ⊆ ࢼ

ሺሻ 

This means that if the purity measure of the newly 
merged component is higher than the average of the 
purity measure for all the components participating 
in the current merging process, then the component 
is allowed to be merged. 
By applying the proposed new condition, the four 
components in figure (1) have the chance to be 
merged with each other as shown in Figure (2). 

 

Figure 2: The components merged based on the modified 
(MKAOG) algorithm. 

The purity of the final component is 0.93 which is a 
high level of purity. Also, all the samples are 
presented as one component. By merging the small 
components, the proposed method is less sensitive to 
the input noise. In the section on experimental 
results, we demonstrate that the proposed method is 
less sensitive to noise in comparison with the 
original KAOG algorithm. 

4 EXPERIMENTAL RESULTS  

In this section, we evaluate the proposed MKAOG 
method on various datasets including some well-
known datasets from the UCI repository. Table (1) 
shows the details of the datasets. 

Table 1: Summary of the datasets. 

Dataset 
Number of 

features 
Number of 
Samples 

Iris 4 150 
Wine 13 178 
Glass 9 223 
Ecoli 7 327 

Ionosphere 34 351 
Diabet 8 768 

For evaluating the proposed method, we consider the 
number of components, correct detection rate, 
standard deviation (SD) and t-Test criteria to 
examine whether the improvements are significant 
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or not. Also, to demonstrate that our proposed 
method is less sensitive to noise compared to the 
original KAOG algorithm, we evaluate the algorithm 
efficiency in the presence of different levels of 
noise. 

4.1 The Number of Components 

In this section we compare the proposed MKAOG 
method with the KAOG in terms of the number of 
components. Table (2) shows the result of this 
experiment. 

Table 2: Number of components for KAOG and MKAOG. 

Dataset name 
No. Component – 

KAOG 
No. Components – 

MKAOG 

Iris 16 7 

Wine 29 25 

Glass 38 29 

Ecoli 50 15 

Ionosphere 34 17 

Diabet 126 65 

As shown in Table (2), the number of components 
for MKAOG is always less than that of KAOG. In 
the case of Ecoli and Diabet datasets, the difference 
is much more significant than the other cases. In the 
case of Wine, they are almost the same. For the Iris 
dataset, the number of components for MKAOG is 
less than half of the number of components for 
KAOG. The values reported in this table are the 
average of 30 different independent runs which are 
rounded up to the nearest integer value. The lower 
number of components indicates existence of larger 
components, which means less sensitivity to noise. 
Next, we evaluate the proposed method based on the 
correct detection rate and standard deviation (SD). 

4.2 The Correct Detection Rate and 
t-Test 

In this section, we evaluate the correct recognition 
rate of the MKAOG algorithm, and compare the 
results with the ones for the KAOG. Table (3) shows 
the results of the experiment on different datasets. 
Each number in the tables is the average of 30 
different independent runs. We also used t-Test to 
illustrate whether the improvement is significant or 
not. Table (3) shows the results on Iris, Wine and 
Glass datasets. For each level of noise, there is an 
associated t-Test result. A t-Test value of “one” 
indicates a significant difference between the 
accuracy and SD of KAOG and MKAOG. In such 
cases, the method with higher accuracy outperforms 

the other one. A t-Test value of “zero” indicates that 
the difference between the two methods is not 
significant, and they are almost the same.  
In addition to the original datasets, we also 
generated three modified datasets with adding three 
different levels of noise, 5%, 10% and 20%. The 
modified (i.e. noisy) datasets were generated by 
randomly changing the class of samples in the 
training dataset. 

Table 3: The Accuracy and associated t-Test for the 
KAOG and MKAOG methods in presence of different 
levels of noise in Iris, Wine and Glass datasets. 

Dataset 
Noise 
level 

 Accuracy SD 
t-

Test 

Iris 

0% 
KAOG 94.8444 3.0111 

0 
MKAOG 94.8224 3.007 

5% 
KAOG 89.4 4.8917 

0 
MKAOG 92.5176 3.927 

10% 
KAOG 83.9778 5.775 

1 
MKAOG 90.3474 4.5117 

20% 
KAOG 74.3111 7.6219 

1 
MKAOG 83.5119 6.974 

Wine 

0% 
KAOG 85.5472 4.0341 

0 
MKAOG 86.5471 3.7573 

5% 
KAOG 83.717 5.6052 

1 
MKAOG 85.3047 4.0434 

10% 
KAOG 72.0189 5.9485 

1 
MKAOG 77.7547 5.8232 

20% 
KAOG 68.0566 7.2052 

1 
MKAOG 71.7547 6.8851 

Glass 

0% 
KAOG 69.4478 4.3607 

0 
MKAOG 69.434 4.3587 

5% 
KAOG 66.8955 5.7762 

0 
MKAOG 68.0215 5.2685 

10% 
KAOG 63.2463 6.1238 

1 
MKAOG 64.4925 5.1054 

20% 
KAOG 58.6269 6.5044 

1 
MKAOG 61.5794 6.0127 

The accuracy of the MKAOG is higher than that of 
KAOG most of the time, and the standard deviation 
for 30 different runs is always lower than that of 
KAOG. Moreover, when the level of noise is 
increased, the difference between the two methods is 
more significant. Additionally, t-Test measurement 
shows that, while on the original iris dataset (without 
any noise) the difference is not significant, but by 
adding noise to the training set, the t-Test indicates a 
significant difference between the KAOG and 
MKAOG results. This confirms the proposed 
method is less sensitive to the input noise than the 
KAOG. For the original Glass dataset and the one 
with 5% noise, the improvement is not significant. 
However, with increasing the level of noise, the 
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difference between the correct detection rates is 
obvious, and the t-Test confirms this improvement. 
This illustrates that even if the performance of 
KAOG and MKAOG on the original dataset is the 
same, however, by adding noise to the dataset, the 
difference between the two methods becomes more 
significant, as the MKAOG is much more resilient to 
noise  

5 CONCLUSIONS 

In this paper, we proposed a non-parametric and 
noise resilient classification algorithm based on the 
graph structure. Our proposed algorithm consists of 
a modification of the training phase of the KAOG 
algorithm. The MKAOG method produces less 
number of components, which makes it a robust 
algorithm in the presence of different level of noise. 
We evaluated the proposed method on various 
datasets from the UCI repository. The experimental 
results demonstrate that the proposed algorithm has 
high correct detection rate (accuracy), while 
exhibiting robustness in the presence of of noise. 
MKAOG outperforms KAOG in terms of accuracy. 
The t-Test evaluation confirms that the difference 
between accuracies of MAKOG and KAOG is 
significant. 
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