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Abstract: This work focuses the attention on the automatic segmentation of meningioma from multispectral brain 
Magnetic Resonance imagery. The Authors address the segmentation task by proposing a fully automatic 
method hierarchically structured in two phases. The preliminary unsupervised phase is based on Graph Cut 
framework. In the second phase, preliminary segmentation results are refined using a supervised 
classification based on Support Vector Machine.  The overall segmentation procedure is conceived fully 
automatic and tailored to non-volumetric data characterized by poor inter-slice spacing, in an attempt to 
facilitate the insertion in clinical practice. The results obtained in this preliminary study are encouraging and 
prove that the segmentation benefits from the allied use of Graph Cut and Support Vector Machine 
frameworks.  

1 INTRODUCTION 

Magnetic Resonance (MR) imaging has become an 
important tool for the clinical study of brain 
pathologies. The high resolution and contrast and 
good soft tissue differentiation allow physicians 
accurately locate specific pathologies. A precise 
segmentation of pathological and healthy tissues 
composing the MR image is important for 
understanding the pathology, for evaluating the 
evolutionary trend, for planning the best surgical 
approach or possible alternative solutions. 
Automated methods of segmentation represent a 
valuable solution by supporting human operators 
with varying degrees of automation, in tracing the 
boundaries of the different tissue regions and by 
automatically providing volumetric computation of 
the pathological MRI signal (Clark et al., 1995, Kaus 
et al., 2001; Withey and Koles, 2008; Balafar et al., 
2010).  

The last 20 years  have seen a rapid growth in the 
use of semi-automatic or fully automatic 
segmentation methods in MR brain tumor studies. 
Several techniques have been proposed in studies 
distinguished by the type of brain tumor treated,  by 
the tissue features extracted in different MRI 
modalities. The proposed techniques   make use of  

individual images or multispectral patterns and are 
supervised or unsupervised (Gordillo et al. 2013, 
Bauer et al. 2013). Despite the sizable achievement 
obtained, novel approaches are continuously 
investigated to provide robust solutions and fulfil 
hard accuracy and reproducibility requirements.  In 
the last few years Support Vector Machine (SVM) 
methods (Vapnik 1995; Schoelkopf and Smola 
2002) have shown excellent performances in MRI 
segmentation studies aimed at identifying a variety 
of neurological conditions (Verma et al. 2008, Bauer  
et al., 2013).  Recent studies propose the allied use 
of SVM and regularisation procedures to introduce 
spatial consistency in classification results (Bauer et 
al. 2011).    

This  work focuses the attention on the automatic 
segmentation of meningioma from multi-spectral 
brain MR imagery. Meningioma is one of the few 
benign tumors found in the brain region. Precise 
tumor detection contributes to formulate surgical 
indications in elderly patients harboring intracranial 
meningiomas and supports surgical planning for a 
complete surgical resection (Greenberg et al. 1999, 
Caroli et al. 2005).   

The Authors address the segmentation task by 
proposing a fully automatic method hierarchically 
structured in two phases. The preliminary 
unsupervised phase is based on Graph Cut 
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framework (Boykov and  Funka-Lea  2006). In the 
second phase preliminary segmentation results are 
refined using a supervised classification based on 
Support Vector Machine (SVM) (Vapnik 1995). The 
supervised classification  makes use of multichannel 
intensities of Post Gadolinium T1-weighted (T1c) 
and T2-weighted FLAIR image (T2f). Additional 
textural and contextual features are considered and 
systematically added during the experimentation in 
order to measure their effective contribution. The 
proposed  hybrid strategy synergically combines the 
mutual advantages of the unsupervised and 
supervised techniques. The Graph Cut segmentation 
takes into account topological constraints and 
identify spatially consistent regions subsequently 
refined by the SVM which is able to capture 
complex multivariate relationships in the data.  

The overall segmentation procedure is conceived 
fully automatic and tailored to non-volumetric data 
characterized by poor inter-slice spacing, in an 
attempt to facilitate the insertion in current clinical 
practice. 

2 THEORETICAL 
BACKGROUND 

This section briefly outlines the basic concepts of 
Graph Cut and SVM adopted in the proposed hybrid 
segmentation strategy. 

