
A Rational Perspective on Software Modeling

Tony Spiteri Staines
University of Malta, Malta MSD 2080, Malta

Keywords: Software Engineering, Requirements Engineering, Modelling, Systems Modeling, Software Development
Methods, Lightweight Methods, Quality Assurance, Best Practice Approaches.

Abstract: This work introduces the concept of rational software modeling from a practical perspective. Valid
arguments about the importance of modeling in modern software engineering and requirements engineering
are presented. The different stakeholder’s perspectives or views on modeling are analysed and a soft
uniform approach is presented. The uniform approach or rational perspective to modeling is based on the
main fundamental concepts of requirements engineering. This approach presents the basic ground for more
elaborate work in the future. The universal approach is based on i) usability, ii) universality, iii) uniqueness
and iv) uniformity. The concepts presented can be combined with any particular approach or method. The
ideas could prove to be useful for quality assurance and best practice approaches in the real world.

1 INTRODUCTION

Modeling is the very act of creating representational
artifacts of a system or its parts, for the specific
purpose of explaining it to different stakeholders. It
is possible to represent the software development
process and the product itself using appropriate
techniques. Modeling is useful for deriving the
fundamental properties of software.

In the modern world the ever increasing
complexities of applications and software systems,
ranging from distributed systems to hybrid
computing, require even more robust forms of
modelling. As a matter of fact, requirements
elicitation, need new ways of expression and
representation. New concepts in system design are
constantly being introduced as is the concept of
design for service presented in (Aleksy, 2012).

In spite of the increasing importance of
modelling, many software development companies
and even students do not seem to comprehend the
importance of this topic. Modeling remains a vague
abstract concept. Another problem lies in the fact
that some notations, like the UML tend to over
model a system, whilst other extreme approaches
like XP tend to focus more on coding rather than
modeling. This work focuses on finding a rational
solution. The idea is to understand the rationality of
modeling and possibly find a middle path solution.

2 WHY MODEL

Modeling exists for various reasons. In theory
modeling, apart from clarifying requirements, is
intended to i) reduce project delivery times ii)
promote reuse and iii) serve as a basis for contracts
between different groups. In the RUP (rational
unified process) business modeling is a core
workflow process. This process is important in all
the stages of the development starting off from the
inception stage to construction and testing stages.
Even in light methods, like Agile ones, modeling
practices cannot be omitted. The fundamental
question to ask is why do we have to model in the
first place. Perhaps some software aspects need
better comprehension or some ideas need to be
communicated to different stakeholders. It could be
simply that the model has to be created for the
persons who will develop the system, test it or
implement it. Some steps, in modeling, are i)
identifying the target audience, ii) develop the model
and iii) check if the model is suitable. One needs to
know the audience of the model. Referring to the
RUP the underlying rationale is to create suitable
models for every stage of the process of application
building. The key concepts and philosophy behind
the RUP are applicable to different types of
problems and enhance one’s own learning
experience.

345Spiteri Staines T..
A Rational Perspective on Software Modeling.
DOI: 10.5220/0005090103450350
In Proceedings of the 9th International Conference on Software Engineering and Applications (ICSOFT-EA-2014), pages 345-350
ISBN: 978-989-758-036-9
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)

3 SOME IDEAS

Traditionally, models were mainly used at the initial
stages of analysis and development. As opposed to
this in modern development strategies and methods
models are not necessarily just developed at a single
stage; but a refactoring process takes place with
modeling, which is seen as a continuous process.
Modern processes are focused on concepts like best
practices, case tool support and the idea of having
several processes, rather than steps or stages as
traditionally presented.

Information modeling deals with presenting real
world views to different stakeholders. Models can be
diagrammatic or formal. Models can represent
conceptual, logical or physical views (Moody,
2009). Many new different modeling notations exist
because of new technologies and distributed systems
(Jeusfeld et al., 1998), (Jeusfeld et al., 2009). As a
case in point, the UML (Collier, O’Hare, and
Rooney, 2004) contains several notations and
hundreds of elements are specified in the
superstructure documentation. But are these really
relevant to proper design?

If the view of system architectural complexity is
considered, the count of things like entities,
connections and patterns are factors that have to be
considered for modern systems which are obviously
software intensive systems (Booch, 2008). Here the
concept of relative vs absolute complexity is
considered and it is only possible to focus on the
essence, using principles of abstraction. States in the
real world are extremely important and sometimes
unorganized complexity exists (Cao et al., 2009).
The solution proposed by (Booch, 2008) is i) focus
on fundamental problems, ii) define abstractions, iii)
employ good separation of concerns, iv) proper
responsibilities. I.e. it is possible to deduce that the
general idea would be to simplify and focus on the
essence of modeling.

Complexity can obscure or hide the essential
elements of a system. The uniqueness, elegance and
aesthetical value of a solution, imply that simple
architectures have more value than complicated ones
for representation and modeling purposes.
Simplicity is easier to comprehend and measure
rather than complexity.

