
Singularity Stairs Following with Limited Numbers of Hidden Units

Seiya Satoh and Ryohei Nakano
Department of Computer Science, Chubu University, 1200 Matsumoto-cho, Kasugai 487-8501, Japan

Keywords: Multilayer Perceptron, Learning Method, Singular Region, Reducibility Mapping.

Abstract: In a search space of a multilayer perceptron having J hidden units, MLP(J), there exist flat areas called singular
regions that cause serious stagnation of learning. Recently a method called SSF1.3 utilizing singular regions
has been proposed to systematically and stably find excellent solutions. SSF1.3 starts search from a search
space of MLP(1), increasing J one by one. This paper proposes SSF2 that performs MLP search by utilizing
singular regions with J changed bidirectionally within a certain range. The proposed method was evaluated
using artificial and real data sets.

1 INTRODUCTION

In a multilayer perceptron (MLP) search space, there
exist flat areas called singular regions where gradients
are zero and the corresponding input-output maps are
the same (I-O equivalent) (Sussmann, 1992). Since
most learning methods get stuck in singular regions,
a method (Amari, 1998) was once proposed so as to
avoid singular regions, but there is no guarantee that
avoiding singular regions will provide an excellent so-
lution.

Statistical models having singular regions are
called singular models, and many useful models such
as MLPs, RBFs, Gaussian mixtures, and HMMs are
singular models (Watanabe, 2009). Learning the-
ory of singular models has been studied intensively
(Watanabe, 2008; Watanabe, 2009); however, empir-
ical studies of singular models have been scarcely
done. As partial knowledge, we know that an MLP
search space has extensive flat areas and troughs
(Hecht-Nielsen, 1990), or most points along a search
route have huge condition numbers (Nakano et al.,
2011). Moreover, an MLP search space has many
equivalent points due to equivalence relations (Suss-
mann, 1992) caused by permutations of hidden units
or the nature of an activation function. Even after ex-
cluding such equivalences, an MLP search space may
have local optima (Duda et al., 2001).

A completely new learning method SSF (Singu-
larity Stairs Following) (Nakano et al., 2011) making
good use of singular regions was proposed to stably
and successively find excellent solutions of an MLP.
SSF1.2 (Satoh and Nakano, 2013) extended the orig-

inal so as to cover all kinds of singular regions and to
reduce the number of starting points. SSF1.3 (Satoh
and Nakano, 2014) accelerates SSF1.2 by introducing
search pruning without deteriorating solution quality.

This paper proposes a new method called SSF2
which performs MLP search by making good use of
singular regions with the number of hidden unitsJ
changed bidirectionally within a certain range. The
method was evaluated using artificial and real data.

2 SINGULAR REGIONS OF
MULTILAYER PERCEPTRON

2.1 Reducibility Mapping and Singular
Regions

Let MLP(J) be an MLP havingJ hidden units. This
section explains how we can generate singular regions
in MLP(J) search space by applying reducibility map-
pings to the optimum of MLP(J−1) (Fukumizu and
Amari, 2000).

We consider MLP(J) having one output unit. The
output for inputx is defined as below. Here parame-
tersθJ = {w0,wj ,w j , j = 1, · · · ,J} andg(h) is an acti-
vation function, wherewj is a vector of weights from
all input units to hidden unitj, andwj is a weight
from hidden unitj to the single output.

fJ(x;θJ) = w0+
J

∑
j=1

wj zj , zj ≡ g(wT
j x) (1)
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Given data{(xµ,yµ),µ = 1, · · · ,N}, we try to find
MLP(J) which minimizes the following:

EJ ≡ E(θJ) =
1
2

N

∑
µ=1

( f µ
J − yµ)2, (2)

f µ
J ≡ fJ(x

µ;θJ).

