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Abstract: In this work we present an ontology-based system equipped with a hybrid architecture for the representation of
conceptual information. The proposed system aims at extending the representational and reasoning capabilities
of classical ontology-based systems towards more realistic and cognitively grounded scenarios, such as those
envisioned by the prototype theory. The resulting system attempts to reconcile the heterogeneous approach to
the concepts in Cognitive Science and thedual process theoriesof reasoning and rationality. The system has
been experimentally assessed in a conceptual categorization task where common sense linguistic descriptions
were given in input, and the corresponding target concepts had to be identified. The results show that the
proposed solution substantially improves on the representational and reasoning “conceptual” capabilities of
standard ontology-based systems.

1 INTRODUCTION

One of the main open problems in the field of on-
tology engineering is that formal ontologies do not
allow –for technical convenience– neither the repre-
sentation of concepts in prototypical terms nor forms
of approximate, non monotonic, conceptual reason-
ing. Conversely, in Cognitive Science evidences exist
in favor of prototypical concepts, and typicality-based
conceptual reasoning has been widely investigated in
the fields of the studies regarding the human cogni-
tion. In this field the early work of Rosch (Rosch,
1975) showed that ordinary concepts do not obey the
classical theory (stating that concepts can be defined
in terms of sets of necessary and sufficient condi-
tions). Rather, they exhibitprototypical traits: e.g.,
some members of a category are consideredbetter in-
stancesthan other ones; morecentral instances share
certain typical features –such as the ability of fly-
ing for birds– that, in general, cannot be thought of
as necessary nor sufficient conditions. These results
influenced pioneering KR research, where some ef-
forts were invested in trying to take into account the
suggestions coming from Cognitive Psychology: ar-
tificial systems were designed –e.g., frames (Min-
sky, 1975) and semantic networks– to represent and
to conduct reasoning on concepts in “non classical”,

prototypical terms.
However, these systems were later sacrificed in fa-

vor of a class of formalisms stemmed from structured
inheritance semantic networks and based in a more
rigorous semantics: the first system in this line of
research was the KL-ONE system (Brachmann and
Schmolze, 1985). These formalisms are known to-
day as description logics (DLs) (Nardi and Brachman,
2003). In this setting, the representation of prototyp-
ical information (and therefore the possibility of per-
forming non monotonic reasoning) is not allowed,1

since the formalisms in this class are primarily in-
tended for deductive, logical inference. However, un-
der a historical perspective, the choice of preferring
classical systems based on a well defined –Tarskian-
like– semantics left unsolved the problem of repre-
senting concepts in prototypical terms. Although in
the field of logic oriented KR various fuzzy and non-
monotonic extensions of DL formalisms have been
designed to deal with some aspects of “non-classical”
concepts (Straccia, 2011; Giordano et al., 2013),
nonetheless various theoretical and practical prob-
lems remain unsolved (Frixione and Lieto, 2010).

In this paper a conceptual architecture is presented

1This is the case, for example, ofexceptionsto the in-
heritance mechanism.
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that, embedded in a larger knowledge-based system,
aims at extending the representational and reasoning
capabilities available to traditional ontology-based
frameworks.

The paper is structured as follows: in Section 2 we
illustrate the general architecture and the main fea-
tures of the knowledge-based system. In Section 3
we provide the results of a twofold experimentation
to assess the accuracy of the system in a categoriza-
tion task. Finally, we conclude by presenting the re-
lated work (Section 4) and outlining future work (Sec-
tion 5).

2 THE SYSTEM

Two cornerstones inspiring the current proposal are
the dual process theoryand the heterogeneous ap-
proach to concepts in Cognitive Science. The theoret-
ical framework known asdual process theorypostu-
lates the co-existence of two different types of cogni-
tive systems (Evans and Frankish, 2009; Kahneman,
2011). The systems of the first type (type 1) are phy-
logenetically older, unconscious, automatic, associa-
tive, parallel and fast. The systems of the second type
(type 2) are more recent, conscious, sequential and
slow, and featured by explicit rule following.