2.1 Graph Cut 

Within the graph theoretical approach, the 
segmentation problem is modeled in terms of 
partitioning a graph into several sub-graphs such that 
each of them represents a meaningful object of 
interest in the image (Wu and Leahy, 1993; Rother 
et al. 2004, Peng and Liu, 2010). Proceeding from 
these principles several methods were investigated.  

The aim of a volumetric segmentation 
problem is to assign to each voxel v ∈ V  a label 
representing the membership of the voxel to a 
specific region Li; in the  case of binary 
segmentation aimed to subdivide the image into 
Object (Obj) and Background (Bkg), the goal is to 
find the optimal labeling L = (LBkg;LObj ). We 
assume that each voxel v has two cost values, 
Rv(OObj) and Rv(OBkg), related to Object and 
Background labeling respectively. Each pair of 
voxels (v,w)  belonging to the set N of pairs of 3D 
neighboring voxels  has a cost  Bv;w. The cost Bv;w is 
related to the type of labeling of the pair of  voxels. 

The optimal labeling L = (LBkg;LObj) is obtained by 
minimizing the following cost function: 
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R(L) and B(L) are called Regional and Boundary 
terms respectively. The application of Graph Cut 
requires the identification of object and background 
prototypes with which to initialize the overall 
segmentation process. Usually this task  is 
accomplished through an interactive session in 
which users manually select seeds on the image. 

Recently  there have been some proposals 
exploiting solutions for automatically initializing 
Graph Cut-based segmentations of biomedical 
images (Santle et al., 2012). 

The present study uses the max-flow/min-cut 
algorithm (Boykov and Kolmogorov 2004) as 
optimization framework and adopts an automated 
initialization procedure based on k-means clustering 
algorithm. 

2.2 SVM 

SVM is a classification algorithm based on kernel 
methods (Vapnik 1995; Schoelkopf and Smola 
2002) able to map the original parameter vectors 
into a higher (possibly infinite) dimensional feature 
space through a kernel function. Classes which are 
non-linearly separable in the original space can be 
linearly separated in the higher dimensional feature 
space.  

Let {(xi, yi)}  a supervised training set of 
elements  for a two-class classification problem, 
with  xi  X  Rn  and  yi  {-1, 1}. Considering 
the case of linearly separable data,  the solution to 
the classification problem consists in the 
construction of  the  decision function 

 fw, b (x) = sgn(gw, b(x))  with g w, b(x)  = wt x+ b 
that can correctly classify an input pattern x that is 
not necessarily from the training set.  

SVM classifier defines  the hyperplane  that 
causes the largest separation between the decision 
function values for the “borderline” examples from 
the two classes. Mathematically, this hyperplane can 
be found by minimizing the cost function: 
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The extension to the nonlinear classification is 
based on the function   g’= WT φ (X ) + b   in which 
the non liner operator  φ (.)  is introduced. 

In this case the SVM cost function to be 
minimized is  
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Linearly non separable data are analyzed with kernel 
functions such as higher order polynomials and 
Gaussian Radial Basis Functions (RBF). Suykens 
(Suykens et al. 2002) proposed a new formulation of 
SVM by adding a least squares (LS) term in the 
original formulation of the cost function.  

3 FULLY AUTOMATED 
MENINGIOMA 
SEGMENTATION  

The salient aspect of the overall segmentation 
strategy is the use of a supervised learning procedure 
based on SVM model, able to learn from a set of 
labeled image elements the invariant common 
properties of the pathological and healthy classes. 
The trained classifier automatically assigns labels to 
elements never seen during the training phase.  

The use of the two MR modalities, T1c and T2f, 
is motivated by the fact that each scan depicts 
different characteristics of the tissues. The combined 
use of the two images allows obtaining higher 
discriminant power than just by analyzing one of 
them.  

The SVM classifier acts as a dichotomizer 
receiving in input a multidimensional pattern 
including intensities of T1c and T2f MR elements 
and contextual/textural features derived from the 
two scans respectively. The supervised classification 
procedure is built on the top of an unsupervised 
unidimensional Graph Cut-based segmentation of 
T1c and T2f MR images. The unsupervised stage 
facilitates the subsequent supervised task by 
identifying an intermediate hybrid class distributed 
in a limited area and subsequently subdivided by the 
SVM in meningioma and healthy tissue.  

