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Abstract: In this paper we consider a vibrational percussion system described by a one-dimensional hyperbolic partial
differential equation with boundary dissipation at one extremity and a normal compliance contact condition at
the other extremity. Firstly, we obtain the mathematical model using theCalculus of variationsand we prove
the existence of weak solutions. Secondly, we focus on the numerical approximation of solutions by using a
neuromathematics approach – a well-structured numerical technique which combines a specific approach of
Method of Lines with the paradigm of Cellular Neural Networks. Our technique ensures from the beginning
the requirements for convergence and stability preservation of the initial problem and, exploiting the local con-
nectivity of the approximating system, leads to a low computational effort. A comprehensive set of numerical
simulations, considering both contact and non-contact cases, ends the contribution.

1 INTRODUCTION

The purpose of the paper is twofold. Firstly, we
verify, on a new mathematical model fromCon-
tact Mechanics, a well-structured technique for solv-
ing hyperbolic partial differential equations (hPDEs),
by using Method of Lines(MoL) combined with
the features and flexibility ofCellular Neural Net-
works(CNNs) – nonlinear processing devices having
a large amount of applications from image processing
to numerical solving of differential equations. This
is a neuromathematics approach, i.e., according to
(Galushkin, 2010), an approach used for solving both
non-formalized (or weakly formalized) and formal-
ized problems using the neural networks paradigm.

Our approach addresses the formalized-type prob-
lems where the structure of the neural network is
based only on the “natural parallelism” of the problem
itself and does not need a learning process based on
experimental data. We have already successfully ap-
plied our technique for the overhead crane with non-
homogeneous cable (Danciu, 2013a), the torsional
stick slip oscillations in oilwell drillstrings (Danciu,
2013b) and the controlled flexible arm of an ocean
vessel riser (Danciu and Răsvan, 2014).

It is assumed that our method is even more effec-

tive for high dimensions, where the well-organized
technique may have the following advantages: a) ac-
curacy (for example, fewer rounding errors), b) ro-
bustness to ill numerical conditioning and c) use of
existing high-performance software for solving ordi-
nary differential equations (ODEs).

Secondly, we study a particular robotic system of
type vibrational percussion system, which is mod-
elled by a one-dimensional hPDE with a dissipative
boundary condition at one extremity and a contact
nonlinear phenomenon at the other extremity. The
study concerns mathematical modelling of the sys-
tem, existence of the weak solutions for the hPDE
problem, numerical approximation and asymptotic
behavior. The problem can be viewed as a structure
with nonlinear feedback and reference signal. From
the mathematical point of view, the main difficulties
reside in the nonlinearity of the problem, the lack of a
regularization effect of solutions, possibly the effects
of discretization on the dissipative mechanism.

The rest of paper is organized as follows. Sec-
tion 2 deals with mathematical modelling of the sys-
tem via Calculus of variation methods. Section 3 fo-
cuses on the study of the existence of weak solutions
for the hPDE problem, whereas Section 4 is devoted
to numerical approximation of the solution. We im-
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Figure 1: Elastic rod with boundary conditions: 1) a dash-
pot and time-varying external force atx = 0 and 2) a de-
formable obstacle with normal compliance and initial gap
at x= L.

plement the approximating system of ODEs by using
the CNN paradigm in order to exploit the regularity,
parallelism and matrix sparsity of the new problem.
The section provides a comprehensive set of numer-
ical simulations, considering both contact and non-
contact cases. Concluding remarks end the paper.

2 THE MATHEMATICAL MODEL

We consider an elastic rod with a dashpot attached to
the left endx= 0. At the opposite extremityx= L the
rod can come in contact with a deformable obstacle
with normal compliance of stiffness1ε , ε > 0. The ob-
stacle is located at a distancel (often called the initial
gap) to the right of the pointx = L. The rod is sub-
jected to a body force of densityf in thex-direction
and to an external forceg(t) which acts at the extrem-
ity x= 0 as shown in Figure 1

In order to obtain the mathematical model, we use
theCalculus of variationmethods. For our case, the
kineticEk and the potentialEp energies are

Ek(t) =
1
2

∫ L

0
ρ(x)A(x)u̇2(t,x)dx

Ep(t) =
1
2

∫ L

0
A(x)σ2(t,x)dx.

(1)

Herein, u represents the longitudinal displacement;
the internal longitudinal force in the rod is given by
σ(x) = Eux(t,x) whereE > 0 represents the Young
modulus of the material;ρ is the density of the ma-
terial; A is the cross-sectional area of the rod. In (1)
and in the sequel ˙u denotes the first time derivative
of u andux denotes the first derivative with respect to
space variablex. Taking into consideration the dissi-
pative forces due to viscous friction at both extrem-
ities of the rodh0(t), h1(t), the external forceg(t)
and the axial force of density along the rodf (t,x),

the workWm done by these forces is

Wm(t) = h0(t)u(t,0)+g(t)u(t,0)+h1(t)(u(t,L)− l)

+

∫ 1

0
f (t,x)u(t,x)dx.

