
Identifying Cryptographic Functionality in Android Applic ations

Alexander Oprisnik, Daniel Hein and Peter Teufl
Institute for Applied Information Processing and Communications Graz University of Technology,

Inffeldgasse 16a, 8010 Graz, Austria

Keywords: Mobile Application Security, Machine Learning, Detection of Cryptographic Code, Container Applications,
Password Managers, Data Encryption on Mobile Devices, Semantic Pattern Transformation, Correct Deploy-
ment of Symmetric and Asymmetric Cryptography.

Abstract: Mobile devices in corporate IT infrastructures are frequently used to process security-critical data. Over
the past few years powerful security features have been added to mobile platforms. However, for legal and
organisational reasons it is difficult to pervasively enforce using these features in consumer applications or
Bring-Your-Own-Device (BYOD) scenarios. Thus application developers need to integrate custom imple-
mentations of security features such as encryption in security-critical applications. Our manual analysis of
container applications and password managers has shown that custom implementations of cryptographic func-
tionality often suffer from critical mistakes. During manual analysis, finding the custom cryptographic code
was especially time consuming. Therefore, we present the Semdroid framework for simplifying application
analysis of Android applications. Here, we use Semdroid to apply machine-learning techniques for detecting
non-standard symmetric and asymmetric cryptography implementations. The identified code fragments can
be used as starting points for subsequent manual analysis. Thus manual analysis time is greatly reduced. The
capabilities of Semdroid have been evaluated on 98 password-safe applications downloaded from Google Play.
Our evaluation shows the applicability of Semdroid and its potential to significantly improve future application
analysis processes.

1 INTRODUCTION

Mobile devices1 are becoming an integral part of
all our lives. Mobile devices manage our personal
data, but are also useful for managing work-related
data. Using private devices (Bring Your Own De-
vice (BYOD)) for working with corporate data poses
a security challenge. The security challenge is to pro-
tect the confidentiality and integrity of corporate and
personal data in the face of potentially adverse appli-
cations on the same mobile device, or attackers that
gain physical access to a device. Today’s mobile de-
vices provide a number of security functions help-
ing to overcome this security challenge. These se-
curity functions include application data encryption,
platform encryption, hardware secured key manage-
ment, etc. Unfortunately, using these security func-
tions in a corporate BYOD scenario, or private use
cases, poses two problems.First , the heterogeneity
of employee (privately) owned devices and their vary-
ing platform security functions makes it both hard and

1Referring to current smartphones, phablets and tablets.

expensive to achieve a specific security level. For in-
stance, if an app requires secure storage of crypto-
graphic keys, than this can be implemented differently
on platforms that provide hardware support through
secure elements, than on platforms that lack this fea-
ture.Second, many high quality, hardware supported
security functions can only be used if the user has ac-
tivated the support on her, or his device. For exam-
ple, automatic application data encryption might only
work if the user has set a password for the device.
In a BYOD device scenario the employer – mainly
due to legal reasons – has no handle to enforce poli-
cies on a privately owned device. Therefore, so-called
container applications were created that portably im-
plement the required security functions on different,
heterogeneous mobile devices, while simultaneously
enforcing corporate security policies on the data. The
same problems can also be found in many other appli-
cation types that are used for private and corporate use
cases. A good example for security-relevant applica-
tions are password-managers that face similar prob-
lems as container applications. Due to the uncertain
existence of platform security features, such applica-

151Oprisnik A., Hein D. and Teufl P..
Identifying Cryptographic Functionality in Android Applications.
DOI: 10.5220/0005056301510162
In Proceedings of the 11th International Conference on Security and Cryptography (SECRYPT-2014), pages 151-162
ISBN: 978-989-758-045-1
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)



tions need to implement their own encryption mech-
anisms that are vital for the protection of the pass-
word data stored on the device. Application devel-
opers need to solve two major issues:First , the se-
curity level of platform security functions cannot be
achieved when porting these functions to the applica-
tions. Typically, platform security features have the
advantages of being tightly integrated into the operat-
ing system and have access to platform specific hard-
ware security features like secure elements for storing
cryptographic keys.Second, the requirement to re-
implement these security functions is a further source
for implementation errors that can significantly im-
pact the security of the whole application.

Recently, several research teams (Egele et al.,
2013; Georgiev et al., 2012; Fahl et al., 2012) have
pointed out that security critical code is often incor-
rectly implemented. We manually inspected a num-
ber of security critical apps and concur that crypto-
graphic functions are often either incorrectly imple-
mented, or incorrectly used, or both. Automatically
analyzing the correct use of cryptographic functions is
viable, as demonstrated by (Egele et al., 2013). How-
ever, such methods can only be applied to a priori
known (standard) implementations of cryptographic
functions. We have implemented Semdroid to facil-
itate the analysis of applications using non-standard
implementations of cryptography. Semdroid has been
designed to provide a generic, static analysis tool for
Android applications that can be executed on the de-
vice or on external systems. In the scope of this
work, Semdroid was configured to use various ma-
chine learning techniques for identifying security crit-
ical functions within mobile applications. The main
emphasis is placed on the identification of code that
implements cryptographic functionality, such as sym-
metric/asymmetric key cryptography and hash func-
tions. Apart from the obvious operations related to
data encryption, signature and hash creation, these
operations are also highly relevant in key derivation
functions required by many container applications or
password managers to derive cryptographic keys from
passwords. Further use cases, which have already
been superficially tested but not evaluated, include
the identification of SMS communication channels,
root check functionality and directly identifying cus-
tom key derivation functions, instead of finding cryp-
tographic component functions.

The next section surveys related work and is fol-
lowed by a detailed description of the Semdroid
framework and the techniques it employs. Finally,
the evaluation section evaluates the machine learning
based analysis by an empirical analysis conducted on
popular password-safe applications downloaded from

the Google Play Store.