We also consider MLP(J−1) having parameters
θJ−1 = {u0,u j ,u j , j = 2, · · · ,J}. The output is defined
as below.

fJ−1(x;θJ−1)=u0+
J

∑
j=2

u jv j , v j≡g(uT
j x) (3)

Now we consider the following three reducibility

mappingsα, β, and γ. Let Θ̂
α
J , Θ̂

β
J , and Θ̂

γ
J be the

regions obtained by applying mappingsα, β, andγ
respectively to the optimum̂θJ−1.

θ̂J−1
α
−→ Θ̂

α
J , θ̂J−1

β
−→ Θ̂

β
J , θ̂J−1

γ
−→ Θ̂

γ
J

Θ̂
α
J ≡ {θJ| w0= û0, w1=0, (4)

wj = û j ,w j = ûj , j=2, · · · ,J}

Θ̂
β
J ≡ {θJ| w0+w1g(w10)= û0, (5)

w1=[w10,0, · · · ,0]T,

wj = û j ,w j = û j , j=2, · · · ,J}

Θ̂
γ
J ≡ {θJ| w0= û0, w1+wm= ûm, (6)

w1=wm= ûm,

wj = û j ,w j = ûj , j∈{2, · · · ,J}\{m}}

From the above, the following two kinds of singular
regions are formed in MLP(J) search space. One is

Θ̂
αβ
J , the intersection of̂Θ

α
J andΘ̂

β
J. The parameters

are as follows, and onlyw10 is free.

w0 = û0, w1 = 0, w1 = [w10,0, · · · ,0]T

wj = û j , wj = ûj , j = 2, · · · ,J (7)

The other iŝΘ
γ
J, having the following restriction.

w1+wm = ûm (8)

2.2 SSF1.3 (Singularity Stairs Following
ver. 1.3)

The search method SSF1.3 (Satoh and Nakano, 2014)
finds solutions of MLP(J) successively fromJ=1 un-
til Jmax making good use of singular regions of each
MLP(J). Since gradients are zero at points in a sin-
gular region, we employ eigenvector descent (Satoh
and Nakano, 2012) only at a starting point, and em-
ploy BPQ (BP based on Quasi-Newton) (Saito and

Nakano, 1997), a kind of quasi-Newton, from then on.
Eigenvector descent calculates the Hessian matrixH,
and then as a search direction pick up the eigenvector
corresponding to each negative eigenvalue ofH.

SSF1.3 has the following characteristics.
(1) Since most points in singular regions are saddles
(Fukumizu and Amari, 2000), SSF1.3 can descend to-
ward a better solution, thus guaranteeing monotonic
decrease of training error.
(2) SSF1.3 does not have to be repeated since random
numbers are not used in SSF1.3.
(3) SSF1.3 finds a set of solutions for successiveJ =
1, · · · ,Jmax, which can be quite useful for model se-
lection.
(4) During each search process, the possibility of
search pruning is checked if the current search will
merge into any existing search route. If a positive re-
sult is obtained, the search is pruned.

3 PROPOSED METHOD: SSF2

As stated above, SSF1.3 finds excellent solutions suc-
cessively forJ = 1, · · · ,Jmax. However, when we are
interested in a largeJ and solutions for a smallerJ
are not necessary, we can omit search for a smaller
J. This paper proposes a new version of SSF called
SSF2, which performs MLP search by utilizing sin-
gular regions withJ changed bidirectionally within a
certain range. How to changeJ bidirectionally is not
defined here, which is to be investigated.

3.1 General Flow of SSF2

The procedure of SSF2 is described below. Here
[Jmin,Jmax] is a range ofJ to examine, andup is a flag
whereup = 1 meansJ is in an increase phase andup
= 0 means a decrease phase.

SSF2 (Singularity Stairs Following 2):

1. Set values forJ, Jmin, Jmax andup.

2. Find solutions of MLP(J) from random starting
points, and keep the best as the optimum of
MLP(J), θ̂J.

3. Repeat the following:

3.1. if up= 1 then do (a), otherwise do (b).
(a) Apply reducibility mapping tôθJ to get sin-
gular regions, and find solutions of MLP(J+1)
by starting from the regions. Store the best as
the optimum̂θJ+1.
J← J+1. if J=Jmax, thenup← 0.
(b) Find solutions of MLP(J−1) by starting
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from θ̂J and using the decrement method de-
scribed in the next section, and store the best as
the optimum̂θJ−1.
J← J−1. if J=Jmin, thenup← 1.