(2)
Consider the functional associated to the Hamilton
variational principle

I(t1, t2) =
∫ t2

t1
(Ek(t)−Ep(t)+Wm(t))dt (3)

with arbitraryt1, t2 and introduce the standard Euler-
Lagrange variations

u(t,x) = ū(t,x)+ ςµ(t,x) (4)

whereū(t,x) is the basic trajectory andςµ(t,x) is the
variation of ū(t,x). The condition for the functional
(3) to be minimal along the trajectories of the system
will give, after some lengthy but straightforward ma-
nipulations, the following equations

−ρ(x)A(x) ¨̄u+(A(x)Eūx)x+ f (t,x) = 0

A(0)Eūx(t,0)+h0(t)+g(t) = 0

−A(L)Eūx(t,L)+h1(t) = 0

(5)

At x= L we shall introduce the contact condition, i.e.
the last equation in (5) will be replaced by

Eux(t,L) =−p(u(t,L)− l), t ∈ (0,T), (6)

with function p(·), having the measure unit of stress,
described below in this section. Considering the dis-
sipative force due to the damper, atx = 0, h0(t) =
−kut(t,0) to be in the opposite direction of motion
and, the case of a uniform rod, the equations (5) – (6)
become (with an abuse of notationu := ū)

ρ(x)A(x)ü(t,x)−EA(x)uxx(t,x) = f (t,x)

A(x)Eux(t,0)− ku̇(t,0) =−g(t)

Eux(t,L) =−p(u(t,L)− l)

(7)

ConsideringA(x) = A> 0 andρ(x) = ρ > 0, the
mechanical model leads us to the following boundary
value problem with initial data


























ρü(t,x)−E uxx(t,x) = 1
A f (t,x) x∈ (0,L),

t ∈ (0,T)
AEux(t,0) = ku̇(t,0)−g(t) t ∈ (0,T)
Eux(t,L) =−p(u(t,L)− l) t ∈ (0,T)
u(0,x) = u0(x) x∈ (0,L)
u̇(0,x) = u1(x) x∈ (0,L).

(8)
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where the contact condition is modelled with the fol-
lowing normal compliance function:

p(r) =

{

ε−1r if r ≥ 0
0 if r < 0.

(9)

Herein,ε is the stiffness coefficient. By using thenor-
mal compliance contact condition(6), theunilateral
Signorini’s condition

u(t,L)≤ l , ux(t,L)≤ 0, ux(t,L)(u(t,L)− l) = 0

is relaxed; formally, Signorini’s nonpenetration con-
dition is obtained in the limitε → 0. Thus, the contact
with a rigid obstacle can be viewed as a limit case of
contact with deformable support whose resistance to
compression subsequently increases.

The normal compliance condition was proposed in
(Martins and Oden, 1987) withp(r) = c(r+)m where
c, m > 0 and r+ = max{0, r}. Then it was used in
a large number of publications, see e.g. (Anders-
son, 1991; Andersson, 1995; Han and Sofonea, 2002;
Kikuchi and Oden, 1988; Klarbring and Shillor, 1988;
Klarbring and Shillor, 1991; Rochdi and Sofonea,
1998).

3 EXISTENCE OF SOLUTIONS

This section is devoted to study the existence of weak
solutions of (8) assuming thatf ∈ L2((0,T)× (0,L))
and(u0,u1) ∈V := H1(0,L)×L2(0,L). Without loss
of generality but simplifying the writing everywhere
in this section, we shall setE = 1, k = 1 andρ ≡ 1.
First of all, note that, ifu is a classical solution of (8),
we obtain that, for everyv ∈ H1(0,L), the following
relation holds for almost anyt ∈ [0,T]

〈ü(t),v〉+ 〈ux(t),vx〉+(u̇(t,0)+g(t))v(0)

+ p(u(t,L)− l)v(L) = 〈 f (t),v〉 . (10)

In (10) and in the sequel,〈 , 〉 denotes the inner prod-
uct inL2(0,L). By integrating in time (10), we obtain
that, for almost anyt ∈ [0,T],

〈u̇(t),v〉−
〈

u1,v
〉

+

∫ t

0
〈ux(s),vx〉ds

+ v(0)
∫ t

0
g(s)ds+(u(t,0)−u0(0))v(0)

+ v(L)
∫ t

0
p(u(s,L)− l)ds=

∫ t

0
〈 f (s),v〉ds. (11)

These relations allow us to give the definition of a
weak solution of (8).

DEFINITION 3.1. A function u∈C1([0,T];L2(0,L))∩
C([0,T];H1(0,L)) is a weak solution of(8) if it veri-
fies(11) for any v∈ H1(0,L), u(0) = u0 and u̇(0) =
u1.

Note that a solutionu ∈ C2([0,T];L2(0,T)) ∩
C1([0,T];H1(0,L)) of (11), also verifies (10) and it
is a strong (classical) solution of (8).

The main result of this section is the following.