2 RELATED WORK
Recently, the incorrect use of cryptographic proto-
cols and functionality by application programs has
garnered much attention by researchers. Georgiev
et al. (Georgiev et al., 2012) have demonstrated
that correctly using a well-established end-to-end
security protocol such as Transport Layer Security
(TLS) through equally well-established implementa-
tions thereof is a challenging task. Specifically, incor-
rect certificate validation leaves many widespread ap-
plications vulnerable to Man-in-the-Middle (MITM)
attacks. In addition to pointing out these problems,
they propose several remediation techniques to mit-
igate them. While Georgiev et al. have analyzed a
number of different systems including PC and mobile
devices, Fahl et al. (Fahl et al., 2012) have performed
a similar analysis with a focus on Android applica-
tions. They have used their tool MalloDroid to ana-
lyze more than 13,500 applications from the Android
market, where 1,074 of these applications were found
to use TLS with insufficient certificate validation. Of
those, Fahl et al. manually analyzed 100 applications
and were able to launch successful MITM attacks on
41 of them. Whereas MalloDroid is a static code
analysis tool build on the Androguard2 reverse engi-
neering framework, Semdroid uses machine learning
methods to identify cryptographic code. Furthermore,
MalloDroid’s goal is to detect use of TLS, whereas
Semdroid aims at detecting code implementing cryp-
tographic functionality.

Egele et al. (Egele et al., 2013) have investi-
gated Android applications for programming mis-
takes, when using cryptographic functionality. To
that end they have developed CryptoLint, a tool that
uses static code analysis to detect applications that
use cryptographic functionality and determines the
parameters with which the app invokes this crypto-
graphic functionality. CryptoLint is able to check
these parameters against a set of rules defining com-
mon programming mistakes. Their analysis shows
that of the 145,095 Google Play Store applications
they examined, 15,134 use cryptographic functional-
ity, of which CryptoLint was able to successfully an-
alyze 11,748. Only 1,421 of these applications did
not violate any rules. Similar to Semdroid Cryp-
toLint uses static code analysis on compiled Android
applications. As opposed to Semdroid’s machine
learning based cryptographic functionality detection,
CryptoLint’s code analysis is based on type analysis,

2http://code.google.com/p/androguard/

SECRYPT�2014�-�International�Conference�on�Security�and�Cryptography

152



super control flow graph extraction, and static slicing
to determine the parameters with which the crypto-
graphic functionality is invoked. By its very nature
CryptoLint’s analysis needs to work from well known
starting points such as certain functions in Java’s
Cryptography Extension. Semdroid on the other hand
is able to find non-standard implementations of cryp-
tographic functionality, for further analysis.

The publications by Georgiev et al. (Georgiev
et al., 2012), Fahl et al. (Fahl et al., 2012), and
Egele et al. indicate that cryptographic function-
ality and protocols are often used incorrectly. This
fact warrants extra attention to the correct use of
cryptographic functionality in security-critical appli-
cations. Semdroid facilitates analysis of such appli-
cations, by identifying portions of code pertaining to
cryptographic functionality.

Semdroid employs machine-learning techniques
to identify relevant code segments. The use of
machine-learning techniques for mobile-application
analyses is a proven technique. Various authors
used static approaches in combination with machine-
learning techniques to categorize mobile applications
(Shabtai et al., 2010), (Ghorbanzadeh et al., 2013) and
to detect suspicious mobile applications (Wu et al.,
2012). Beside static approaches, also dynamic anal-
ysis solutions have been combined with machine-
learning techniques for application classification and
malware detection purposes by various researchers.
Representative examples are proposed and discussed
in related work by Shabtai, Kanonov et al. (Shab-
tai et al., 2011) and Bruguera et al. (Burguera et al.,
2011).

3 Semdroid

Semdroid is a static Android application analysis
framework capable of detecting certain functional-
ity within Android applications. Semdroid is imple-
mented in Java, and has a flexible architecture that can
be used for various classification- and analysis tasks.
Multiple analysis plugins can be employed that an-
alyze Android application packages (.apk files) and
generate application analysis reports. These plugins
can be based on any static analysis approach. First,
we are going to present the Semdroid framework and
then we will discuss the analysis plugins used to de-
tect cryptographic code.

3.1 The Framework

The Semdroid framework handles several pre- and
post-processing operations. The basic analysis work-

flow performed by the Semdroid framework is de-
picted in Figure 1 and consists of the following steps:
(1)The Android application package under analysis is
parsed, and the application structure is reconstructed.
(2)The resultingAppObjectis then handed to all anal-
ysis plugins. Each plugin then analyzes the contents
of this object and creates an application analysis re-
port. (3) The Semdroid framework collects all of
these reports and bundles them to a single analysis
report.

Figure 1: Semdroid architecture.

The AppParser implemented in the Semdroid
framework represents one of the core components that
extracts and prepares the data contained in an An-
droid application for the subsequent analyses. It has
two main tasks:First , it parses the contents of the
AndroidManifext.xmlfile which contains metadata,
such as used permissions, defined activities, or ser-
vices. Second, the classes.dexfile is parsed, which
contains the Dalvik bytecode of the respective An-
droid application. The class structure is reconstructed
and for each method of each class, the correspond-
ing opcodes, method calls, and local variables are ex-
tracted. To parse the Dalvik executable, we adapted
the dex2jar library3 to suit our needs. We imple-
mented custom visitors for all application compo-
nents (classes, methods, fields, and opcodes), and also
added several filters in order to filter out irrelevant
data. Such filters can be used, for example, to dis-
card all code with the exceptions of methods with a
minimum amount of opcodes, methods that require
certain permissions, or methods that contain certain
API calls. This filtering process is performed globally
and applies to all subsequent analysis plugins. Later,
each analysis plugin can perform a second filtering
process to select analysis-relevant data only. The out-
put of theAppParsercomponent is a data structure
calledAppObject, which is then used as input for the
subsequent analyses.

The Semdroid framework can be used on a per-
sonal computer or directly on an Android device. On
a personal computer, a command line interface can be
used to perform the analysis process. The analysis
results are stored in an XML and an HTML file. For
on-device analysis, the Semdroid Android application
has to be installed on the Android device. The user
can then select an application to be analyzed from a
list of all installed applications. Then, the analysis

3https://code.google.com/p/dex2jar/

Identifying�Cryptographic�Functionality�in�Android�Applications

153



will be performed and the user will be notified once
this analysis process has been completed. The analy-
sis results can then be viewed.

3.2 Analysis Plugins

Semdroid analysis plugins can use any static anal-
ysis approach. Each plugin receives theAppObject
and creates an analysis report containing all findings.
This report contains a number of labels, where each
label corresponds to a property or a functionality, like
”cryptographic” or ”normal” code. All application
components, for example all methods or classes of the
application, can be analyzed separately and labeled
according to their functionality. These results are then
included in the analysis report.