Before the segmentation process, T1c and T2f 

MR images are co-registered for their combined use 
in the analysis and a logarithmic contrast 
enhancement is applied in order to enhance the 
similarity between the edema and brain tissues in the 
T2f image.  

3.1 Graph Cut Based Segmentation 

Graph Cut segmentation is separately applied to T1c 
and T2f images allowing the labeling of intermediate 
hybrid regions. The intersection of these initially 
identified regions is subsequently analyzed and 
classified by the SVM to identify meningioma areas. 
The initialization of the Graph Cut segmentation is 
automatically accomplished through the use of the k-
means clustering algorithm. The segmentation of 
T1c image in three sub-volumes allows to identify a 
hybrid region including all the contrast enhanced 
tissues: meningioma, vessel and skull tissues. 

From the segmentation of T2f image a partition 
of the original volume in three regions is also 
obtained corresponding to “air”, 
“brain/edema/meningioma” and “skull” respectively.  
By intersecting the hybrid region originally 
identified in T1c with the 
“brain/edema/meningioma” region identified in T2f 
we obtain a refined region of interest to be presented 
in input to the SVM classifier for the identification 
of meningioma areas. 

3.2 Supervised Multispectral 
Classification 

The present study considers the following features: 
gray scale values from T1c and T2f scans (It1c,It2f), 
first order texture features: mean (M) , variance 
(Var), skewness (S), kurtosis (K) and entropy (E) 
computed on T1c and T2f scans, intensities in 
neighborhoods of  voxels of both scans (I1-I26) . All 
proposed features have been analyzed systematically 
in the experimental evaluation phase in order to 
determine the combination that is most appropriate 
for the classification task (see section 4). The 
features have been normalized to have zero mean 
and unit variance.   

A binary hard categorization is performed by the 
SVM classifier that labels co-registered voxels 
belonging to the region identified in the 
unsupervised phase, as Meningioma (M) and 
Healthy tissue (H). The SVM classifier is configured 
as soft-margin LS model with Kernel RBF. During 
the training phase, the SVM learns an approximation 
for the true input–output relationship based on a 
given training set of examples constituted by N 
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supervised label denoting the membership in the 
meningioma or healthy class.  

After the segmentation, if the tumor area presents 
necrosis and dishomogeneity, small holes within the 
tumor mass classified as healthy tissues may appear . 
A morphological procedure is therefore used to 
refine the segmented masks making the tumor area 
segmented more solid and compact.  

4 EXPERIMENTS 

The segmentation method was experimented on 
multispectral datasets of 10 patients. Each dataset is 
composed of T1c and T2f scans. The T1c is acquired 
using a 3D sequence characterized by 1 mm 
isotropic voxels, the inter-slice spacing of 1 mm and 
the slice thickness of 1 mm; the T2f sequence 
includes an in-plane resolution between 0,75 and 
0,81 mm and slice thickness of 5 mm. The spacing 
between slice is 6 mm for cases 1,3,6,7,8,10 and of 
6.5 mm for cases 2,4,5,9. Performances were 
assessed by adopting a behavioral comparison 
strategy in which the masks obtained by the 
automated segmentation were compared with the 
masks obtained through a manual segmentation of 
the T1c images. Manual labeling was performed by 
a team of three experts with the support of a slice-
by-slice manual annotator.  

The strategy adopted for the definition of a 
suitable reference standard starting from 
combination of multiple manual segmentations, is 
Majory Voting (Heckemann et. al 2006). 

4.1 Metrics 

MRI segmentation was performed with the purpose 
of determining the volume of pathological tissues 
and their spatial distribution. The metrics adopted 
for the volume estimation error is the normalized 
absolute difference in size between reference and 
segmented data.  

Spatial overlap between reference and automated 
maps is measured in terms of Jaccard (J), Precision 
and Recall indexes (Bouix et al. 2007).  

Common agreement between experts and 
automated segmentation is quantified directly by the 
Williams’ index. If this index is greater than one for 
a given rater, it can be concluded that current rater 

agrees with the other raters at least as well as they 
agree with each other (Williams 1972). 

4.2 Results 

A trial and error phase was conducted in which 
several configurations of the segmentation procedure 
were considered distinguished by different values of 
main parameters involved.  