THEOREM 3.1. Given T> 0, u0 ∈ H1(0,L), u1 ∈
L2(0,L), f ∈ L2((0,T)× (0,L)) and g∈ L2(0,T),
equation(8) has a weak solution (in the sense of Def-
inition 3.1)

u∈C1([0,T];L2(0,L))∩C([0,T];H1(0,L)). (12)

For the proof of Theorem 3.1 we use the well-
known Galerkin method (see, for instance, (Lions,
1969) and (Kim, 1989) where this method is applied
in similar cases). In order to do that, let(wk)k≥1 ⊂
C∞(0,L) be a basis of the spaceL2(0,L). For each
m≥ 1, we define the space

Vm = Span{w1, ...,wm}.
Let us first prove three technical lemmas.

LEMMA 3.1. Let m≥ 1. For any (a0
j )1≤ j≤m ∈ Rm

and (a1
j )1≤ j≤m ∈ Rm, there exists a unique function

um ∈C2([0,T];Vm) which verifies(10) for any v∈Vm
and it is of the form

um(t,x) =
m

∑
j=1

am j(t)wj(x), (13)

with (am j)1≤ j≤m ⊂ C2[0,T], am j(0) = a0
j and

a′m j(0) = a1
j .

Proof. Since any function inC2([0,T];Vm) is of the
form (13) the result follows if we prove that there
exists a unique sequence(am j)1≤ j≤m ⊂ C2[0,T] with
am j(0) = a0

j anda′m j(0) = a1
j such that for each 1≤

i ≤ m we have that

m

∑
j=1

äm j(t)
〈

wj ,wi
〉

+
m

∑
j=1

am j(t)
〈

wj ,x(t),wi,x
〉

+
m

∑
j=1

ȧm j(t)wj(0)wi(0)+g(t)wi(0)

+ p

(

m

∑
j=1

am j(t)wj(L)− l

)

wi(L) = 〈 f (t),wi〉 .

(14)

In order to simplify the writing we introduce the
following notations

A= (A ji )1≤ j ,i≤m = (〈wj ,wi〉)1≤ j ,i≤m ∈ R
2m,

A−1 = (αi j )1≤ j ,i≤m.

Note that, due to the linear independence of the
functions(wj) j≥1 in L2(0,L), the matrixA is invert-
ible. For 1≤ j, i ≤ m we also note

〈wj ,x,wi,x〉= β ji ∈ R, wj (0)wi(0) = γ ji ∈ R,
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Therefore, the system (14) can be rewritten as fol-
lows,

{

ȧm j(t) = bm j(t)
ḃm j(t) = cm j(t)

where

cm j(t) =−
m

∑
i=1

m

∑
k=1

amk(t)α ji βki

−
m

∑
i=1

m

∑
k=1

bmk(t)α ji γki +g(t)
m

∑
i=1

α ji wi(0)

− p

(

m

∑
k=1

amk(t)wk(L)− l

)

m

∑
i=1

α ji wi(L)

+
m

∑
i=1

α ji 〈 f (t),wi〉. (15)

Notice thatc = (cm1,cm2, . . . ,cmm)
∗ ∈ C([0,T];Rm).

Here and in the sequelx∗ denotes the adjoint of the
vectorx.

Let y ∈ C2([0,T];R2m), y = (a,b)∗,
a = (am1,am2, . . . ,amm)

∗ ∈ C([0,T];Rm),
b= (bm1,bm2, . . . ,bmm)

∗ ∈C([0,T];Rm).
The system (14) can be rewritten now as follows.

ẏ(t) = F(y)(t)

where

F : C2([0,T];R2m)→C2([0,T];R2m) F y= (b,c)∗.

The functionF is a Lipschitz continuous one. Indeed,
if we taket ∈ [0,T] we have that

‖(Fy1−Fy2)(t)‖
R2m

≤ k1(‖b1(t)−b2(t)‖Rm + ‖c1(t)− c2(t)‖Rm)

≤ k2(‖b1(t)−b2(t)‖Rm+
m

∑
j=1

|c1
m j(t)− c2

m j(t)|).

(16)

Since

|c1
m j(t)−c2

m j(t)| ≤
m

∑
i,k=1

|a1
mk(t)−a2

mk(t)|α ji βki

+
m

∑
i,k=1

|b1
mk(t)−b2

mk(t)|α ji γki

+

∣

∣

∣

∣

∣

p

(

m

∑
k=1

a1
mk(t)wk(L)− l

)

− p

(

m

∑
k=1

a2
mk(t)wk(L)− l

)
∣

∣

∣

∣

∣

×
m

∑
i=1

α ji wi(L), (17)

asp is a Lipschitz continuous function we deduce
that

|c1
m j(t)− c2

m j(t)| ≤ k3(‖a1(t)−a2(t)‖Rm

+ ‖b1(t)−b2(t)‖Rm). (18)

By (16), (17) and (18) we can write

‖(Fy1−Fy2)(t)‖
R2m

≤ k4(‖a1(t)−a2(t)‖Rm + ‖b1(t)−b2(t)‖Rm)

≤ k5 max
t∈[0,T]

‖y1(t)− y2(t)‖
R2m. (19)

Therefore,

‖Fy1−Fy2‖C([0,T];R2m) ≤ k5‖y1− y2‖C([0,T];R2m).

