
Document Clustering Using Multi-Objective Genetic Algorithms  
with Parallel Programming Based on CUDA 

Jung Song Lee1, Soon Cheol Park1, Jong Joo Lee2 and Han Heeh Ham3 
1Division of Electronics and Information Engineering, Chonbuk National University, Jeonju-si, Republic of Korea 

2Department of Korean Language and Literature, Chonbuk National University, Jeonju-si, Republic of Korea 
3Department of Archeology and Cultural Anthropology, Chonbuk National University, Jeonju-si, Republic of Korea 

Keywords: Document Clustering, Genetic Algorithms, Multi-Objective Genetic Algorithms, GPGPU, CUDA. 

Abstract: In this paper, we propose a method of enhancing Multi-Objective Genetic Algorithms (MOGAs) for docu-
ment clustering with parallel programming. The document clustering using MOGAs shows better perfor-
mance than other clustering algorithms. However, the overall computation time of the MOGAs is consider-
ably long as the number of documents increases. To effectively avoid this problem, we implement the MO-
GAs with General-Purpose computing on Graphics Processing Units (GPGPU) to compute the document 
similarities for the clustering. Furthermore, we introduce two thread architectures (Term-Threads and Doc-
ument-Threads) in the CUDA (Compute Unified Device Architecture) language. The experimental results 
show that the parallel MOGAs with CUDA are tremendously faster than the general MOGAs. 

1 INTRODUCTION 

Clustering is an unsupervised classification tech-
nique that partitions the input space into K regions. 
The document clustering, which is one part of a 
clustering, is important in the text mining field 
(Croft et al., 2009). 

Currently, Genetic Algorithms (GA), which is 
one of the artificial intelligence algorithms, is widely 
used in document clustering. GA is a randomized 
search and optimization technique guided by the 
principles of evolution and natural genetics, and can 
be used to handle large and complex landscapes. It 
provides near optimal solutions (Maulik and Bandy-
opadhyay, 2000). Document clustering based on GA 
can provide appropriate cluster solutions using the 
searching capability of GA. The performance of the 
document clustering based on GA is better than 
other clustering algorithms (Song and Park, 2009). 
However, it slows down the performance of cluster-
ing, so it is not used to prevent premature conver-
gence. To effectively avoid a premature convergence, 
Fuzzy Logic based on GA (FLGA), which exerts 
several control parameters to manipulate crossover 
probability and the mutation probability of GA, has 
been proposed (Song and Park, 2010). When the 
best fitness iterations reach the consecutive maxi-

mum generation number without improvement, the 
diversity of the population is extended by increasing 
the crossover and mutation probability. Generally, it 
can effectively avoid trapping in a local optimum 
and also accelerate the evolving speed. However, it 
depends on several control parameters to manipulate 
the crossover probability and the mutation probabil-
ity, such as parameter dependence. To solve these 
problems (premature convergence, parameter de-
pendence), document clustering using Multi-
Objective Genetic Algorithms (MOGAs) has been 
proposed (Lee et al., 2011), (Lee et al, 2011), (Lee 
and Park, 2013). MOGAs define the document clus-
tering problem as a Multi-Objective Optimization 
Problems (MOP) having two cluster validity indices. 
It uses two of MOGAs, NSGA-II (Deb et al., 2002) 
and SPEA2 (Zitzler et al., 2002) to solve MOP. 
Document clustering using MOGAs shows a higher 
performance than the other clustering algorithms. 
However, when these algorithms which are imple-
mented by serial computing are applied in document 
clustering, the computational complexity is in-
creased by the high time complexities of NSGA-II 
and SPEA2. In order to solve this problem, the doc-
ument clustering MOGAs on MATLAB Distributed 
Computing Server (MDCS) (Lee and Park, 2012) 
has been proposed. But this technique requires many 
computer servers called nodes, and each node must 
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set up specific and precise configuration of the 
MDCS. 