A first set of parameters was varied to tune the 
Graph Cut model and the LS-SVM classifier. The k-
means algorithm has been used to initialize Graph 
Cut segmentation.  The value of k parameter was set 
equal to three. The k value has been assessed taking 
into account the expected MR signal in both the 
MRI sequences considered. The value of the 
standard deviation (σ) for Gaussian RBF kernel was 
chosen as 0.5 in the SVM classifier.  

Different configurations of the classification 
procedure were also evaluated varying the number 
of training examples and the features considered. 
The configuration that showed the most balanced 
behavior after the trial and error phase is based on 
the following vector of features 
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and used a training set of 10.000 labeled samples 
randomly chosen within the ground truth masks. 

Table 1: Mean values of Jaccard, Precision, Recall and 
Volume Error obtained by performing the leave-one-out 
cross-validation (Interpatient) and by training and testing 
the classifier on the same dataset (Intrapatient).  

  

Jaccard 
Index 

Precision Recall 
Volume 
Error 
(%) 

Interpatient 
Mean 0.867 0.814 0.942 16.087 
Std 0.072 0.095 0.081 11.145 

Intrapatient 
Mean 0.959 0.967 0.991 4.750 
Std 0.031 0.031 0.004 3.152 

 

As shown in Table 1, for the intrapatient 
analysis, the mean Jaccard coefficient over all 10 
patients is 0.959, Precision and Recall have a value 
equal to 0,967 and 0,991 respectively; the Volume 
Estimation Error is equal to 4,750. The interpatient  
analysis has provided a Jaccard cofficient equal to 
0,867,  Precision and Recall equal to 0,814 and 
0,942 respectively and a Volume Estimation Error 
equal to 16,087.  

In Table 2 the results obtained using the 
Williams’ index are listed. Numerical values clearly 
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Table 2: Williams’ Indexes obtained by considering the 
manual segmentations (E1-E3) and the automatic 
segmentation (A) of the 10 cases under study. 

W. I. 1 2 3 4 5 6 7 8 9 10 

E1 1.0 1.0 1.0 1.0 1.0 0.9 0.9 1.0 0.9 1.0
E2 0.9 0.9 1.0 0.9 0.9 1.0 1.0 1.1 0.9 0.9
E3 0.9 1.0 0.9 1.0 0.9 1.0 1.0 0.7 1.0 1.0

A 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.1 1.0 1.0
 

indicate that the automatic segmentation method has 
a good behavior with respect to the inter-expert 
variability and often it shows a better behavior than 
other raters.  
 

 

Figure 1: Results of one axial slice obtained by the 
interpatient analysis. a) Original T1c image, b) Original 
T2f image, c) Overlap between original T1c image and the 
ground truth mask, d) Overlap between original T1c image 
and the intermediate mask obtained by Graph Cut 
segmentation, e-f) Overlap between original T1c image 
and the final segmentation mask obtained by interpatient 
analysis, considering and without considering Graph Cut 
stage respectively. 

Figure 1 shows an axial slice of one patient and 
the results obtained considering and without 
considering Graph Cut stage in the overall strategy. 
Results are clearly worse when not using the Graph 
Cut preliminarily. For the dataset shown in Figure 1, 
we obtained a Jaccard coefficient equal to 0.21109 
and Volume Error equal to 363.4476 when no Graph 
Cut is applied. With the complete procedure, Jaccard 
is equal to 0.856 and Volume Error is equal to 7.119. 
The mean computation time for the training task is 
60 seconds and for the segmentation task performed 
by the trained classifier is 159 seconds (without 
Graph Cut, 732 s.) on a single CPU running at 2.26 
Ghz. 

 

5 CONCLUSIONS 

Our objective in this study was to develop a fully 
automatic hybrid image segmentation strategy for 
meningioma segmentation in Magnetic Resonance  
brain images. The supervised segmentation 
framework is built on the top of the Graph Cut 
algorithm initialized automatically. The strategy was 
tested on a preliminary  collected data set. The 
results prove that the allied use of Support Vector 
Machine and Graph Cut produces accurate 
segmentation of tumors present in scenarios of 
varied complexity. Accuracy results obtained are 
encouraging. Future plans contemplate the 
acquisition of new data with which to perform a 
more significant interpatient analysis and to develop 
of a comparative evaluation with other methods.  
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