Figure 2: Semantic Pattern Analysis workflow.

In the scope of this work, we have implemented
machine learning based analysis plugins. For each of
these plugins, theAppObjectis subject to an instance
generation and feature extraction process that pre-
pares the information required for the specific anal-
ysis. Figure 2 shows the workflow for theSemantic
Pattern Analysiswe use in this work. The input for
the analysis plugin is theAppObject. First , we gener-
ate feature layers that contain characteristic features
of the application.Second, we apply the Semantic
Pattern Transformation on these feature layers to get
Semantic Patterns, which are simple double vectors.
Finally , we supply the Semantic Patterns to machine
learning algorithms, which output a list of labels, one
for each pattern. These labels are then added to the
final analysis report.

(1) Feature Layer Generation:Semdroid allows
to separately analyze different components of an ap-
plication, calledinstances. These instances can ei-
ther be generated for methods, classes, the package,
the completeAppObject, or any other selection cri-
terion. Instance filters are used to select analysis-
relevant components. For example, it is possible to
analyze only classes that extend a certain class or to
analyze only methods that perform at least a certain
number of operations. For each instance, features are
extracted from the corresponding application compo-
nent according to the analysis configuration. The cur-
rent analysis procedure implements various feature
types, such as Dalvik opcodes, method calls, local
variables, fields, super classes, required permissions,

and intent filter parameters. For each feature type, an-
other filtering and grouping mechanism is employed
to retrieve relevant data and to improve the analysis
performance. The following features are required for
the analysis plugins used here:

• Dalvik Opcodes: The Dalvik opcodes4 are used
for almost all analyses. They are either used di-
rectly or can be grouped according to pre-defined
rules (e.g., creating a group for different logical
operations).

• Method Calls: Method calls invoked by the com-
ponent under analysis are commonly used as fea-
tures. A distinction is made between external API
calls and internal calls to methods implemented
by the application. In general, API calls pro-
vide more information for the analyses than very
application-specific internal method calls.

• Local Variables: This refers to the types of lo-
cal variables, which are used in a method. They
can be separated into two categories: The first
category is comprised of basic data types (in-
teger, float, double, byte, etc.). The second
group are composite data types (Java class ob-
jects), which can be separated again into inter-
nal objects implemented by the application it-
self, and external objects provided by the An-
droid platform (e.g.,java.math.BigInteger, or
android.telephony.SmsMessage).

The resulting feature layer contains a list of in-
stances. For each instance the extracted instances
contain the extracted feature values and are then con-
verted into Semantic Patterns. The Semantic Patterns
are then used as input for the machine learning based
training- and classification process.

(2) Semantic Pattern Transformation: The plu-
gins utilized in this work are based on standard ma-
chine learning algorithms. However, prior to their ap-
plication, the Semantic Pattern Transformation (Teufl
et al., 2013) is used to transform the standard fea-
ture vectors commonly used in machine learning into
another representation that models the semantic rela-
tions between the feature values. These vectors and
their relations can either be analyzed directly by us-
ing simple vector-based operations (e.g. achieving
semantic-aware search), or used as input for standard
supervised or unsupervised machine learning algo-
rithms. By doing so, many of the machine learning
specific pre-processing steps, such as normalization,
choosing a specific algorithm or finding a representa-
tion for numerical and symbolic features values, can

4http://developer.android.com/reference/dalvik/
bytecode/Opcodes.html

SECRYPT�2014�-�International�Conference�on�Security�and�Cryptography

154



be avoided. This allows for deploying knowledge dis-
covery procedures in heterogeneous domains by ap-
plying a minimal number of domain-specific adapta-
tions only. Due to the various features, such as op-
codes, opcode histograms, method names, local vari-
ables, etc. within the Dalvik code, and the different
classifiers based on different combinations of those
features, we have chosen to transform the raw feature
vectors into Semantic Patterns prior to the application
of supervised and unsupervised machine learning al-
gorithms.

(3) Machine Learning: Once all instances have
been transformed to Semantic Patterns, they are used
as input for the machine learning framework. Here,
the common procedures for training and applying
classifiers are applied. We use only supervised algo-
rithms, but there are also scenarios that would man-
date the use for unsupervised algorithms, e.g., when
anomaly detection procedures are required, or a better
understanding of unknown data and relations should
be gained.

4 EVALUATION

The evaluation process of Semdroid and specifically
its cryptographic code detection facilities were de-
signed with the following goals in mind:First , for
the deployment in real application analysis scenarios,
we need to know the accuracy of the classifiers in
terms of false positive/negative rates.Second, experi-
ence on the capabilities of Semdroid and the machine-
learning based analysis needs to be gained by the ap-
plication of the trained classifiers to real application
data.Third , possible improvements and research re-
quired for the analysis of real applications should be
revealed by analyzing real application data. We aim
to achieve these goals with the following evaluation
scenarios E1 to E4:

• E1 and E2 – Training of classifiers and appli-
cation using verified test sets:By extracting and
manually analyzing and labeling methods from
well-known cryptographic libraries and standard
apps that do not contain cryptographic functional-
ity, the respective classifiers can be trained and a
performance analysis can be conducted (E1). In
E2, the performance of the classifier on obfus-
cated code is evaluated. Due to the manually ver-
ified test sets, the basic performance characteris-
tics of the symmetric and asymmetric classifiers
in terms of false positive and false negative rates
are revealed by E1 and E2.

• E3 (Symmetric Cryptography) and E4 (Asym-
metric Cryptography) – Application on Real

Apps: In these scenarios the previously trained
classifiers for symmetric and asymmetric cryp-
tography are applied to 98 password safe appli-
cations downloaded from the Google Play Store.
The methods, which are tagged as cryptographic
code by the trained classifiers are subject to an ex-
tensive manual analysis. The aim of this analysis
is to understand the nature of the code that can be
detected by the classifiers and thereby deduce its
capabilities. Since, knowing these capabilities is
crucial for real application analyses, a major part
of this work is dedicated to E3 and E4. While
both scenarios enable us to learn further details of
the false positive rates of the classifiers, additional
conclusions on the false negative rate cannot be
drawn. The reason is the substantial number of
analyzed methods, which makes a manual inspec-
tion of the non-cryptographic methods infeasible.