Since (14) is a system of ordinary differential
equations with a Lipschitz nonlinear term, it fol-
lows that there exists a unique solution(am j)1≤ j≤m⊂
C2[0,T] with am j(0) = a0

j andȧm j(0) = a1
j of (14).

LEMMA 3.2. The sequence(um)m≥1 given by
Lemma 3.1 is uniformly bounded in the space
L∞([0,T];H1(0,L))∩H1([0,T];L2(0,L)).

Proof. Sinceum verifies (10) for anyv∈Vm it follows
that,

〈üm(t),ϕm(t)〉+ 〈um,x(t),ϕm,x(t)〉
+(u̇m(t,0)+g(t))ϕm(t,0)

+ p(um(t,L)− l)ϕm(t,L) = 〈 f (t),ϕm(t)〉 , (20)

for anyϕm ∈C2([0,T];Vm). Now, if we takeϕm = u̇m
in (20) we deduce that

d
dt

(

1
2

∫ L

0
u̇2

m(t,x)dx+
1
2

∫ L

0
u2

m,x(t,x)dx

+
ε
2
(p(um(t,L)− l))2

)

+(u̇m(t,0))2+g(t)u̇m(t,0) = 〈 f (t), u̇m(t)〉.
If we define the energy of the solution by

Em(t) =
1
2

∫ L

0
u̇2

m(t,x)dx+
1
2

∫ L

0
u2

m,x(t,x)dx

+
ε
2
(p(um(t,L)− l))2,

we obtain from the previous relation that

d
dt

Em(t)≤ 〈 f (t), u̇m(t)〉+
1
2

g2(t).

Let t ∈ [0,T]. After integration between 0 andt we
get

Em(t)≤ Em(0)+
∫ t

0

1
2

∫ L

0
u̇2

m(s,x)dxds

+
1
2

∫ t

0
g2(s)ds+

1
2

∫ t

0

∫ L

0
f 2(s,x)dxds

and from this we deduce

Em(t)≤ Em(0)+
1
2

∫ t

0
g2(s)ds
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+
1
2

∫ t

0

∫ L

0
f 2(s,x)dxds+

∫ t

0
Em(s)ds.

By using a Gronwall inequality we can write

Em(t)≤
(

Em(0)+
1
2

∫ t

0
g2(s)ds

+
1
2

∫ t

0

∫ L

0
f 2(s,x)dxds

)

et

≤
(

Em(0)+
1
2

∫ t

0
g2(s)ds

+
1
2

∫ T

0

∫ L

0
f 2(s,x)dxds

)

eT .

Therefore, we have that

∫ L

0
u̇2

m(t,x)dx≤
(

Em(0)+
1
2

∫ t

0
g2(s)ds

+
1
2

∫ T

0

∫ L

0
f 2(s,x)dxds

)

eT ,

∫ L

0
u2

m,x(t,x)dx≤
(

Em(0)+
1
2

∫ t

0
g2(s)ds

+
1
2

∫ T

0

∫ L

0
f 2(s,x)dxds

)

eT .

The required boundedness properties are straight-
forward consequences of the last two inequali-
ties.

LEMMA 3.3. Suppose that

m

∑
j=1

a0
j wj → u0 in H1(0,L) as m→ ∞, (21)

m

∑
j=1

a1
jmwj → u1 in L2(0,L) as m→ ∞. (22)

There exists a subsequence(umk)k≥1 of the sequence
(um)m≥1 given by Lemma 3.1 and a function u∈
C1([0,T];L2(0,L))∩C([0,T];H1(0,L)) such that

umk ⇀
∗ u in L∞([0,T];H1(0,L)) (23)

umk ⇀ u in H1([0,T];L2(0,L)). (24)

Proof. The existence ofu follows from the bounded-
ness properties from Lemma 3.2.

Now we have all the ingredients needed to prove
the main result of this section.

Proof of Theorem 3.1.Let u be the function obtained
in Lemma 3.3. We prove thatu verifies (11). From the
linearity and continuity of the left hand side of (11) in

v∈ H1(0,L), it follows that (11) is equivalent to

〈

u̇(t),wj
〉

−
〈

u1,wj
〉

+
∫ t

0

〈

ux(s),wj ,x
〉

ds

+(u(t,0)−u0(0))wj (0)+g(t)wj(0)

+wj(L)
∫ t

0
p(u(s,L)− l)ds=

∫ t

0

〈

f (s),wj
〉

ds,

(25)

for each j ≥ 1. Now, the fact thatu verifies (25) fol-
lows by taking the limit whenm tends to infinity in
(14), by using the convergence properties (21)-(24)
and by integrating in time from 0 tot.

Finally, we remark that, from (10), the unique-
ness of a classical solutionu∈ C2([0,T];L2(0,T))∩
C1([0,T];H1(0,L)) of (8) can be easily proved. The
uniqueness of a weak solution is more difficult to
show and it will be addressed in a future work.

4 NUMERICAL
APPROXIMATION OF
SOLUTIONS

As Bertrand Russell said, “although this may seem a
paradox, all exact science is dominated by the idea of
approximation”. Numerical approximations are even
more useful for problems which cannot be analyti-
cally solved. In order to numerically solve the mixed
initial boundary value problem for hPDE (8), we con-
sider an approach of Method of Lines which employs
the paradigm of Cellular Neural Networks.