We assume that each system type can be com-
posed by many sub-systems and processes; according
to the hypotheses in (Frixione and Lieto, 2012; Frix-
ione and Lieto, 2014), the conceptual representation
of our system includes two main sorts of components,
based on two sorts of processes.Type 1processes are
used to perform fast and approximate categorization,
and benefit from prototypical information associated
to concepts.Type 2processes, used in classical in-
ference tasks, and not considering the contribution
of prototypical knowledge. The two sorts of system
processes are assumed to interact, since type 1 pro-
cesses are executed first and their results are then re-
fined by type 2 processes. We also based our work on
the heterogeneous approach to the concepts in Cogni-
tive Science (Machery, 2009). According to this per-
spective, concepts do not constitute a unitary element;
rather, artificial concepts can be composed by several
bodies of knowledge, each one conveying a specific
type of information.

The whole system embedding the proposed con-
ceptual architecture works as follows. The input to
the system is a simple description, like ‘The animal
that eats bananas’: and the expected output is the cat-
egorymonkey. We devised an Information Extraction
(IE) step in order to map the linguistic input to an in-
ternal representation. In turn, the internal represen-

tation is fed into the proposed architecture, which is
concerned with the categorization task. Due to space
restrictions, we are presently concerned with the ar-
chitecture, deferring the details about the IE task to
future contributions.

2.1 Knowledge Base Architecture

We designed a hybrid conceptual architecture that
builds on a classical ontological component, and on
a typical one. Each component represents a specific
conceptual body of knowledge together with the re-
lated reasoning procedures as in the dual process per-
spective. A classical representation grounded on a DL
formalism is the base of the ontological component.
It permits listing necessary and/or sufficient condi-
tions to define concepts. For example, if we consider
the conceptwater, the classical representation con-
tains the information thatwater is a natural substance,
whose chemical formula isH2O. On the other hand,
the prototypical traits include information about the
fact that water usually occurs in liquid state, and it is
mostly a tasteless, odorless and colorless fluid.

According to the “dual process” approach, in
the implemented system the representational and
reasoning functions are assigned to the system 1
(hereafterS1), that executes processes of type 1,
and are associated to the Conceptual Spaces frame-
work (Gärdenfors, 2000). On the other hand, the rea-
soning and representational functions are assigned to
the system 2 (hereafterS2), to execute processes of
type 2, and are associated to a classical DL-based on-
tological representation.

2.1.1 The S1 and S2 Components

Conceptual spaces (CS) are a geometrical representa-
tional framework where knowledge is represented in
terms of as a set ofquality dimensions(Gärdenfors,
2000). A geometrical structure is associated to each
quality dimension. In this framework instances are
represented as points in a multidimensional space,
and their similarity can be computed as the interven-
ing distance, based on some suitable distance met-
rics. In this setting, concepts correspond to regions
and regions with different geometrical properties cor-
respond to different sorts of concepts.

Conceptual spaces are suitable to represent con-
cepts in “typical” terms, since the regions represent-
ing concepts can have soft boundaries. Prototypes
have a natural geometrical interpretation, in that they
correspond to the geometrical centre of the convex re-
gion; conversely, given a convex region we can pro-
vide each point with a certain centrality degree, that
can be interpreted as a measure of its typicality.
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The conceptual space defines a metric space that
can be used to compute the proximity between any
two entities, and between entities and prototypes. To
compute the distance between two pointsp1, p2 we
apply a distance metrics based on the combination of
the Euclidean distance and the angular distance inter-
vening between the points. Namely, we use Euclidean
metrics to compute within-domain distance, while for
dimensions from different domains we use the Man-
hattan distance metrics, as suggested in (Gärdenfors,
2000; Adams and Raubal, 2009). Weights assigned to
domain dimensions are affected by the context, too,
so the resulting weighted Euclidean distancedistE is
computed as follows

distE(p1, p2,k) =

√

n

∑
i=1

wi(p1,i − p2,i)2 ,

wherei varies over then domain dimensions,k is the
context that indicates the set of weights associated to
each domain, andwi are dimension weights.