3.2. if one of stopping criteria is satisfied, then
stop.

3.2 Decrement Method

Decrement method decreases the number of hidden
units, which is required in step 3.1 (b) stated above.
Given θ̂J, the optimum of MLP(J), we want to find
θ̂J−1, the optimum of MLP(J−1).

One may consider just deleting one of the hidden
units fromθ̂J and then starting search. However, such
simple deletion is too naive to obtain an excellent so-
lution, as shown in our experiments. Here we con-
sider a method which guides search of MLP(J) from
θ̂J into a singular region, and then deletes the redun-
dant hidden unit. Note that we have two kinds of sin-
gular regions.

First, we consider guiding search into singular re-

gionΘ̂
αβ
J . Let mbe the hidden unit to delete. Perform

learning of MLP(J) with wm andwm fixed as follows.

wm← a× ŵm, wm← a× ŵm (9)

Here a is changed gradually from 1 to 0, guiding

search intôΘ
αβ
J . After finishing search witha=0, we

delete hidden unitm to getθ̂J−1. As form, we can se-
lect a small number of candidates in ascending order
of |wm| or try all cases.

Next, we consider guiding search into singular re-
gion Θ̂

γ
J. Let m andn be the hidden units to merge.

Perform learning of MLP(J) with wm andwn fixed as
follows.

wm ← b× ŵm+(1−b)× ŵn, (10)

wn ← b× ŵn+(1−b)× ŵm (11)

Hereb is changed from 1 to 0.5, guiding search into
Θ̂

γ
J. After finishing search of MLP(J) with b=0.5, up-

datewm aswm← wm+wn, delete hidden unitn, and
then perform learning of MLP(J−1) to getθ̂J−1. As
for m and n, there areJ× (J− 1)/2 combinations;
thus, trying all cases would be unrealistic. We can
select a small number of pairs in ascending order of
distance‖wm−wn‖.

4 EXPERIMENTS

We evaluated the proposed SSF2 for the following
sigmoidal MLP using artificial and real data. Here

σ(h) = 1/(1+exp(−h)).

f = w0+
J

∑
j=1

wj zj , zj = σ(wT
j x) (12)

For comparison, we used a quasi-Newton called BPQ
and SSF1.3. The initial weights for BPQ are ran-
domly selected from the range[−1,+1] with the ex-
ceptionw0 = y. BPQ was repeated 100 times for each
J.

For SSF1.3 and the increase phase of SSF2, we
set free parameters of the singular regions as follows.

For Θ̂
αβ
J we set asw10=0 and forΘ̂

γ
J we setq in the

following asq=0.5, 1.0, and 1.5.

w1← q× ûm, wm← (1−q)× ûm (13)

For SSF1.3 and SSF2, search pruning check was done
for each 100 points during search.

We started SSF2 withJ=Jmax andup=0. The best
solution obtained by running BPQ 20 times was se-
lected as the optimum̂θJ at the initialJ (=Jmax). In
our experiments, SSF2 went in one cycle withJ de-
creased fromJmax to Jmin, then increased fromJmin to
Jmax, and stopped.

Each search was stopped when the iteration ex-
ceeded 10,000 sweeps, or the search step got smaller
than 10−16. Test error for artificial data was calculated
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Figure 1: Solution quality for Experiment 1a.
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using test data of 1,000 data points without noise,
generated independently of training data. Test error
for real data was evaluated using one segment among
10 segments; the remaining 9 segments were used for
training.