The Method of Lines is a general concept rather
than a specific method and, can be used for solving
hyperbolic PDEs. The overall philosophy is to sep-
arately cope with the space and time discretization.
The first step is to choose an adequate method for dis-
cretizing hPDE with respect to the space variables and
incorporate the boundary conditions. “The spectrum
of this discrete operator is then used as a guide to
choose an appropriate method to integrate the equa-
tions through time” (Hyman, 1979).

4.1 The Approximating System Via
Method of Lines

The main idea of our numerical technique is the fol-
lowing. For the first step of MoL – the discretization
of derivatives with respect to the space coordinates
by taking into account the boundary conditions – we
use an approach which, according to (Halanay and
Răsvan, 1981), ensures for the approximating system
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the requirements for convergence and stability preser-
vation of the initial problem. Subsequently, we derive
the approximated solution by mapping the new prob-
lem – an initial value problem – on an optimal struc-
ture of CNNs. Thus, the parallelism and regularities
of the new problem are better exploited and, choos-
ing an adequate solver from those already existing in
dedicated software packages, the computational effort
and storage can be considerably reduced.

4.1.1 Preliminaries

Consider the hPDE problem (8). We introduce the
new variablesv(t,x) = u̇(t,x) and w(t,x) = ux(t,x)
and write the problem in the Friedrichs form

v̇(t,x)− c2wx(t,x) = 1
ρA f (t,x)

ẇ(t,x)− vx(t,x) = 0
(26)

wherec =
√

E/ρ is the velocity of propagation for
the material of the rod. Note that the system’s matrix

A=

[

0 −c2

−1 0

]

has the eigenvalues±c. Considering, without losing
of the generality of the problem,L = 1, ε = 1, the
boundary conditions (BCs) read as

AEw(t,0)− kv(t,0) =−g(t)

Ew(t,1) =−p(z(t))

z(t) = u(t,1)− l

ż= v(t,1).

(27)

wherez is a new variable.
If data are smooth enough, the initial conditions

(ICs) can be deduced from (8) and have the following
form

w(0,x) = w(t,x) | t=0 = ux(t,x) | t=0 = u0
x(x)

v(0,x) = v(t,x) | t=0 = u̇(t,x) | t=0 = u1(x)

z(0) = u(1,0)− l = u0(1)− l .
(28)

The possible stationary solutions forf (t,x) = 0,
g(t) = 0, p(·) = 0, obtained from (26)–(27) by con-
sidering the time derivatives to be zero, are

v̄= 0, w̄= 0, z̄= u0(1)− l .

Next, we introduce the Riemann invariantsr1 andr2
as

r1(t,x) = v(t,x)− cw(t,x)

r2(t,x) = v(t,x)+ cw(t,x)
(29)

with their transform pair

v(t,x) = 1
2[r1(t,x)+ r2(t,x)]

w(x, t) = 1
2c[−r1(t,x)+ r2(t,x)].

(30)

Thus, we obtained a decoupled PDE system in normal
form

∂r1

∂t
(x, t)+ c · ∂r1

∂x
(x, t) =

1
ρA

f (t,x)

∂r2

∂t
(t,x)− c · ∂r2

∂x
(x, t) =

1
ρA

f (t,x)

(31)

with BCs

r1(t,0) =−a · r2(t,0)+2bg(t)

r2(t,1) = r1(t,1)−2dp(z(t))

z(t) = u(t,1)− l

ż(t) =
1
2
[r1(t,1)+ r2(t,1)]

(32)

and ICs

r1(0,x) = v(0,x)− cw(0,x) = u1(x)− cu0
x(x)

r2(0,x) = v(0,x)+ cw(0,x) = u1(x)+ cu0
x(x)

z(0) = u0(1)− l.
(33)

The notations in (32) are as follows

a=
k−A

√
ρE

k+A
√

ρE
, b=

1
k+A

√
ρE

, d =
1√
ρE

.

4.1.2 The Approximating System of ODEs for
the Initial hPDE Problem

As already said, MoL provides algebraic approxima-
tions for the space derivatives, thus allowing the con-
version of the mixed initial boundary value problem
for hPDE into an initial value problem for a high-
dimensional system of ODEs.

In the sequel we apply the Method of Lines for
the one-dimensional hPDE problem in the normal
form (31)–(32)–(33). Firstly, let us observe from (31)
that r1 represents the forward wave andr2 the back-
ward wave. This information is useful in applying the
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Courant-Isaacson-Rees rule for discretization with re-
spect to the space variablex in order to ensure a good
coupling with the boundary conditions.

Let us discretize the interval[0,1], where x is
defined, with equally spaced points and denoteN –
the number of intervals,h= 1/N – the discretization
step andxi = ih. The approximations for the deriva-
tives with respect to the space variable are performed
according to the above-mentioned Courant-Isaacson-
Rees rule as follows

• the backward Euler scheme – for the forward
waver1(t,x),

• the forward Euler scheme – for the backward
waver2(t,x).