We represent points as vectors (with as many
dimensions as required by the considered domain),
whose components correspond to the point coordi-
nates, so that a natural metrics to compute the simi-
larity between them iscosine similarity. In the metric
space being defined, the distance between an individ-
ual and prototypes is computed with the Manhattan
distance, enriched with information about contextk.
Also, the distance between any two concepts can be
computed as the distance between two regions in a
given domain Also, we can compute the distance be-
tween any two region prototypes, or the minimal dis-
tance between their individuals, or we can apply more
sophisticated algorithms. Further details about tech-
nical issues can be found in (Ghignone et al., 2013).

Inference in conceptual spaces is mostly per-
formed on incomplete and/or noisy information: that
is, it is frequent the case that only partial information
is available to categorize a given input individual, and
some points are not defined for one or more dimen-
sions. Conceptual spaces are robust to this sort of lack
of information, which is conversely a decisive factor
in the context of formal ontologies. In these cases we
restrict to considering domains that contain points in
the input individual: if the description for a given in-
dividual does not contain points of some domains, the
distance for those domains is set to a default value.

The basic representational structure processed by
the system is namedgenericDescription; it encodes
the salient aspects of the entities being considered. A
genericDescription is a super-domain that hosts infor-
mation about physical and non physical features ar-
ranged into nine domains:size, shape, color, loca-
tion, feeding, locomotion, hasPart, partOf, manRela-

tionship. The size of entities is expressed through
the three Euclidean dimensions; theshape allows ex-
pressing that an object has circular, square, spherical,
cubic, etc., shape. Thecolor space maps object’s fea-
tures onto theL⋆a⋆b⋆ color space.L⋆ (0≤ L ≤ 100)
is the correlate of lightness,a⋆ (−128≤ a ≤ 127) is
the chromaticity axis ranging from green to red, and
b⋆ (−128≤ b≤ 127) is the chromaticity axis ranging
from blue to yellow.

The location space indicates the place where the
object being modeled can be typically found. It actu-
ally results from the combination of five dimensions,
and namely:humidity, indicated as a percentage;tem-
perature, ranging in[−40◦,50◦]; altitude, ranging in
[−11000,8848]; vegetation, ranging in[0,100]; time.
In turn,time contains a partitioning of the hours of the
day intosunrise (4–6 AM), morning (6–12 AM), af-
ternoon (12–5 PM),evening (5–10 PM) andnight (10
PM–4 AM).

The domainfeeding is currently specific to ani-
mals, and it allows mapping an element over two di-
mensions,typeOfFood andamountOfFood. Thetype-
OfFood is associated to an integer indicating 1: her-
bivore, 2: lectivore, 3: detritivore, 4: necrophage,
5: carnivore. The underlying rationale is that close
elements (e.g., necrophage and carnivore, that are
one step apart in the proposed scale) are represented
as close in this space due to their proximity under
an ethological viewpoint, whilst different categories
(e.g., herbivore and carnivore) are featured by larger
distances in the considered scale (Getz, 2011).

Similar to the previous one, also thelocomotion
domain combines two dimensions: the former dimen-
sion is used to account for the type of movement (1:
swim, 2: dig, 3: crawl, 4: walk, 5: run, 6: roll, 7:
jump, 8: fly), and the latter one is used to account
for the speed, expressed in km/h (Bejan and Marden,
2006). Finally, themanRelationship space is used to
grasp entities as related to man byfunction (both a
train and a horse can be used as ‘transport’),product
(chicken produce ‘eggs’, and ‘chicken’per seare a
food product),symbol (‘lion’ can be used as a symbol
for ‘strength’ and ‘royalty’). A simplified example of
the lion prototype information is reported below.

<object name="lion">
<genericPhysicalDescription>
<feeding>

<foodType>5</foodType>
<foodQuantity>100</foodQuantity>

</feeding>
</genericPhysicalDescription>
<manRelationship>
<symbol id="08153437">royalty</symbol>
<symbol id="05036872">strength</symbol>

</manRelationship>
</object>
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On the other hand, the representation of the clas-
sical componentS2 is implemented through a formal
ontology. As already pointed out, the standard on-
tological formalisms leave unsolved the problem of
representing prototypical information. Furthermore,
it is not possible to execute non monotonic inference,
since classical ontology-based reasoning mechanisms
contemplate deductive processes.