4.1 Experiment using Artificial Data

Our artificial data set was generated using MLP hav-
ing weights shown in the following equations. Values
of variablesx1, · · · ,x10 were randomly selected from
the range(0,1). Note that five variablesx1, · · · ,x5
contribute toy, but the other five variablesx6, · · · ,x10
are irrelevant. We included irrelevant variables to
make the learning harder. Values ofy were generated
by adding small Gaussian noiseN (0,0.052) to MLP
outputs. The sample size was 1,000 (N=1,000). We
setJmin=15 andJmax=24, while the originalJ=22.

[w0,w1, · · · ,w22]
= [−11,−12,−10,−6,4,20,18,−3,12,−18,−17,17,−1,

13,−9,9,−3,14,1−18,15,12,13],
[w1,w2, · · · ,w22]

=




3 −7 −2 6 −8 7 −3 10 −5 10 −3
−3 3 −6 2 −7 −8 9 2 3 1 −5

9 1 4 −1 −4 −3 −8 2 −4 1 −9
−8 −8 3 −6 −7 −10 1 5 0 2 −4

3 −4 5 7 −9 −4 −4 0 4 6 −8
−10 −6 −1 2 4 5 −10 −9 −5 −3 2
−1 1 10 −6 −7 1 −1 3 −3 7 −6

0 0 −8 2 −7 −4 3 −3 −7 3 10
−5 −10 −8 9 −7 −9 −2 −2 1 4 −1

5 8 6 −1 9 −6 3 −1 5 −2 0
6 2 −2 2 10 4 −10 8 −9 −5 3
2 −2 −5 9 −8 5 4 −3 7 6 5




In our experiments using artificial data, we
examine how the performance of SSF2 is influenced
by our decrement method. Below we examined in
two ways 1a and 1b.

(1) Experiment 1a
First, in the decrement method, only singular re-

gion Θ̂
αβ
J was considered, and every hidden unit

was tested as a candidate to delete. In eq. (9), we
changed the number of guiding steps in three ways:
one step, three steps (a = 2/3,1/3,0), and ten steps
(a= 9/10,8/10, · · · ,1/10,0). They are referred to as
SSF2(1 step), SSF2(3 steps), and SSF2(10 steps) re-
spectively. Note that SSF2(1 step) is nothing but sim-
ple deletion.

Figure 1 shows the solution quality of each
method, showing the best training errors and cor-
responding test errors. Each SSF2 method made a
round trip, at first decreasingJ from 24 until 15, and
then increasingJ until 24, while SSF1.3 went on in-
creasingJ. SSF1.3 outperformed BPQ both in train-
ing and test. In each SSF2 method, the second half
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Figure 2: CPU time for Experiment 1a.

(increase phase) worked better than the first half (de-
crease phase) in both training and test. SSF2(1 step)
worked rather poorly especially in test. However,
SSF2(3 steps) and SSF2(10 steps) worked in much the
same manner, and their increase phases were almost
equivalent to that of SSF1.3. SSF2(3 steps), SSF2(10
steps) and SSF1.3 indicateJ=18 is the best model,
while BPQ indicatesJ=21 is the best.

Figure 2 shows CPU time required by each
method. The horizontal axist in Fig. 2(b) indi-
cates how many timesJ was changed; thus,t=1,· · · ,10
corresponds to the decrease phase fromJ=24 until
15, andt=10,· · · ,19 means the increase phase from
J=15 until 24. Each method has a tendency to re-
quire longer CPU time asJ increases. Among SSF2
methods, SSF2(1 step) spent the longest because it
required the largest number of search routes in its in-
crease phase. The total CPU time of BPQ, SSF1.3,
SSF2(1 step), SSF2(3 steps), and SSF2(10 steps)
were 5h28m, 6h30m, 7h20m, 5h1m, and 6h1m re-
spectively. Hence, both SSF2(3 steps) and SSF2(10
steps) were faster than SSF1.3.

Based on the results of Experiment 1a, we consid-
ered SSF(3 steps) as the most promising when using

only singular region̂Θ
αβ
J .
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Figure 3: Solution quality for Experiment 1b.