Next, we denote the functions that approximate
the two waves at the discrete pointsxi : ξi

1(t) ≈
r1(ih, t) andξi

2(t) ≈ r2(ih, t), i = 0,N. Without tak-
ing into account the BCs and having the axial force of
density along the rodf (t,x) = 0, we formally obtain
for (31) the following system of ODEs, written in the
normal Cauchy form

ξ̇i
1(t) = sξi−1

1 − sξi
1 , i = 1,N

ξ̇i
2(t) =−sξi

2+ sξi+1
2 , i = 0,N−1

(34)

with s= cN. From (32), the boundary conditions be-
come

ξ0
1(t) =−a ·ξ0

2(t)+2bg(t)

ξN
2 (t) = ξN

1 (t)−2dp(z(t))

ż(t) =
1
2
[ξN

1 (t)+ ξN
2 (t)]

(35)

Substituting (35) in (34), the system of ODEs which
embeds the boundary conditions is

ξ̇1
1(t) =−saξ0

2− sξ1
1+2bg(t)

ξ̇i
1(t) = sξi−1

1 − sξi
1 , i = 2,N

ξ̇i
2(t) =−sξi

2+ sξi+1
2 , i = 0,N−2

ξ̇N−1
2 (t) =−sξN−1

2 + sξN
1 −2sdp(z(t))

ż(t) = ξN
1 −dp(z(t))

(36)

with the initial conditions given by (32)–(33)

ξi
1(0) = u1(xi)− cu0

x(xi) , i = 1,N−1

ξi
2(0) = u1(xi)+ cu0

x(xi) , i = 1,N−1

ξN
1 (0) = u1(1)− cu0

x(1)+2dp(z(0))

ξ0
2(0) =−u1(0)+ cu0

x(0)+
2b
a

g(0)

z(0) = u0(1)− l .

(37)

Thus, the initial problem – described by a one
dimensional hyperbolic partial differential equation
with boundary dissipation at one extremity and a nor-
mal compliance condition at the other extremity – is
converted into the initial value problem (36)–(37). We
emphasize that, if the initial and boundary conditions
are “matched” in (37), each solution of system (36)
approximates the corresponding wave at the discrete
point xi . This is a necessary condition in order to
avoid the propagation of the initial discontinuities.

From the dynamical systems point of view, the ap-
proximating system (36) can be represented as in Fig-
ure 2, i.e. as a structure with nonlinear feedback and
reference signal, more specifically, a feedback con-
nection of the nonlinear blockµ(t) = −p(σ(t)) with
the linear blockL whose dynamics is described by

ẏ(t) = Ay+b1µ(t)+b2g(t)

σ(t) = cTy
(38)

where

yT = [ ξ1
1 . . . ξN

1 ξN−1
2 . . . ξ0

2 z ] (39)

andA is the matrix of the linear block,bT
1 = [−2sd −

d], bT
2 = [2b 0], p(·) is the nonlinear function andg(t)

is a time-varying reference signal.
The linear blockL of the nonlinear system has a

simple zero eigenvalue and all the rest of the eigenval-
ues belong to the left half-plane ofC. The qualitative
analysis of the nonlinear system can be performed via
the approach and methods of absolute stability the-
ory – for instance, by using the Popov frequency do-
main inequalities for the critical case with a simple
zero root.

4.2 The CNN Paradigm for Numerical
Solution of the Approximating
System

Due to the fact that the approximating system of
ODEs displays the usual regularities induced by the
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-

L

p( )

g(t)
 

Figure 2: Structure with nonlinear feedback and reference
signal.

numerical solving of a PDE problem, one can use the
CNN paradigm.

Cellular Neural Networks are artificial recurrent
neural networks displaying local interconnections
among their cells (identical elementary nonlinear dy-
namical systems), feature which makes them desir-
able for processing huge amounts of data even in
VLSI implementation. The key idea of the CNNs
paradigm resides in representing the interactions
among the cells by cloning templates – which can be
either translation-invariant or regularly varying tem-
plates (Chua and Roska, 1993). Let us briefly intro-
duce their basic characteristics. A general form for
the dynamics of a cell in a 2D-array can be described
by (Szolgay et al., 1993), (Gilli et al., 2002)

ẋi j (t) = ∑
k,l∈Nr (i j )

TA
i j ,kl f (xkl)+ ∑

k,l∈Nr (i j )

TB
i j ,klukl

− ∑
k,l∈Nr (i j )

TC
i j ,klxi j + Ii j

(40)
wherexi j is the state variable ofi j th cell, ukl is the in-
put variable from the neighboring cells acting oni j th

cell, Nr(i j ) – ther-neighborhood ofi j th cell, TA
i j ,kl is

the output feedback cloning template,TB
i j ,kl the control

cloning template,TC
i j ,kl is the state feedback cloning

template,Ii j is a bias or a constant or time-dependent
external stimulus. Usually, the nonlinearityf (·) is the
unit bipolar ramp function

f (xi j ) =
1
2
(|xi j +1|− |xi j −1|) (41)

a bounded, nondecreasing and globally Lipschitzian
function, with the Lipschitz constantLi = 1. In
some cases, one can consider only the linear part, i.e.
f (xi j ) = xi j .