4.1 Analysis Setup

The evaluation scenarios E1 to E4 have been imple-
mented by using the Semdroid analysis framework.
The following extraction and analysis steps are ap-
plied to the analyzed applications by utilizing the
Semdroid framework.

(1) Instance Generation – Method Filters:The
instance extraction process has been configured to
generate an instance for each analyzed method. Two
different method filters have been applied. For the
dataset related to symmetric key cryptography only
those methods that contained equal to, or more than
30 opcodes are considered for analysis. For the asym-
metric evaluation only methods with 4 or less op-
codes are filtered. This choice is explained by the
fact that functionality from the standard Java SDK
API can be used for the mathematical operations re-
quired for asymmetric cryptography (e.g. calculations
based on theBigInteger type), which decreases the
amount of required basic opcodes. In contrast, many
operations essential for symmetric key cryptography
require a number of logical and mathematical opera-
tions to mangle the input data with the cryptographic
key.

(2) Instance Generation – Feature Extraction:
For the asymmetric classifier the method call inclu-
sion depth is set to 0. While depth 0 means that
only the features from the analyzed method are ex-
tracted, depth 1 causes the analyzer to extract the fea-
tures of the methods called in the analyzed methods,
and depth 2 also includes the features from the meth-
ods called at depth 1. Since, methods for symmet-
ric ciphers require more opcodes that are typically ar-
ranged in multiple methods, the inclusion depth was

Identifying�Cryptographic�Functionality�in�Android�Applications

155



set to 2 for this classifier. For the evaluation scenarios
we have used the following features:

• Opcode Histograms: The opcodes extracted
from the analyzed methods have been filtered,
grouped and rearranged in histogram vectors.
These vectors reflect the number of occurrences
of specific opcodes or opcode groups. Opcodes
groups have been used to reduce the dimension-
ality of the feature vectors and noise. For the
symmetric classifiers only the mathematical (e.g.,
add, sub, div) and logical opcodes (e.g.xor, shl,
shr) were used for the histogram vector genera-
tion. In total, 26 opcode and opcode groups have
been used for the symmetric histogram vectors.
For the asymmetric classifier, additional opcodes
used by typical implementations have been added:
opcodes related to array specific operations (e.g.,
array length), comparing variables (e.g.,cmp,
cmpl, cmpg), and branch operations (e.g.,if eq,
if ne, if lt). In total, 29 opcodes and opcode
groups have been used for the asymmetric his-
togram vectors.

• Local Method Calls: Method calls from classes
within the packagesjava.math.* have been used
as features for the asymmetric classifier. The
rationale is that many asymmetric implementa-
tions rely on Java SDK functionality to implement
asymmetric ciphers.

• Local Variables: For the asymmetric classi-
fier the local variable types implemented in the
java.math.* packages have been used as fea-
tures. Especially theBigInteger type is heav-
ily used for implementations of asymmetric algo-
rithms.

(3) Semantic Pattern Generation: The method
instances are comprised of the previously selected
features for symmetric and asymmetric classifiers.
The gained feature vectors are then transformed into
Semantic Patterns.

(4) Supervised Learning: The cryptographic
code classifiers were trained on the Semantic Patterns
contained in the carefully chosen training data sets
using the Weka (Witten et al., 2011) implementation
of the Support Vector Machine (Cortes and Vapnik,
1995) algorithm.

4.2 Datasets

The following data sets have been used for the evalu-
ation scenarios:

Training Set – Symmetric Key Cryptogra-
phy: The training set consists of 6 methods from
3 different AES implementations extracted from

the packageorg.bouncycastle.crypto.engines
of the Bouncy Castle library5: namely theencrypt-
Block anddecryptBlockmethods of theAESEngine,
AESLiteEngineandAESFastEngineimplementations.
We emphasize that methods belonging to hash func-
tions were not included in the training set, but only in
the test set, to highlight their similarity with symmet-
ric cipher implementations. In addition, 100 “normal”
methods that do not included cryptographic code have
been extracted from one of the author’s applications.
This application is used for network traffic monitoring
and analysis and does not contain any cryptographic
functions. There was no special selection process for
these methods – the first 100 methods that fulfilled
the filter criteria have been extracted. There are two
reasons for choosing a small training set, especially
for the methods containing cryptographic code:First ,
only cryptographic libraries could be used to automat-
ically extract methods that definitely contain crypto-
graphic functionality. Since there is only a limited
number of such libraries and cipher implementations
we tried to keep the training set as small as possible
in order to have an adequate test set for the evaluation
procedure.Second, previous evaluation procedures
and the literature already indicated that cryptographic
code could be identified with high accuracy due to its
distinct features.

Verified Test Set – Symmetric Key Cryptogra-
phy and Hash Functions: All of the methods in-
cluded in this test set have been manually verified for
their usage of cryptographic functions. The following
105 methods have been extracted:

• Bouncy/Spongy Castle Providers: 67
methods used by symmetric ciphers im-
plementations have been extracted from
org.bouncycastle.crypto.engines6 and
methods related to hash functions from
org.bouncycastle.crypto.digests7.

• Cryptix Provider: 24 methods have been ex-
tracted fromcryptix.provider.cipher of the
cryptix provider8.

• Other Sources: 14 methods have been extracted
from applications where an analysis revealed that

5http://www.bouncycastle.org
6e.g., AES, IDEA, DES, Serpent, TEA:

http://www.cs.berkeley.edu/∼ jonah/bc/org/bouncycastle/
crypto/engines/package-summary.html

7e.g., MD5, RIPEMD, SHA-family, Whirlpool:
http://www.cs.berkeley.edu/ jonah/bc/org/bouncycastle/
crypto/digests/package-summary.html

8e.g., Blowfish, CAST5, RC4:
http://ds0.cc.yamaguchi-u.ac.jp/ joji/doc/cryptix3.2.0/
cryptix/provider/cipher/package-summary.html

SECRYPT�2014�-�International�Conference�on�Security�and�Cryptography

156



cryptographic algorithms (including AES, SHA1,
Bcrypt) have been implemented.

As “normal” methods, we have selected 900 methods
that have been extracted from different Android com-
ponents, such as services or activities. 20 out of these
900 methods were extracted from asymmetric cipher
implementations (taken from the verified asymmetric
test set). The selection of these methods and the clas-
sification results highlight the capability of the classi-
fier to differentiate symmetric and asymmetric cryp-
tography.