Recently, parallel computing has been increas-
ingly employed to increase the speed of computa-
tions. Parallel computing is the technique of using 
multiple compute resources simultaneously to solve 
a computational problem. So, we introduce the doc-
ument clustering using MOGAs based on General-
Purpose computing on Graphics Processing Units 
(GPGPU) to reduce the computational time in this 
paper. For this technique, we use CUDA (Compute 
Unified Device Architecture) language that is a plat-
form developed by NVIDIA® for performing mas-
sively parallel computations on NVIDIA® Graphics 
Processing Unit (GPU) (The NVIDIA Corporation). 

This paper is organized as follows. In the next 
section, we give a brief review of the document 
clustering using MOGAs. Details of the document 
clustering using MOGAs based on CUDA are de-
scribed in Section 3. Section 4 shows the experi-
mental results of the document clustering algorithms. 
Conclusions are given in Section 5. 

2 DOCUMENT CLUSTERING 
USING MOGAS 

2.1 Multi-Objective Optimization 
Problems 

In the optimization problems, when there are several 
objective functions these problems are called Multi-
Objective Optimization Problems (MOP). MOP has 
many solutions that optimize one objective function 
but does not optimize other objective functions (e.g. 
conflict among objectives). Therefore, it is almost 
impossible to simultaneously optimize all objective 
functions. The Pareto-based method is often used to 
solve MOP with this character. This method finds a 
set of solutions by the dominance relation between 
candidate solutions.  

2.2 Multi-Objective Genetic 
Algorithms 

Various algorithms have been suggested in order to 
solve the MOP. They are dependent on the initial 
search space and various solutions cannot be found.  
GA solves this disadvantage. GA for solving MOP is 
often called Multi-Objective Genetic Algorithms 
(MOGAs). Variations of MOGAs have been used in 
many applications and their performances were test-
ed in several studies, i.e. PESA-II, SPEA2, NSGA-II, 

etc., representing leading research in this category. 
With these methods, NSGA-II and SPEA2 are easy 
to implement and do not have parameters for diver-
sity in a population (Konak et al., 2006). So, we 
applied these algorithms to document clustering. 

2.3 Document Representation 

In order to perform document clustering, an im-
portant process is document representation. The 
general approach uses Vector Space Model (VSM) 
to represent documents. The document vector that 
represents the character of the document is formed 
by the weights of the terms indexed in a document 
(Choi et al, 2008). The following equation is the nth 
document vector whose size is 1 by t. t is the number 
of the total indexed terms in the corpus and W is the 
term weight. 

݀ ൌ 〈 ܹ,ଵ, ܹ,ଶ, ⋯	, ܹ,௧〉. (1)

We extracted the indexed terms by using stop words 
and Porter’s stemming, and calculated the term 
weight by Okapi’s calculation (Salton and Buckley, 
1988). In VSM we use cosine measure to compute 
the similarity between two documents (Xia et al., 
2006). The cosine similarity between document d1 
and d2 is defined by: 
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2.4 MOP for Document Clustering 

The document clustering using GA with a single 
objective function can be regarded as an optimiza-
tion problem to optimize the cluster validity index. 
This view offers a chance to apply MOP on the clus-
tering problem. Therefore, the document clustering 
was thought of as MOP optimizing two cluster va-
lidity indices through this trade-off relation as: 

argmax∈൫FCHሺܥሻ ∧ FDBሺܥሻ൯, (3)

where P is the population and P = {C1, C2, … , Ci, 
… , Cn}. Ci is a chromosome and Ci = {CN1, CN2, 
… , CNj, … , CNm}. CNj is the cluster number as-
signed to a documents and 1  CNj  K, n is the 
number of chromosomes in a population, m is the 
number of documents and K is the number of clus-
ters. FCH and FDB are indicated as CH index (Ca-
linski and Harabasz, 1974) and DB index (Davies 
and Bouldin, 1979) for the objective functions of 
MOGA. Objective function prescribes the optimality 
of a solution in GA. A clustering validity index was 
used as the objective function and determines the 
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optimal partition and the optimal number of clusters. 
If the cluster validity index has the minimum value 
or maximum value, optimal clustering will result. 