The problem of representing PDEs via CNNs led
to more complex forms for cell dynamics, and it
was shown that the flexibility of CNNs allows using
them for different approaches in modelling and solv-
ing problems having some inherent parallelism and
regularities, as it is also the case for PDEs manipula-
tions (op. cit.).

The first step for revealing the one-to-one corre-
spondence between the system of ODEs (36) and a
CNN structure is to reorder the equations in (36) for
identifying the so-called “cloning templates”. For our
problem, we can consider the one-dimensional CNN
with state vector

yT = [ ξ1
1 ξ2

1 . . . ξN
1 ξN−1

2 . . . ξ1
2 ξ0

2 ] (42)

and another simple network with the dynamics

ż(t) = yN + p(z(t)). (43)

This arrangement leads to the following sim-
ple cloning feedback templates for the inner cells
C2 . . .C2N−1:

TA
i = [s 0 0] , TC

i = [0 s 0] , i = 2,2N−1. (44)

If, for further computational and simulation tasks, one
considers in (40)f (xi j ) = xi j , one can introduce a
template in a compact form which embeds the output
feedback templateTA and the decay term templateTC

and reads as

TAC
i = [s − s 0] , i = 2,2N−1. (45)

The dynamics of the inner cells of CNN is given by
the following equations

ẏi(t) =
[

s −s 0
]





yi−1
yi

yi+1



,

i = 2,N ∪ N+2,2N−1

ẏN+1(t) = TAC
N+1 ·yN,N+2+ IN+1(t)

(46)

with IN+1(t) =−2sdp(z(t)).
In the same manner, the dynamics for the corner cells
C1 andC2N is described by

ẏ1(t) =−TC
1 y1+TA

1 y2N + I1(t)

ẏ2N(t) =−TC
2Ny2N +TA

2Ny2N−1

(47)

with TC
1 = TC

2N = TA
2N = s, TA

1 =−sa, I1 = 2bg(t).

If, on the other hand, we consider the closed loop
structure induced by (39), the template (45) is also
valid for i = 2N which is more convenient from the
computational point of view, since there will remain
only 3 entries to be separately specified within the ma-
trix TAC.

Another approach will be to consider the vector
state

Nonlinear�Feedback�Control�and�Artificial�Intelligence�Computational�Methods�applied�to�a�Dissipative�Dynamic�Contact
Problem

535



0

0.5

1

00.511.522.5
x 10

−3

−1.5

−1

−0.5

0

0.5

1

1.5

time [sec]x ∈ [0, 1]

r 1(t
,x

) 
[m

/s
ec

]

Figure 3: 3D representation of the forward waver1(t,x) for
g(t) = 0, f (t,x) = 0 and ICs (50).

yT = [ ξ1
1 ξ2

1 . . . ξN
1 z ξN−1

2 . . . ξ1
2 ξ0

2 ]. (48)

This arrangement will give different output feedback
cloning templateTAC

i and the dynamics for the cells
with nonlinear entries will be described by

ẏN+1(t) =
[

1 −d 0
]





yN
p(yN+1)

yN+2





ẏN+2(t) =
[

s −2sd −s 0 0
]











yN
p(yN+1)

yN+2
yN+3
yN+4











(49)
with TB

N+1 = TB
N+2 = 0, IN+1 = IN+2 = 0.

Let us observe that for the first proposed arrange-
ment, described by the state vector (42), the matrix
for the linear block – the CNN matrix – has the form
of a circulant matrix.

5 SIMULATION RESULTS

The results of the simulations allow us to verify the
efficiency of the numerical technique, to validate the
theoretical results and to understand the physical phe-
nomenon of the propagation of longitudinal vibra-
tions along an elastic rod with boundary constraints
and initial conditions described in (8) and Figure 1.

The simulations were performed for the approxi-
mating system of ODEs (36). The initial value prob-
lem was numerically solved in MATLAB making
use of the CNN structure induced by the state vec-
tor (39). In this manner the interconnection matrix

0
0.5

1
00.511.522.5

x 10
−3

−1.5

−1

−0.5

0

0.5

1

1.5

time [sec]
x ∈ [0, 1]

r 2(t
,x

)[
m

/s
ec

]

Figure 4: 3D representation of the backward waver2(t,x)
for g(t) = 0, f (t,x) = 0 and ICs (50).

TAC was found to be an almost bi-diagonal lower ma-
trix (excepting 2 elements (a1,2N anda2N+1,N)) with
only 3 entries which do not obey the templateTAC

i =
[ s − s 0]. We have taken advantage of this sparsity
property in order to reduce the computational effort
and storage.

For the simulation purpose, we considered the
following values for the parameters:E = 288 ·
106 N/m2, ρ= 8 kg/m3, L= 1 m,A= 0.25·10−4 m2,
l = 1.02 m. For the initial conditions, we have taken
into account the situation suggested in (Timoshenko,
1937): the rod “compressed by forces applied at the
ends, is suddenly released of this compression att =
0”. This led in our case to the following ICs:
{

u0(x) = 1+ e
2 −ex, x∈ [0,1], u1(x) = 0

0, otherwise
(50)

with the unit compressione= 2 · 10−4. For simula-
tions, the space discretization steph= 1/10 was suf-
ficiently small for the convergence of the algorithm
(simulations performed with h=1/200 lead to same re-
sults).