Training Set – Asymmetric Key Cryptog-
raphy: The Bouncy Castle implementations
of RSA (org.bouncycastle.crypto.engines.
RSACoreEngine) and ElGamal (org.bouncycastle.
crypto.engines.ElGamalEngine), have been used
as asymmetric training data. In addition, 200 “nor-
mal” methods have been randomly selected that do
not contain asymmetric cryptography.

Verified Test Set – Asymmetric Key Cryptogra-
phy: Signature algorithms based on asymmetric cryp-
tography, like DSA, have been considered as asym-
metric code as well. Since we did not find that many
asymmetric cryptography implementations, the eval-
uation test set is smaller than for the symmetric case.
In total, we used 20 methods implementing asymmet-
ric cryptography and 980 randomly selected “normal”
methods. These “normal” methods also include the
105 methods of the symmetric cipher implementa-
tions and hash functions that were used in the test set
for the evaluation of the symmetric classifier.

Verified Test Set – Obfuscated Code:To show
the impact of obfuscated code on our classifiers, we
have also created obfuscated versions of the Bouncy
Castle library. For obfuscation9 the default optimized
Android ProGuard configuration has been used. Only
shrinking, which removes dead code, and method
name obfuscation has been disabled in order to be
able to better compare the results.

Empirical Test Set – Password Safes:The test
set for the empirical analysis of the classifiers for
symmetric and asymmetric classifiers consists of 98
password safes applications downloaded from the
Google Play Store. Due to the functionality offered
by password safes it is expected that such applications
either use existing crypto libraries or implemented
custom cryptographic functions.

9http://developer.android.com/tools/help/proguard.html

4.3 E1 – Classifier Training and
Evaluation, E2 – Obfuscated Code

The classifiers for symmetric and asymmetric cryp-
tography have been evaluated as follows:First , the
classifiers were trained on the training data sets us-
ing the Weka implementation of the Support Vec-
tor Machine algorithm.Second, the trained classi-
fiers have then be applied to the verified test sets.
The evaluation results for the symmetric and asym-
metric classifiers are presented in the left sub-tables
of Figure 3. The following observations can be
made: Although, rather small training sets have been
used for both classifiers, a very high accuracy can
be achieved on the verified test sets. Only one
method of the implementation of the Camellia cipher
(setKey of org.bouncycastle.crypto.engines.
CamelliaEngine) was wrongly classified as normal
method by the symmetric classifier. The symmet-
ric classifier is capable of identifying hash functions
as cryptographic code, albeit such methods have not
been included in the training set.

The obfuscated Bouncy Castle library has been
evaluated with the symmetric and asymmetric clas-
sifiers. The results are presented in the right sub-table
of Table 3. It can be observed, that for both classi-
fiers the number of analyzed obfuscated methods is
larger than for the standard library. This is explained
by obfuscation procedures, such as method inlining.
The differences in total methods for the symmetric
and asymmetric classifiers is caused by the different
opcode filters used in the instance extraction process.
The good results for the obfuscated libraries are ex-
pected, because apart from rearranging the package
and method structure (e.g., changing names, inlining)
the executed code remains the same. However, if cer-
tain features, such as internal method calls or variable
types are included in the training process, then the ob-
fuscation of the same code would significantly impact
classification results.

4.4 E3 – Password Safes (Symmetric
Classifier)

In this evaluation scenario the classifier trained for
symmetric key cryptography is applied to the 98 pass-
word safes downloaded from Google Play. In total,
59,215 methods have been analyzed.

Overall, the classifier labeled 55,534 methods as
“normal” code, and the remaining 3,653 methods as
symmetric key cryptography. 849 out of these 3,653
methods have been obfuscated and due to the time-
consuming process of manually analyzing obfuscated
code, their implemented functionality has not been

Identifying�Cryptographic�Functionality�in�Android�Applications

157



Analysis Classification Standard 

Library

Obfuscated 

Library

Symmetric 

Key 

Cryptography

Cryptography 293 344

Normal 1513 1570

Total 1806 1914

Asymmetric 

Key 

Cryptography

Cryptography 27 32

Normal 6941 7026

Total 6968 7058

symmetric S-C N Total Correct

S-C 99 1 100 99%

Normal 0 900 900 100%

asymmetric A-C N Total Correct

A-C 20 0 20 100%

Normal 0 980 980 100%

Figure 3: Classifier performance on the verified test sets forthe asymmetric classifier (lower left) and symmetric classifier
(upper left). On the right, the results for the standard and the obfuscated Bouncy Castle libraries are shown.

Table 1: 3,653 out of 55,534 methods were classified as
symmetric cryptographic code, which can be categorized in
various sub-categories.

Classification Category % Count # methods

Symmetric key 

cryptography

Cryptography 47.6 1740

3653

Obfuscated 23.2 849

Encoding schemes and data 

notations

20.9 765

Other 6.6 240

Non-cryptographic hash functions 1.3 46

Compression functions 0.4 13

Normal 55534

Total 59215

analyzed. The manual analysis of the remaining 2,804
methods reveals that their functionality can be as-
signed to the following categories (overview in Table
1):

4.4.1 Cryptographic Functions (1,740 Methods)

The methods containing cryptographic code can be
assigned to further sub-categories (overview in Ta-
ble 2):

Table 2: Manual evaluation results for the category cryptog-
raphy.

Cryptography (1739 methods)

Category % Count

Symmetric Ciphers 66.6 1158

Hash functions 15.4 268

Modes of operation 5.6 98

MACs 5.1 89

Key and parameter 

generation
4.1 72

Random number generation 3.1 54

• Symmetric Ciphers (1,158 Methods):The ma-
jority of identified cryptographic methods are
used to build symmetric ciphers.

– Bouncy Castle Implementations: Some ap-
plications include the original Bouncy Cas-

Table 3: Manual evaluation results for the category encod-
ing schemes.

Encodings (765 methods)

Category % Count

Base64 31.8 243

UTF-8 19.3 148

JSON 13.2 101

Readers and Writers 13.1 100

ASN1 9.3 71

Other 8.2 63

ISO 9796-1 3.3 25

HEX 1.8 14

tle library or a renamed version, likeSpongy
Castle10. The latter is a repackaged Bouncy
Castle library, which avoids naming conflicts
with the Android Bouncy Castle API. Further-
more, some developers renamed Bouncy Cas-
tle packages, e.g., by using the package name
org.bownzycastle.*.