In fundamental modeling concepts (FMC, 2013)
it is also suggested that diagrammatic notations
should follow certain aesthetic principles. The main
principles behind the FMC idea are i) abstraction, ii)
simplicity, iii) universality, iv) separation of
concerns and v) aesthetics and secondary notation.
The key principles behind FMC have been

successfully applied at SAP in the form of TAM
(technical architectural modeling) (FMC, 2013)
which combines the salient principles of FMC with
those of some UML modeling notations, creating
better diagrammatic notations for analysing and
representing customer requests (Knopfel et al.,
2006).

Even the lines, harmonization and aesthetical
way of drawing artifacts all sum up to a rational way
of modeling systems (Knopfel et al., 2006).

Systems can fail because the systems architect
selects a fundamentally wrong architecture or
something that is too complex to properly
implement. Sometimes systems can fail because of
the continuous adding of parts and little bits. A
system or software development that started off as a
simple task sums up into a cumbersome ordeal that
lacks structure or proper representation. Software
engineering is a discipline that requires the
reasonable combination of dynamic and static
forces.

Architectural refactoring implies the use of
patterns that help manage complex system design.
Patterns help with the observation and classification
in a natural ordered way. I.e. the mental concept that
is observed is easily repeated and represented for
future work and support.

MDE (model driven engineering) has kicked off
research on domain specific languages (OMG,
2013). The idea of MDE rests on the construction of
proper software models that are used to create PIMs
(Platform independent models). MDD (model driven
development) is based on models and architectures
that have to be properly represented for successful
implementation. The idea of PIMs signifies that a
model should be conform to certain rules but
simultaneously express universality for different
platforms.

In light methods such as Agile, Scrum or the UP
(unified process) and even XP (extreme
programming) proper modeling is a must, even
though the models must be kept concise and simple
for quick use.

The principles that can be learned from different
processes, methods and ideas are applicable
independently of the process itself. These can be
easily combined with different methods or
techniques without being limited.

Universality is a form of understanding the
diverse types of modeling notations that can be
confusing and frustrating. Software engineering is a
complex discipline, depending on many different
types of constructs and their proper selection.

ICSOFT-EA�2014�-�9th�International�Conference�on�Software�Engineering�and�Applications

346

4 DIFFERENT PERSPECTIVES

Given the focus of modern systems that are mainly
directed towards the users and customers of a system
(Aleksy, 2012), it can be observed that software
development is based on a model centric approach.
The perspectives can be classified into the i)
organizational perspective or ii) stakeholder
perspective. Here the stakeholder perspective is
considered. In (FMC, 2013), (Knopfel et al., 2006)
and (Booch, 2008) it is obvious, but not stated
directly that models have certain basic properties
that can be classified here as: i) usability, ii)
universality, iii) uniqueness and iv) uniformity

4.1 Developers

Developers can be satisfied by using proper models
that explain properly what needs to be done. A
balance has to be sought between complexity and
compactness. Developers tend to be unsatisfied if
too many models are used and a lot of consistency
checking has to be done to verify the models. I.e.
consistency checking can become very tedious and
time consuming. These principles are observable
from agile methods or other light methods.

Normally the developers would require to have
refined models and also lower level representations
of the operations of the artefact they have to
develop. These are constructable in conjunction with
the system analysts and customers.

4.2 Project Manager

The project manager is more concerned with the
technicalities or overall architecture of the system
rather than the details. This is similar to a coarse
grained approach. From this perspective the models
would represent the architecture or top level
structure of the system. Proper notations are
imperative, but also the models must not be too
complex. Obviously visual modelling should express
ideas in simplicity and an aesthetically pleasant
form. If the system being designed is not
straightforward it might be necessary to use the
experience of an expert systems architect.

4.3 Systems Analyst

For the systems analyst or business analyst, the role
of model creation would be an important part of
their job. It is important that this group is
substantially trained in the use of correct
specification modelling. This implies that their
education would have to go beyond just using some

notations. I.e. the systems analyst must be aware of
the different notations, models and methods and
must have the ability to select the best notation for a
particular task or job. This depends on the
environment in which the systems or business
analyst works. I.e. if future systems will be similar
to those being created now, then in the future similar
modeling notations can be employed.

However, if the nature of the problem changes,
this might imply that better notations have to be
sought. Proper training in modeling can help greatly.
The experienced analyst has to develop his
knowledge gradually after being exposed to the
modeling notations and techniques. There are so
many notations, that selecting the best ones is not a
simple task. A problem will arise if too many or too
few model representations are used. A simple
solution is normally the best, but it does not imply
that important details are ignored. Later work
depends on the initial artefacts, yet still there is the
possibility for refactoring at later stages.

4.4 Tester

The tester or testing team does not normally
construct models. However the testing relies on
previous models for comparison. The development
artefact is compared with the initial proposed model.
For testing, models must not be too complex
otherwise it will be a much more time consuming
process.

4.5 Customers or Users

The customer or users play an important role. The
focus in many types of development is on the end
users of customers. This is evident in SOA’s, CMS
and CRM systems.

Communication with the clients, customers is a
must. Customers are not interested in the detail but
in the essential properties of the system. The models
used should reflect this.