We have selected 8 figures to show the results
of simulations: Figure 3 – Figure 10. Figures 3, 4,
5 present a space-time evolution of the forward and
backward waves, as well as the velocityv(t,x) for the
following case: the external forces are zero, i.e.g(t) =
0, f (t,x) = 0 and the damping factork=2·10−4 (very
small and of the same order as the time constant of the
system). Takingt ≤ 2.5 · 10−3sec, we focus here on
the effects of initial data (50) on the solutions’ evolu-
tion.

Figures 6, 7, 8, 9, 10 focus on the time evolution
of the displacementu(t,x) at the endx= 1 of the rod.
First two plots show the time evolution ofu(t,1) for
g(t) = 0 andk= 2·10−4. One can see that the trajec-
tory starts atu= −10−4 = u0(1) = ξN

1 (0) and the ef-
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Figure 5: 3D representation of the velocityv(t,x) for g(t) =
0, f (t,x) = 0 and ICs (50).
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Figure 6: The approximation of the displacementu(t,x) at
x= 1 for g(t) = 0, k= 2·10−4.

fects of the initial conditions vanish after 7 time con-
stants (the settling time beingts= 1.11·10−3sec). For
this case, the rod does not interact with the obstacle,
the displacement being smaller than the initial gap.

The last three figures show the time evolution of
u(t,1) for a time-varying external stimulusg(t) with
f (t,x) = 0 and different values of the damping coef-
ficient. Figures 8 and 9 correspond to the casez> 0,
i.e. the rod interacts with the obstacle atx= 1. They
reveal the cumulated effects of the initial data, stim-
ulus, the nonlinearityp(·) and of the small damping
coefficient related to the amplitude of the stimulus.
These factors lead to additional oscillating modes and
delay the stabilization.

If, on the other hand, the amplitude of the stimu-
lus is not large enough compared to the damping fac-
tor, z< 0 and the rod does not penetrate the obstacle,
which meansp(z) = 0. As a consequence, the settling
time is short and the movement of the rod is of the
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Figure 7: Zoom-in ofu(1, t) for g(t) = 0 andk = 2·10−4.
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Figure 8: The approximation of the displacementu(t,x) at
x= 1 for g(t) = 2sin4t, k= 2·10−4.

same type as the reference signal,g(t), as it is shown
in Figure 10.

6 CONCLUSIONS

In this paper we have considered aMechanical con-
tact problem of an elastic rod with a dashpot attached
to the left endx = 0 and a deformable obstacle with
normal compliance at the opposite extremityx = L.
The rod was subjected to a body force of densityf
in thex-direction and to an external forceg(t) which
acts at the extremityx = 0. The problem leads to an
one-dimensional hyperbolic equation with boundary
dissipation at one extremity and a regularized con-
tact law at the other extremity. We proved the ex-
istence of weak solutions in the corresponding finite
energy spaceH1(0,L)×L2(0,L). In order to approxi-
mate the solution of the problem we used a numerical
technique based on an approach of Method of Lines
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Figure 9: u(t,x) at x = 1 for N = 10, g(t) = 5sin4t, k =
8·10−4.

which ensures from the beginning the convergence of
the approximation and the preservation of stability of
the initial problem. Taken into consideration that the
conversion of the mixed initial boundary value prob-
lem for hPDE into an initial value problem leads to
a system of ODEs with a large number of equations
and sparse matrix, the numerical implementation and
simulations employed the CNN paradigm in order to
reduce the computational effort. Considering initial
data of the type encountered in engineering applica-
tions, the results of simulations allowed the visual-
ization of some hidden behaviors for small scales of
time, as well as for long-time behavior.
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Lions, J.-L. (1969). Quelques methodes de resolution
des problmes aux limites non lineaires. Dunod et
Gauthier-Villars, Paris.

ICINCO�2014�-�11th�International�Conference�on�Informatics�in�Control,�Automation�and�Robotics

538



Martins, J. A. and Oden, J. T. (1987). Existence and unique-
ness results for dynamic contact problems with non-
linear normal and friction interface laws.Nonlinear
Analysis TMA, (11):407–428.

Rochdi, M. Shillor, M. and Sofonea, M. (1998). Quasistatic
viscoelastic contact with normal compliance and fric-
tion. Journal of Elasticity, (51):105–126.

Szolgay, P., Voros, G., and Eross, G. (1993). On the ap-
plications of the cellular neural network paradigm in
mechanical vibrating systems.IEEE Trans. Circuits
Syst. I, 40(3):222–227.

Timoshenko, S. (1937).Vibration problems in engineering.
D.Van Nostrand Company.

Nonlinear�Feedback�Control�and�Artificial�Intelligence�Computational�Methods�applied�to�a�Dissipative�Dynamic�Contact
Problem

539