– Custom Implementations:A small number of
custom AES implementations could be identi-
fied. Furthermore, a few applications included
cryptographic code found in libraries. One
example for such cryptographic code isUnix-
Crypt11, which is included in some Apache li-
braries. According to its documentation, this
class implements DES.

– Parts of Ciphers: Many implementations of
encryption algorithms are split into several
methods. For example, the AES algorithm con-
sists of four parts:SubBytes, ShiftRows, Mix-
Columns, andAddRowKey. Many implementa-
tions of this algorithm, including those in the
Bouncy Castle library, have a similar struc-
ture where each of these steps is encapsulated
within a separate method. Not only does the
analysis correctly recognize the main method

10http://rtyley.github.io/spongycastle/
11http://commons.apache.org/proper/commons-codec/

apidocs/org/apache/commons/codec/digest/UnixCrypt.html

SECRYPT�2014�-�International�Conference�on�Security�and�Cryptography

158



that performs the encryption and calls all sub-
sequent methods as cryptographic code, but it
also tags all parts involved in this encryption
process as cryptography.

– Round Key Generation: Many ciphers, like
AES, require so-called round keys, which have
to be derived from the encryption key. Most of
these key generation methods are recognized as
well.

• Hash Functions (268 Methods): Most of the
identified methods related to cryptographic hash
functions are Bouncy Castle implementations.
Furthermore, 10 custom SHA implementations
(both SHA-0 and SHA-1) have been found, con-
tributing with a total of 20 methods, since differ-
ent parts of the implementations are found sepa-
rately.

• Message Authentication Codes (MACs)
(89 Methods): The origin of all
identified methods is the package
org.bouncycastle.crypto.macs.* included
in the Bouncy Castle library.

• Modes of Operation (98 Methods): Various
modes of operation, as for example cipher-
block chaining (CBC), Galois/Counter Mode
(GCM), or several output feedback modes
have been found. All of these methods
are located in the Bouncy Castle package
org.spongycastle.crypto.modes.*.

• Key and Parameter Generation (72 Meth-
ods): We found two custom implementations of
password-based key derivation functions: BCrypt
(Provos and Mazieres, 1999), which is based
on Blowfish, and scrypt (Percival and Josefsson,
). The custom BCrypt implementation has been
found in one password safe, whereas the scrypt
implementation is included in two other safes, as
part of the Spongy Castle library. Furthermore,
key generators for DES, IDEA, and LOKI91 have
been detected by the analysis, as well as key fac-
tories and parameter generators included in the
Bouncy Castle library.

• Random Number Generation (54 Methods):
Bouncy Castle includes several pseudorandom
number generators (PRNGs), found in the pack-
age org.spongycastle.crypto.prng.*. For
instance, the VMPC random number generator
included in this package has been detected by
the analysis. VMPC itself is a one-way func-
tion and stream cipher. In addition to VMPC,
org.spongycastle.util.test.
FixedSecureRandom has been detected as well.

Finally, the analysis also detected a custom ran-
dom number generator not included in bouncy
castle, which implements the R250 random num-
ber generator.

• LFSR: Linear feedback shift registers have sim-
ilar structures to symmetric-key ciphers. There-
fore, methods implementing this functionality
could also be identified.

4.4.2 Non-cryptographic Hash Functions (46
Methods)

Methods implementing non-cryptographic hash ap-
plications used by data structures like hash maps
are also detected by the classifier. An example is
MurmurHash312, which was found in three password
safes as part of a Google library, which includes two
implementations of this hash function for different di-
gest sizes of 32 and 128 bits.

4.4.3 Encoding Schemes and Data Notations
(765 methods)

Various encoding mechanisms and some data nota-
tions are recognized as cryptographic code. Table 3
shows the different identified encoding schemes. The
most prominent is Base64, with 243 methods, fol-
lowed by UTF-8 and JSON.

• Base64 (243 Methods):Base64 is a binary-to-
text encoding scheme utilized by many applica-
tions. The encoding/decoding process requires
shift operations as well as bitwise AND calcula-
tions. In addition, it utilizes an encoding table,
similar to the substitution boxes (S-boxes) found
in many block ciphers, including AES.

• JSON (101 Methods): JSON13 is short for for
JavaScript Object Notation and is used to inter-
change data between computers. Some methods
required for serializing objects, to read and write
objects, and to convert data types are recognized
as cryptographic code.

• Readers and Writers (100 Methods): Input
stream readers and output stream writers have to
transform the date read from and written to their
respective streams. One example found in three
password safes isorg.spongycastle.bcpg.
ArmoredOutputStream, which performs Base64
encoding and CRC computations that have a high
similarity to cryptographic code.

12https://code.google.com/p/smhasher/wiki/
MurmurHash3

13http://www.json.org/

Identifying�Cryptographic�Functionality�in�Android�Applications

159



• ISO 9796-1 Padding (25 Methods):ISO 9796-
1 is a padding scheme used for asymmetric ci-
phers. According to (Menezes et al., 1997), the
message is padded, extended, and redundancy is
added. Thus, despite being used for asymmet-
ric cryptography, the padding itself has similar-
ities to symmetric cryptography. The code of
this padding can be found in Bouncy Castle, in
org.bouncycastle.crypto.encodings.
ISO9796d1Encoding.

• Other Encoding Schemes (63 Methods): Simi-
lar to Base64 encoding, other encoding schemes
like hex encoding included in Bouncy Castle uti-
lizes an encoding table and shift operations. Also,
the BER and DER encoding schemes, as well as
some other notations found in the ASN.1 standard
are labeled as cryptography.

4.4.4 Compression Functions (13 Methods)

The opcodes used for the compression process are
similar to those used in cryptographic operations. The
classifier identified aZIP implementation included in
one application, andbzip2 implementations in two
other applications.

4.4.5 Others (240 Methods)

These methods include implementations for calculat-
ing checksums, as well as other methods containing
many mathematical operations similar to symmetric
encryption mechanisms.