In this setting we cannot represent even simple
prototypical information, such as ‘A typical rose is
red’. This is due to the fact that being red is neither a
necessary nor a sufficient condition for being a rose,
and therefore it is not possible neither to represent and
to automatically identify a prototypical rose (let us as-
sume #roseP) nor to describe (and to learn from new
cases) the typical features of the class of prototypical
roses. Such aspect has, on the other hand, a natural
interpretation by using the conceptual spaces frame-
work.

2.2 Inference in the Hybrid System

Categorization (i.e., to classify a given data instance
into a predefined set of categories) is one of the clas-
sical processes automatically performed both by sym-
bolic and sub-symbolic artificial systems. In our sys-
tem categorization is based on a two-step process in-
volving both the typical and the classical component
of the conceptual representation. These components
account for different types of categorization: approxi-
mate or non monotonic (performed on the conceptual
spaces), and classical or monotonic (performed on the
ontology). Different from classical ontological infer-
ence, in fact, categorization in conceptual spaces pro-
ceeds fromprototypicalvalues. In turn, prototypical
values need not be specified for all class individuals,
that vice versa can overwrite them: one typical exam-
ple is the case of birds that (by default) fly, except for
special birds, like penguins, that do not fly.

The whole categorization process can be summa-
rized as follows. The system takes in input a textual
descriptiond and produces in output a pair of cate-
gories〈c0,cc〉, the output ofS1 andS2, respectively
(see Algorithm 1). If theS2 system classifies it as
consistent with the ontology, then the classification
succeeded and the category provided byS2 (cc) is re-
turned along withc0, the top scoring class returned by
S1 (Algorithm 1: line 8). Ifcc –the class computed by
S2– is a subclass of one of those identified byS1 (ci),
both cc andc0 are returned (Algorithm 1: line 11).
Thus, if S2 provides more specific output, we follow
a specificityheuristics; otherwise, the output ofS2 is
returned, following the rationale that it issafer.2 A

2The output ofS2 cannot be wrong on a purely logical

Algorithm 1: Inference in the hybrid system.

input : textual descriptiond
output : a class assignment, as computed byS1 and

S2
1: C ← S1(d) /* conceptual spaces output

*/
2: for each ci ∈ C do
3: cc ← S2(〈d,ci〉) /* ontology based

output */
4: if cc == NULL then
5: continue /* inconsistency detected

*/
6: end if
7: if cc equalsci then
8: return 〈c0,cc〉
9: else

10: if cc is subclass ofci then
11: return 〈c0,cc〉
12: end if
13: end if
14: end for
15: cc← S2(〈d,Thing〉)
16: return 〈c0,cc〉

pair of results is always returned, including both the
output ofS1 and the output ofS2, thereby providing
typically valid answers (throughS1) that are checked
against a logically valid reasoning conducted on the
ontological knowledge base (throughS2). In so do-
ing, we follow the rationale that despite theS1 output
can contain errors, it furnishes approximate answers
that cannot be obtained by resorting only to classical
ontological inference.

If all results inC are inconsistent with those com-
puted byS2, a pair of classes is returned including
c0 and the output ofS2 having for actual parameters
d andThing, the meta-class of all the classes in the
ontological formalism.

An important function provided byS2 regards
the explanation of the detected inconsistencies. This
function is obtained by recurring to standard DL rea-
soners.3 One main problem encountered in the expla-
nation of inconsistencies regards the fact that reason-
ers’ output is usually quite verbose, since it provides
the whole chain of all the possible reasons explain-
ing why a given model is not consistent w.r.t. the

perspective, in that it is the result of a deductive process.
The control strategy implements a tradeoff between onto-
logical inference and the output ofS1, which is more in-
formative but also less reliable from a formal point of view.
However, in next future we plan to explore different concil-
iation mechanisms to ground the overall control strategy.