2.5 Chromosome Encoding 
and Evolution Principles 

In document clustering using MOGAs, data should 
be close to gene structure through the encoding pro-
cess. The chromosome is encoded by a string of 
integers. Each chromosome in the population is 
initially encoded by a number of m genes with an 
integer value randomly in the range 1~K, where m is 
the number of documents and K is the number of 
clusters. Thus, each gene represents a document, and 
the value of a gene represents a cluster number. 

 

Figure 1: Chromosome encoding for the document cluster-
ing. 

For example, in Figure 1, for m = 6 and K = 4, the 
encoding {2, 3, 1, 4, 2} allocates the first document 
to the second cluster, the second document to the 
third cluster and the third document to the first clus-
ter, and so on. That is, the document clustering using 
MOGAs finds the optimal cluster group of each 
document. Also, Multi-Point Crossover and Uniform 
Mutation were adopted in the evolution operators. 

3 DOCUMENT CLUSTERING 
USING MOGAS BASED ON 
CUDA 

3.1 Basic CUDA 

This section introduces the main concepts behind the 
CUDA (Compute Unified Device Architecture) 
programming model. CUDA is a platform developed 
by NVIDIA® for performing massively parallel 
computations on NVIDIA® Graphics Processing 
Unit (GPU). It enables dramatic increases in compu-
ting performance by the power of the GPU and pro-

vides the ability to use high-level languages such as 
C to develop the application. The basic architecture 
of CUDA is as Figure 2. 

 

Figure 2: The basic architecture of CUDA. 

(1) Copy input data from the Main Memory of
Host to Memory for GPU in Device 

(2) Instruct the processing (Load GPU program)
(3) Execute parallel in each Core of GPU 

(4) Copy results from Main Memory in HOST 
to Memory for GPU in Device 

As illustrated by Figure 3, parallel portions of an 
application execute on the device as kernels. A ker-
nel function that is called by the host is the basic unit 
of work on GPU, and it is executed by an array of 
threads in parallel. All threads execute the same 
code and these are grouped into blocks. Blocks are 
organized into a grid and a kernel is executed as a 
grid of blocks of threads. 

 

Figure 3: Thread hierarchy in CUDA. 

Threads may access data from multiple memory 
spaces during their execution, as illustrated by Fig-
ure 4. Per-thread local memory is private to the 
thread. Per-block shared memory is shared by all 
threads of the block and same lifetime as the block. 
Threads can safely share data through this memory. 
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Global memory is device level memory that is 
shared by all threads. 

 

Figure 4: Memory hierarchy in CUDA. 

3.2 Issue of Document Clustering using 
MOGAs based on CUDA 

The procedure of document clustering using MO-
GAs is shown in Figure 5. First, documents are rep-
resented by using IR techniques (Stop Word Re-
move, Porter’s Stemming). Second, the documents 
are clustered by using MOGAs, NSGA-II and 
SPEA2. 

 

Figure 5: Procedure of document clustering using MO-
GAs. 

The performance of the document clustering using 
NSGA-II and SPEA2 among MOGAs is better than 

the other clustering algorithms (k-means, conven-
tional GA). The time complexities of NSGA-II and 
SPEA2 are O(MN2) and O(MN2logN) respectively, 
where M is the number of objective functions and N 
is the population size. MOGAs using the cluster 
validity indices as the objective functions require 
higher computational complexity. Moreover, in or-
der to perform document clustering, an important 
process is document representation.  

The general approach uses VSM to represent 
documents. VSM has many drawbacks; because 
each unique term in the vocabulary represents one 
dimension in feature space, VSM needs a large 
number of features to represent high dimensions, 
and it can easily cause the high cost of computation-
al time. To overcome these problems, we adopted 
the data parallel computations on kernel function in 
CUDA to the calculating the objective function of 
the population.  