• Checksums: Similar to non-cryptographic hash
functions, some checksum operations also have
comparable structures. The classifier identified
the Adler-32 algorithm in one of the applications.

• False Positives:Finally, the analysis also incor-
rectly classified a few methods, mainly concerned
with many mathematical functions, as for exam-
ple the methodfindCornerFromCenterfound in
theMonochromeRectangleDetector14, which tries
to find a corner of a barcode.

4.5 E4 – Password Safes (Asymmetric
Classifier)

In this evaluation scenario the trained asymmetric
classifier has been applied to the same 98 password
safes as in E3. In total, 2,415,513 methods were an-
alyzed by the classifier. 512 of these methods were

14https://code.google.com/p/zxing/source/browse/trunk/
core/src/com/google/zxing/common/detector/
MonochromeRectangleDetector.java?r=1003

identified by the classifier as asymmetric code. 64
of those methods were obfuscated. This leaves 448
methods subject to a detailed manual analysis, which
reveals various categories presented in Table 4. In
general, it can be observed that a majority of the de-
tected methods are implemented in the Bouncy Castle
library or its repackaged versions.

Classification Category % Count # methods

Asymmetric key 

cryptography

ECC 22.3 114

512

GOST 15.6 80

Obfuscated 12.5 64

DSA 10.0 51

RSA 10.0 51

NaccacheStern 6.3 32

Key Agreement 5.5 28

SRP6 4.3 22

ElGamal 3.1 16

ECNR Signer 3.1 16

Others 3.1 16

BigInteger Math 2.3 12

NTRU 2.0 10

Normal 2415001

Total 2415513

Figure 4: 512 out of 2,415,513 methods were classified as
asymmetric cryptographic code, which can be categorized
in various sub-categories.

• RSA (51 Methods):8 applications included RSA
code from Bouncy Castle. Also, two additional
custom RSA implementations could be identified,
which provide methods to perform RSA en- and
decryption, as well as to sign content and to verify
signatures. In addition, a test case with the name
TestRSAhas been detected by our analysis, as well
as an RSA key pair generator.

• DSA (51 Methods): The identified DSA im-
plementations are mainly related to (repackaged)
Bouncy Castle libraries. However, there were also
two custom implementations found in two appli-
cations. The first one can be found in Apache
libraries, namelySHA1withDSASignatureImpl15.
The second implementation is calledRawDSASig-
natureand implements a standard DSA algorithm.

• ElGamal (16 Methods): Similar to DSA, most
ElGamal implementations are from repackaged
Bouncy Castle libraries. Only one single other
custom implementation has been detected, which
offers methods for en- and decryption and signa-
ture creation/verification. Furthermore, a test case
for this implementation has also been detected and
a class to generate ElGamal key pairs is included
in this custom implementation as well.

15org.apache.harmony.security.provider.crypto.
SHA1withDSA SignatureImpl

SECRYPT�2014�-�International�Conference�on�Security�and�Cryptography

160



• Other Signature Algorithms: Another class
of methods found in Bouncy Castle are re-
lated to signing operations. The package
org.bouncycastle.crypto.signers contains
several of these signature algorithms. For the
classesDSASignerandGOST3410Signer(based
on the GOST R 34.10-94 Signature Algorithm)
the two methodsgenerateSignatureandverifySig-
naturehave been labeled as asymmetric cryptog-
raphy. ForECDSASigner, ECNRSigner, andEC-
GOST3410SignerthegenerateSignaturemethods
have been detected. All of these methods really
perform operations similar to asymmetric cryp-
tography.

• NaccacheStern Cryptosystem (32 Methods):
The public-key cryptosystem is based on the
higher residuosity problem. This cryptosystem
also uses RSA modulusn, which also consists of
two large prime numbers multiplied together. The
encryption process itself utilizes the Chinese Re-
mainder Theorem. From the 98 password safes,
8 include the Bouncy Castle Naccache-Stern im-
plementation, and for each of these implementa-
tions, several methods involved in the en- and de-
cryption process, as well as key generation mech-
anisms have been detected.

• Elliptic Curve Cryptography (114 Methods):
Since the Bouncy Castle ECC implementation re-
lies heavily on theBigIntegertype, these methods
have been correctly classified as asymmetric-key
cryptography.

• SRP (22 Methods): The Secure Remote Pass-
word Protocol (Wu, 1998) is a key exchange
protocol that utilizes asymmetric key exchange.
Bouncy Castle includes the SRP-6a protocol,
which improves the original SRP-protocol. The
classifier labeled several method of this imple-
mentation as asymmetric cryptography. A total
of 6 password safes include methods from this
SRP implementation. Furthermore, another pass-
word safe includes a custom SRP implementation,
that operates on a customBigIntegerclass, called
UBigHexInteger.

• Key Agreement (28 Methods): Key-agreement
protocols are used in order to create a shared key
between two parties. One very common key-
agreement protocol is the Diffie-Hellman key ex-
change. It is based on the same operations as
RSA, and thus detected by the classifier. Further-
more, other key-agreement protocols, like Elliptic
Curve Menezes-Qu-Vanstone (ECMQV), are de-
tected as well. Again, 8 applications include the
respective Bouncy Castle implementations, which

have been detected. In addition, one application
includes a custom SSL Diffie-Hellman implemen-
tation.

• Zero-knowledge Proof (ZKP): In order to im-
plement zero-knowledge proofs, strategies similar
to asymmetric encryption can be used (Schneier,
1996). One analyzed application includes such a
custom ZKP implementation by Mozilla, called
JPakeCrypto16. Three methods found in this
class, namelycreateZkp, checkZkp, and round2
have been labeled as asymmetric cryptography by
the analysis. The operations used for creating and
verifying the ZKP are very similar to asymmetric
cryptography.

• Fractions: Another method labeled
as asymmetric cryptography is a
method called addSub implemented in
org.apache.commons.lang3.math.Fraction.
This implementation heavily utilizes mathemat-
ical operations based onBigInteger types for
operations similar to asymmetric encryption
algorithms.

• Others: Finally, 38 other methods have been
tagged, 12 of which are part of BigInteger helper
libraries. The other 26 methods also are several
helper methods that operate on BigIntegers.

5 CONCLUSIONS

We have developed and evaluated Semdroid, a tool to
facilitate Android app security analysis by identifying
code implementing cryptographic functionality. We
will now conclude by considering Semdroid’s overall
performance, the accuracy of its detection (false pos-
itives/negatives), its capabilities and its applicability
for Android app security analysis.