3To actually access the KBs we used the Jena frame-
work, https://jena.apache.org.
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represented assertions. For example, let us suppose
that the ontological KB is provided with an assertion
about the fact thatwhale isA fish. Whales are not
fishes: they are in the order ofcetacea. If an incon-
sistency is detected, the initial results obtained by the
reasoner report the following clauses: sincewhale isA
mammal, and sincemammalis disjoint with other an-
imal classes, it must also be disjoint with the classes
fish, reptile, bird and so on, as well as with all respec-
tive subclasses offish, reptile, bird. Although fac-
tually correct and complete, this explanation is quite
long (in an ontological KB with good coverage each
class contains many subclasses) and it thus provides
information not very informative for the punctual ex-
planation of the raised inconsistency. The only rele-
vant information, in this case, regards the fact that the
tested classwhale cannot be classified as afish be-
causemammalandfish are mutually disjoint classes.
The disjointness of the superclassmammalwith the
other classes in the ontology is not contextually rele-
vant in this phase. Therefore we designed and imple-
mented a software layer that runs on top of Jena expla-
nation utilities to extract alaconic explanationfrom
the longer one: main focus of the laconic explanation
is to make apparent the cause of the inconsistency. In
so doing, we adopted a simple heuristic according to
which the only motivation reported is that focused on
the tuples of classes which are under investigation.

3 EXPERIMENTATION

We have designed a twofold experimentation on a cat-
egorization task. In the first experiment we tested the
system over a restricted domain (the animal kingdom
domain) to compare it with the results obtained in a
previous experimentation withS2 using a handcrafted
ontology. In the second experiment we tested the sys-
tem in a broader context, and we were interested in as-
sessing its robustness and the discriminative features
of theS1 component in a multi-domain setting. Two
datasets, one composed of 39 “common-sense” lin-
guistic descriptions, and one composed of 40 linguis-
tic descriptions were used.4 Each stimulusst= 〈d,T〉
is a pair of description and target, such as〈‘The big
carnivore with yellow and black stripes’, ‘tiger’〉. The
targetT is the “prototypically correct” category, and
in the following it is referred to as theexpectedre-
sult. The set of stimuli was devised by a team of
neuropsychologists and philosophers in the frame of
a broader project aimed at investigating the role of vi-

4The full list of the stimuli is available at the URL:
http://www.di.unito.it/∼radicion/datasets/keod2014/
stimuli.txt.

sual load in concepts involved in inferential and ref-
erential tasks. The expected prototypical target cate-
gory represents a gold standard, since it corresponds
to the results provided within a psychological exper-
imentation. In this experimentation 30 subjects were
requested to provide the corresponding target concept
for each description. Such input was then used for
querying our system as in a typicality based question-
answering task. In Information Retrieval such queries
(which is by far the most common and complex to
interpret) are known to belong to the class of “infor-
mational queries”, i.e., queries where the user intends
to obtain information regarding a specific information
need (Jansen et al., 2008).

Experiment 1

The first experiment was made to compare the re-
sults obtained in the previous study (Ghignone et al.,
2013) –whereS2 made use of a handcrafted ontolog-
ical knowledge base– to those obtained withS2 using
publicly available common sense domain ontologies.
With respect to the previous experiment a larger num-
ber of new descriptions were considered, all in the
animal domain. Two ontologies have been selected
for the comparison: the Animal in Context Ontology
(ACO), developed by the Veterinary Medical Infor-
matics Laboratory at the Virginia-Maryland Regional
College and the BBC WildLife Ontology.5 They were
both retrieved by using a mixed search over Sindice
and Swoogle, and they were selected as guarantee-
ing a granularity of information similar to that of the
handcrafted ontology of our previous study.

The results concerning both experimental setups
(ACO and BBC ontologies withinS2 KB) are re-
ported in Table 1.

By considering the ACO ontology, in most cases
(37/39)S1 andS2 return the same category. Differ-
ently from the previous experiment, however, this is
given by the fact that such ontology, in certain cases,
is not precise enough to provide a different correct/-
better specified category w.r.t.S1. In particular, in the
case of the description “The big fish eating plankton”,
the resultwhale obtained byS1 is not detected as
inconsistent in such ontology, since the concept rep-
resentation along with its restrictions are not present
in the ontology itself. Therefore, checking the con-
sistency of the class (which was added to the ontol-
ogy without the conceptual constraints associated to
the concept) does not reveal inconsistencies with the
original model of the ontology. The only differences
w.r.t. theS1 andS2 output is obtained by consider-

5Available at the URLs: http://vtsl.vetmed.vt.edu/aco/
Ontology/aco.zip and http://www.bbc.co.uk/ontologies/wo.
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Table 1: The results of the first experiment, withS2 using external ontologies.