In Figure 5, evolution operators (initial popula-
tion, selection, crossover, mutation) of MOGAs are 
executed by serial code in host. The objective func-
tions of each chromosome in population are calcu-
lated by parallel code with CUDA in device. We 
propose two architectures which are called Term-
Threads and Document-Threads. We designed the 
implementation process described detailedly as fol-
lowing. 

 

Term-Threads 
 

Step 1 : ith chromosome in a population at genera-
tion p, centroid vectors, and document vectors allo-
cate to global memory in device.  
Step 2 : Set block size n. n is the number of docu-
ments and each block indicates value of gene. Con-
sequently, xth block indicates nth document vector 
(Dn). For example, first block allocates to the first 
document vector, second block allocates to the sec-
ond document vector and so on.  
Step 3 : Set threads size t in each block. Each thread 
indicates term weight (Wn,t) in document vector (Dn).  
Step 4 : Start computation of each block; calculate 
cosine similarity between component of document 
vector (Wn,t) and component of centroid vector (Ck,t) 
in each thread. 
Step 5 : Finally, the result of cosine similarity be-
tween document vector (Dn) and centroid vector 
(CVk) allocates to the shred memory in each block. 
So, we use it for clustering validity index (CH index, 
DB index). 
 

Consequently, in Term-Threads architecture as 
shown Figure 6, genes of ith chromosome are as-
signed to each block. So, it simultaneously calcu-
lates n documents cosine similarity in an ith chromo-
some and number of iteration is population size. 
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Figure 6: Term-Threads architecture. 

 

Figure 7: Document-Threads architecture. 
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Document-Threads 
 

Step 1 : population at generation p, centroid vectors, 
and document vectors allocate to global memory.  
Step 2 : Set block size i. i is the number of chromo-
some in population at generation p and xth block 
indicates ith chromosome. For example, first block 
allocates to the first chromosome, second block 
allocates to the second chromosome and so on.  
Step 3 : Set threads size n in each block. Each 
thread indicates value of gene in ith chromosome. 
Consequently, nth thread indicates nth document 
vector (Dn). 
Step 4 : Start computation of each block; calculate 
cosine similarity between document vector (Dn ) and 
centroid vector (CVk) in each thread. 
Step 5 : Finally, the result of cosine similarity be-
tween document and centroid vector allocates to the 
shred memory in each block. So, we use it for clus-
tering validity index (CH index, DB index). 

While in Document-Threads architecture as 
shown Figure 7, chromosomes of population at gen-
eration p are assigned to each block. So, it simulta-
neously calculates n × i documents cosine similarity 
in a generation p. 

4 EXPERIMENT RESULTS 

In this section, we implement our method of MO-
GAs on CUDA for document clustering on the Reu-
ters-21578 collection, which is one of the most 
widely adopted benchmark datasets in the text min-
ing field, and compare and discuss the performance 
of MOGAs on CUDA with conventional GA. Also, 
we use F-measure (Fragoudis et al., 2005) to evalu-
ate the performances of these clustering algorithms. 
The population number in our conventional GA and 
MOGAs is 300. These algorithms are terminated 
when the number of generations reaches 1,000, or 
when the iterations without improvement reach con-
secutive 20. In the current test data set 1, containing 
100 documents from three topics (acq(30), 
crude(30), trade(40)), data set 2 containing 200 
documents from four topics (coffee(50), trade(50), 
crude(50), sugar(50)), and data set 3 containing 300 
documents from six topics (coffee(50), trade(50), 
crude(50), sugar(50), grain(50), ship(50)) are se-
lected. After being processed by word extraction, 
stop word removal, and Porter’s stemming, there are 
1019, 3436 and 4210 index terms, respectively. Al-
so, the index term weight that is extracted by using 
the Okapi’s calculation was determined.  

We implement our experiments in two steps: 
Firstly, by comparing the performances of the MO-

GAs to those of the other clustering algorithms for 
the different data sets in serial code. Secondly, by 
comparing the computational times of these algo-
rithms for the same data sets then we design GPU 
parallel code and compare the computational times 
with CPU serial code. 