Overall: Considering the fact rather small train-
ing data sets were used for the symmetric and asym-
metric classifiers, the gained results are very promis-
ing. The application to the verified test sets and
the password-safe applications reveals that the detec-
tor is capable in detecting cryptographic code with a
high accuracy. Although many implementations are
based on the standard Bouncy Castle library, we were
also able to detect custom implementations of cryp-
tographic functionality, which is especially important
for the envisaged application analysis scenario.

False Negatives:Since the manual analysis of all
methods within the 98 password-safe applications is
not feasible, the empirical scenarios E3 and E4 do not

16http://dxr.mozilla.org/mozilla-central/source/mobile/
android/base/sync/jpake/JPakeCrypto.java

Identifying�Cryptographic�Functionality�in�Android�Applications

161



let us draw detailed conclusions on the false negative
rates. Conclusions on these rates can only be drawn
from the evaluation results on the verified test sets.
These results indicate a very low false negative rate,
but due to the rather small number of verified cryp-
tographic methods, more accurate false negative rates
need to be gained in real application analysis projects.

False Positives:Here, the results from all evalu-
ation scenarios can be taken into account. Due to the
manual analysis of all detected crypto methods, we
know in detail which type of method the detector is
able to identify. When using strict definitions for the
nature of cryptographic code, then methods related to
Base64 encoding or checksum calculations could be
considered as false positives. However, our experi-
ence with application analysis shows that such meth-
ods are often used in combination with real crypto-
graphic code, and unfortunately, are sometimes used
as security mechanism by developers. In that sense
such methods have not been considered as false posi-
tives. The only real false positives were related to the
implementation of mathematical operations.

Capabilities: By analyzing the gained results, we
learn more about the capabilities of the detection sys-
tem. This is especially important when analysing new
applications where no a priori knowledge is available.
Also, knowing the type of code the detector can find
simplifies the analysis of obfuscated code, where we
cannot rely on variable or method names to find out
more about the implemented functionality.

Semdroid: The evaluation shows that the archi-
tecture of Semdroid related to method filters, model
generation, instance generation etc. is flexible enough
to be quickly adapted to heterogeneous analysis pro-
cesses. Also, the deployment of the Semantic Patterns
concept enabled us to evaluate a wide range of feature
sets without the requirement to apply complex post
processing steps.

Future Work: Since the gained results are very
promising, we aim to use the crypto detection sys-
tem in upcoming application analysis projects, and –
where possible and reasonable – extend the machine
learning based detection system to other application
security aspects, such as key derivation functions or
secure communication and management facilities.

REFERENCES

Burguera, I., Zurutuza, U., and Nadjm-Tehrani, S. (2011).
Crowdroid. InProceedings of the 1st ACM workshop
on Security and privacy in smartphones and mobile
devices - SPSM ’11, page 15, New York, New York,
USA. ACM Press.

Cortes, C. and Vapnik, V. (1995). Support-Vector Networks.
Machine Learning, 20(3):273–297.

Egele, M., Brumley, D., Fratantonio, Y., and Kruegel, C.
(2013). An empirical study of cryptographic misuse
in android applications. InProceedings of the 2013
ACM SIGSAC conference on Computer & communi-
cations security - CCS ’13, pages 73–84, New York,
New York, USA. ACM Press.

Fahl, S., Harbach, M., Muders, T., Smith, M., Baumgärtner,
L., and Freisleben, B. (2012). Why Eve and Mal-
lory Love Android: An Analysis of Android SSL
(In)Security. InCCS, pages 50–61. ACM.

Georgiev, M., Iyengar, S., Jana, S., Anubhai, R., Boneh, D.,
and Shmatikov, V. (2012). The most dangerous code
in the world. InProceedings of the 2012 ACM con-
ference on Computer and communications security -
CCS ’12, page 38. ACM Press.

Ghorbanzadeh, M., Chen, Y., Ma, Z., Clancy, T. C., and
McGwier, R. (2013). A neural network approach to
category validation of Android applications. In2013
International Conference on Computing, Networking
and Communications (ICNC), pages 740–744. IEEE.

Menezes, A. J., Oorschot, P. C. V., and Vanstone, S. A.
(1997). Handbook of Applied Cryptography, volume
106.

Percival, C. and Josefsson, S. The scrypt Password-Based
Key Derivation Function.

Provos, N. and Mazieres, D. (1999). A Future-Adaptable
Password Scheme.USENIX Annual Technical Con-
ference, . . ., pages 1–12.

Schneier, B. (1996). Applied Cryptography.Electrical En-
gineering, 1([32):429–455.

Shabtai, A., Fledel, Y., and Elovici, Y. (2010). Automated
Static Code Analysis for Classifying Android Appli-
cations Using Machine Learning. In2010 Interna-
tional Conference on Computational Intelligence and
Security, pages 329–333. IEEE.

Shabtai, A., Kanonov, U., Elovici, Y., Glezer, C., and Weiss,
Y. (2011). Andromaly: a behavioral malware detec-
tion framework for android devices.Journal of Intel-
ligent Information Systems, 38(1):161–190.

Teufl, P., Leitold, H., and Posch, R. (2013). Semantic Pat-
tern Transformation. InProceedings of the 13th In-
ternational Conference on Knowledge Management
and Knowledge Technologies - i-Know ’13, pages 1–8,
New York, New York, USA. ACM Press.

Witten, I. H., Frank, E., and Hall, M. A. (2011).Data
Mining: Practical Machine Learning Tools and Tech-
niques, Third Edition (The Morgan Kaufmann Series
in Data Management Systems). Morgan Kaufmann.

Wu, D.-J., Mao, C.-H., Wei, T.-E., Lee, H.-M., and Wu,
K.-P. (2012). DroidMat: Android Malware Detection
through Manifest and API Calls Tracing. In2012 Sev-
enth Asia Joint Conference on Information Security,
pages 62–69. IEEE.

Wu, T. (1998). The Secure Remote Password Protocol. In
Proceedings of the Symposium on Network and Dis-
tributed Systems Security NDSS 98, pages 97–111. In-
ternet Society.

SECRYPT�2014�-�International�Conference�on�Security�and�Cryptography

162