(2) Experiment 1b
Next, we examined two possibilities: i) as for singu-

lar regionΘ̂
αβ
J , what if we use only top five hidden

units instead of using all, and ii) what if we use only

top five for singular region̂Θ
γ
J instead of usinĝΘ

αβ
J .

They are referred to as SSF2(5αβ) and SSF2(5γ) re-
spectively, and will be compared with SSF2(allαβ)
which is equivalent to SSF2(3 steps) in Experiment
1a.

Figure 3 shows the best training and test errors for
each method. Each SSF2 method has two lines, indi-
cating decrease and increase phases. The training and
test errors of SSF2(5γ) were rather large and quite
unsatisfactory. Since it required huge CPU time, the
processing was stopped atJ=22 in the increase phase.
The best training and test errors of SSF2(5αβ) were
much the same as SSF2(allαβ)=SSF2(3 steps) and
also much the same as SSF1.3.

Figure 4 compares CPU time required by each
method. The horizontal axist in Fig. 4(b) indicates
the same meaning as in Fig. 2. SSF2(5γ) needed
huge CPU time. The total CPU time of SSF2(allαβ),
SSF2(5αβ), and SSF2(5γ) were 5h1m, 4h45m, and
10h9m respectively. Note that 4h45m of SSF2(5αβ)
was much shorter than 6h30m of SSF1.3.

Experiments 1a and 1b showed SSF2(5αβ) was

5 10 15 20
0

1000

2000

3000

4000

5000

6000

 C
P

U
 ti

m
e 

(s
ec

.)

J

 

 

BPQ
SSF1.3

(a) BPQ, SSF1.3

5 10 15
0

1000

2000

3000

4000

5000

6000

 C
P

U
 ti

m
e 

(s
ec

.)

t

 

 

SSF2(all α β)
SSF2(5 α β)
SSF2(5 γ)

(b) SSF2

Figure 4: CPU time for Experiment 1b.

the best among SSF2 methods we examined. Com-
pared with SSF1.3, SSF2(5αβ) showed much the
same solution quality and was faster.

4.2 Experiment using Real Data

We evaluated SSF2 using Parkinson telemonitoring
data (Little el al., 2007) available from UCI ML
Repository. The number of variables is 18 (K=18)
and the sample size is 5,875 (N=5,875). As for SSF2,
we used SSF2(5αβ), which performed the best in Ex-

periment 1. Note that SSF2(5αβ) employs onlyΘ̂
αβ
J ,

only top five hidden units to delete, and three steps
guiding into the singular region. We setJmin=13 and
Jmax=22.

Figure 5 shows the training and test errors for each
method. Here again, SSF2(5αβ) has two lines as in
Fig. 3. From Fig. 5(a), we can see the best training
errors of SSF2 considerably outperformed the other
two. The training errors of SSF2 and SSF1.3 show
preferable monotonic decrease, while those of BPQ
showed up-and-down movement. From Fig. 5(b), we
see that the best test errors of SSF2 also outperformed
the other two.

Figure 6 shows CPU time required by each
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Figure 5: Solution quality for Experiment 2.

method. The increase phase (t ≥ 10) of SSF2
needed very long CPU time. The total CPU time of
BPQ, SSF1.3, and SSF2 were 24h49m, 60h53m, and
105h16m respectively.

In this experiment, the solution quality of SSF2
was better than BPQ and SSF1.3, but SSF2 required
more CPU time than the other two.

5 CONCLUSION

This paper proposed SSF2 which performs MLP
search by making good use of singular regions with
J changed bidirectionally within a certain range. The
method was tuned and evaluated using artificial and
real data. Our experiments using artificial data
showed the tuned SSF2 showed much the same solu-
tion quality as the existing SSF1.3 with much smaller
CPU time. In our experiment using real data, SSF2 re-
sulted in better solutions with longer CPU time. In the
future we will make the method even faster and exam-
ine how the range of J influences the performance.
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