Figure 8 shows the performances of clustering 
algorithms with the different data sets. GA indicates 
the conventional GA with single objective function. 
NSGA-II and SPEA2 indicate the MOGAs with two 
objective functions. DB and CH indicate objective 
functions applied in the clustering algorithms. DB 
stands for DB index and CH for CH index. In sum-
mary, the clustering performances in all data sets are 
highest F-measure when using NSGA-II and next, 
SPEA 2. With each data set, the average F-measure 
value of MOGAs using the NSGA-II and SPEA2 is 
0.79, 0.75 and 0.80. Consequently, the document 
clustering applying the MOGAs shows the perfor-
mance about 21% than conventional GA. 

 

Figure 8: The clustering performance for each data set. 

However, as a result of Table 1 the computational 
time of MOGAs is greater than GAs. So, we adopted 
CUDA for reduce computational times in document 
clustering using MOGAs. We evaluate performance 
of our MOGAs base on CUDA implementation us-
ing GeForce GTX 550Ti video cards with 192 cores 
and 1 GB of RAM DDR3. GeForce GTX 550 Ti 
consists of four Streaming Multiprocessors (SM). 
Each SM consists of eight processor cores called 
Streaming Processors (SP). In effect, GeForce GTX 
550 Ti is a massively-parallel multi-core processor 
embodying 32 SPs in total and maximum number of 
active threads on each block is 1,024, in total more 
than 130,000 threads. The computer used for exper-
iments was a desktop PC with Intel Core i7-2600 to 
3.4 GHz, 8 GB of RAM, operating system 64-bit 
Microsoft Windows 7 sp1.  
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Table 1: The computational time of MOGAs and general 
GA (minutes). 

 Test Data Sets 
Data Set 1 Data Set 2 Data Set 3 

GA(DB) 34 110 237
GA(CH) 52 130 253
NSGA-II 84 162 334
SPEA 2 93 178 350
 

Table 2 shows the computational times of each data 
set of MOGAs using serial code and MOGAs using 
parallel code based on CUDA with two thread archi-
tecture, Term-Threads and Document-Threads. 

Table 2: The computational time of MOGAs based on 
CUDA, general MOGAs (seconds). 

 Test Data Sets
Data 
Set 1 

Data 
Set 2 

Data 
Set 3 

Serial 
Code 

NSGA-II 5,040 9,720 20,040
SPEA 2 5,580 10,680 21,000

Parallel 
Code 

NSGA-II 

Term- 
Threads 

120 ‒ ‒ 

Document-
Threads 

7 24 220 

SPEA 2 

Term- 
Threads 

122 ‒ ‒ 

Document-
Threads 

8 25 220 

 

From Table 2, we can see that the Term-Threads 
and Document-Threads architecture are faster than 
serial code. Also, CUDA helps to reduce computa-
tional times substantially. Especially, Document-
Threads architecture can get 600x, 400x, and 90x 
speed-up in each data sets respectively. However, in 
Table 2, Term-Threads architecture is impossible 
to implement over 1,024 threads because maximum 
number of active threads per block is 1,024 on Ge-
Force GTX 550 Ti. That is, Term-Threads architec-
ture is impossible to execute when number of term is 
over 1,024. 

5 CONCLUSIONS 

We have presented document clustering using MO-
GAs based on GPGPU to solve the problem of long 
computational time in the general MOGAs. The 
document similarity of the objective functions in 
MOGAs is computed with GPGPU using the parallel 
computing platform of CUDA.  

The results show that these MOGAs enhanced 
the clustering performance about 12% higher than 

those of both the general GA. Furthermore, two 
architectures, Term-Threads and Document-
Threads, show faster execution times than general 
MOGAs. Especially, Document-Threads architec-
ture gains over 600x speed-up and handles more 
than 1,000 documents simultaneously with Term-
Threads architecture. 

In future, we will do more work on some optimi-
zation techniques of the document clustering in 
CUDA, seeking the best of threads architectures for 
document clustering.  
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