ACO BBC

Cases whereS1 andS2 returned the same category 94.8% (37/39) 92.3%(36/39)
Cases whereS1 returned the expected category 94.8% (37/39) 94.8%(37/39)
Cases whereS2 returned the expected category 94.8% (37/39) 92.3%(36/39)

ing the two descriptions: “A honey producing insect.
(Bee)” and “A bird kept on a farm for its meat and
eggs. (Chicken)”. In both cases, more specific and
detailed results are provided byS2 w.r.t. the already
correct categorization ofS1.

Analogous results, in terms of accuracy, have been
obtained by plugging the BBC Wildlife ontology into
S2. The testing of such ontology has been possi-
ble thanks to a manual import of the missing class-
es/instances through the browsing of the BBC direc-
tory containing the full classification considered by
the BBC archives.6 Despite the two experiments pro-
duced similar figures, they also revealed some differ-
ences between the two ontologies. The answerwhale
for the above mentioned description is correctly de-
tected as inconsistent with the BBC ontology, and the
ontologically correct resultwhale-sharkis returned.

Summing up: the results of this experiment show
that the conceptual categorization obtained byS2 us-
ing external ontological knowledge bases are directly
comparable to those obtained in a previous study
where a handcrafted domain ontology was consid-
ered. A major problem encountered in using exter-
nal knowledge bases stems from axiomatization, that
is not always sufficient to solve the task of detecting
and correcting errors produced byS1. In particular,
in the case of ACO, a finer-grained result is obtained
in two cases after a correct categorization already pro-
vided byS1. This finer-grained result is not obtained
by considering the BBC Wildlife ontology that, how-
ever, is able to detect the expected inconsistencies.

Experiment 2

In order to assess the accuracy of the system in a
more demanding experimental setting, we devised a
second experimental task, whereS2 used the knowl-
edge base OpenCyc.7 OpenCyc is one of the largest
ontologies publicly available, in that it is an enor-
mous attempt at integrating many diverse semantic
resources (such as, e.g., WordNet, DBpedia, Wiki-
company,etc.). Its coverage and depth was therefore
its most attractive feature (it contains about 230,000
concepts, 2,090,000 triples and 22,000 predicates).

6http://www.bbc.co.uk/nature/wildlife.
7http://www.cyc.com/platform/opencyc.

Table 2: The results of the second experiment.

Test cases categorized 40 100.0%
S1-S2 31 77.5%
Google 26 65.0%
Bing 23 57.5%

Additionally, we adopted OpenCyc to use a knowl-
edge base independent of our own representational
commitments in order to more effectively assess the
flexibility of the proposed system when using general-
purpose, well known, existing resources.

A second dataset of 40 “common-sense” linguis-
tic descriptions was collected with the same rationale
considered for the first experiment.8

The obtained results are reported in Table 2.
Despite being less accurate with respect to the pre-

vious experiment, the hybrid knowledge basedS1-S2
system was able to categorize and retrieve most of
the new typicality-based stimuli provided as input
and still showed a better performance w.r.t. the gen-
eral purpose search engines Google and Bing used in
question-answering mode.

The major problems encountered in this experi-
ment derived from the difficulty of mapping the lin-
guistic structure of stimuli containing very abstract
meaning in the representational framework ofS1 as
they are actually encoded according to the conceptual
space. For example, it was impossible to map the
information contained in the description “the place
where kings, princes and princesses live in fairy tales”
onto the features used to characterize the prototypi-
cal representation of the conceptCastle. Similarly,
the information extracted from the description “Giv-
ing something away for free to someone” could not
be mapped onto the features associated to the con-
ceptGift. On the other hand, the system shows good
performances when dealing with less abstract descrip-
tions based on perceptual features such asshape,
color, size, and with some typical information such
asfunction, symbol, product.

In this experiment, differently from the previous
one (e.g., that one in the case ofwhale for the BBC
ontology), S2 did not reveal any inconsistency, in
that S1 mostly provided an output coherent with the

8An extended version of the present experiment is illus-
trated in (Lieto et al., 2014).
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model in OpenCyc. However, by analyzing in detail
the different answers, we notice that at least one in-
consistency should have been detected byS2. This is
the case of the description “An intelligent grey fish”
associated to the target conceptDolphin. In this case,
the S1 system returned the expected target, butS2
did not raise the inconsistency since OpenCyc er-
roneously representsDolphin as a subclass ofFish,
rather than a subclass ofMammal.

4 RELATED WORK

In the context of a different field of application, a so-
lution similar to the one adopted here has been pro-
posed in (Chella et al., 1997). The main difference
with their proposal concerns the underlying assump-
tion on which the integration between symbolic and
sub-symbolic system is based. In our system the con-
ceptual spaces and the classical component are inte-
grated at the level of the representation of concepts,
and such components are assumed to convey differ-
ent –though complementary– conceptual information.
On the other hand, the previous proposal is mainly
used to interpret and ground raw data coming from
sensors in a high level symbolic system through the
mediation of conceptual spaces.

In other respects, our system is also akin to that
ones developed in the field of the computational ap-
proach to the above mentioned dual process theo-
ries. A first example of such “dual based systems”
is the mReasonermodel (Khemlani and Johnson-
Laird, 2013), developed with the aim of providing a
computational architecture of reasoning based on the
mental models theory proposed by Philip Johnson-
Laird (Johnson-Laird, 1980). ThemReasonerarchi-
tecture is based on three components: a system 0, a
system 1 and a system 2. The last two systems corre-
spond to those hypothesized by the dual process ap-
proach. System 0 operates at the level of linguistic
pre-processing. System 1 uses this intensional rep-
resentation to build an extensional model, and uses
heuristics to provide rapid reasoning conclusions; fi-
nally, system 2 carries out more demanding processes
to search for alternative models, if the initial conclu-
sion does not hold or if it is not satisfactory.

A second system that is close to our present work
has been proposed by (Pilato et al., 2012). The au-
thors do not explicitly mention the dual process ap-
proach; however, they build a system for conversa-
tional agents (chatbots) where agents’ background
knowledge is represented using both a symbolic and a
sub-symbolic approach. They also associate different
sorts of representation to different types of reasoning.

Namely, deterministic reasoning is associated to sym-
bolic (system 2) representations, and associative rea-
soning is accounted for by the sub-symbolic (system
1) component. Differently from our system, however,
the authors do not make any claim about the sequence
of activation and the conciliation strategy of the two
representational and reasoning processes. It is worth
noting that other examples of this type of systems can
be considered that are in some sense analogous to
the dual process proposal: for example, many hybrid,
symbolic-connectionist systems –including cognitive
architectures such as, for example, CLARION9–, in
which the connectionist component is used to model
fast, associative processes, while the symbolic com-
ponent is responsible for explicit, declarative compu-
tations. However, at the best of our knowledge, our
system is the only one that considers this hybridiza-
tion with a granularity at the level of individual con-
ceptual representations.

5 CONCLUSIONS

In this work we have presented a knowledge-based
system relying upon a cognitively inspired archi-
tecture for the representation of conceptual knowl-
edge. The system is grounded on a hybrid frame-
work coupling classical and prototypical representa-
tion and reasoning, and it aims at extending the rep-
resentational and reasoning capabilities of classical
ontological-based systems towards more realistic and
cognitively grounded scenarios, such as those envi-
sioned by the prototype theory. The results obtained
in a twofold experimentation show that in the re-
stricted domain of the animal kingdom the proposed
architecture is comparable with the results obtained
with a handcrafted domain ontology. The overall re-
sults corroborate the hypothesis that matching in con-
ceptual spaces can be fruitfully coupled to ontological
inference. However, the ontological inference would
not suffice to categorize the presented common sense
stimuli presented in both experiments, with only one
exception.

In next future we plan to test the proposed ap-
proach in the area of biomedical domain to as-
sess disease diagnosis tasks by groundingS2 on
SNOWMED,10 and S1 on conceptual spaces repre-
senting the typical symptoms of a given disease.

9http://www.cogsci.rpi.edu/∼rsun/clarion.html
10http://www.b2international.com/portal/snow-owl.
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