4.6 Other Stakeholders

Obviously system construction is normally not just
limited to the primary stakeholders already
mentioned. Managers, CEOs, CIOs and IT auditors
might be interested in the system. Other roles like
communications engineering or network engineering
need to be give due consideration.

All these different stakeholders can exert
pressure on the system and it is important to
communicate with them using appropriate models
for requirements and design decisions.

A�Rational�Perspective�on�Software�Modeling

347

5 A PROPOSED UNIFORM
APPROACH

The approach here is called the four U’s. This can be
included in any type of development method as
required. The four U’s are: i) usability, ii)
universality, iii) uniqueness and iv) uniformity.
These can be used to select the best notations or
models for a particular task or complement a
process.

USABILITY

UNIVERSALITY

UNIQUENESS

UNIFORMITY

5.1 Usability

Preferably diagrammatic notations should be used in
combination with other forms of representation.
Every artefact that is created will require some form
of modification or updating over time. The models
should be simple to update and correct without
considerable effort. This is the Agile philosophy.
Too much detail renders the model unusable for
development teams working in environments that
have a quick turnaround time. But for complex
systems usability might imply a different idea.

Usability also implies the usefulness of the
models from the customer or user viewpoint. In
order to communicate the requirements the
modelling approach being used should use effective
structures that are simple enough for proper
comprehension, but at the same time consider
sufficient detail. From a certain perspective the
concept of usability might be in direct conflict with
complexity. For difficult systems or artefacts it can
be difficult to explain the entire functions at a low
level using simple representations.

Usability requires asking some fundamental
questions about the notations being used. I.e. i) is the
notation simple enough to understand, ii) do case

tools that support the notation exist, iii) does the
notation have a significant learning curve to get to
use it, iv) is the notation suitable for sharing it in a
team.

Depending on different stakeholders there is the
possibility of different interpretations of usability.
What is usable for one stakeholder group is not
necessarily usable by another.

5.2 Universality

Universality implies that the modelling approach
being used is based on effective structures for
communicating the requirements. The quality of a
software engineering method depends on the
accuracy it has for representation. I.e. the method
should focus on empowering and explaining the
facts to the customers or the users of the method.
This implies that there is some form of technique or
method that is widely acceptable or can be
comprehended simply by different groups of
persons. Certain block diagrams and representational
notations do not require special learning to
understand. Examples of these are class diagrams,
flow diagrams, DFDs, component and network
diagrams, rich pictures, pictorial models, etc. Hence
the modelling approach used needs to consider a
wide target audience. Obviously the concept of
universality merits more attention and study to
comprehend the perception of different users having
different abilities and learning skills. This is
considered in the CMM (capability maturity model),
where working knowledge is acquired after a
number of years working experience.

From experience it is possible to identify
notations and structures that have more significance
of universality than other structures. This is possible
because of the nature of the structures. I.e.
diagrammatic representations and artefacts being
visual, can have a more universal and wider appeal
than structures that are represented using letters or
sets of equations (Knopfel et al., 2006). Examples of
structures that can communicate universality are i)
use case diagrams, ii) class/object diagrams, iii)
flowcharts, iv) structured block diagrams like
deployment diagrams, network diagrams, etc.

5.3 Uniqueness

Uniqueness has several meanings and implications
in software development which do not necessary
agree with what is presented here. i) The solution or
the artefact developed is unique, ii) the design is
unique, iii) the problem is unique, etc. Here

ICSOFT-EA�2014�-�9th�International�Conference�on�Software�Engineering�and�Applications

348

uniqueness mainly refers to the modelling approach.
Obviously the model is part of the uniqueness of the
solution. The model should be unique in the sense
that it provides sufficient detail for a proper or
special solution. This means that there is no need to
repeat the obvious or to use several models that
show the same entities or processes in different ways
unless this is really required.

Uniqueness also states that the solution or the
artefact is of a certain standard and quality. The
approach to systems development is not just a hit
and miss approach, but a scientific problem solving
approach that is based on structure and proper
comprehension about the problem domain. Any
solution will not just do, it is required to have a set
of solutions and to select the best possible one.
Uniqueness means that the best proper notations for
the problem domain are to be used. The idea of
uniqueness is not learned in a short span of time but
it can only come when one has acquired proper
problem solving skills after practical work in the
field combined with thinking skills. Group sessions,
discussions, brain storming, teamwork and on the
job training can contribute in this respect.

Uniqueness also implies that the structures have
value or add value. The structures or notations must
add some knowledge, they should not state what is
obvious or already known but explain correctly what
is unclear or obscure about what has to be
developed.

5.4 Uniformity

In object oriented software engineering, uniformity
represents the data integration that is the result of
linking several abstract classes from several systems
or sub systems to produce a shared model.
Uniformity can be used at different levels of
abstraction: i) conceptual, ii) logical and iii)
physical. Uniformity refers to the proper integration
of the modelling notations being used. Linking
together the models and sharing the information
from different models implies that the models
cohesively fit in with each other, i.e. the models
must support each other properly, with no
overlapping. Uniformity becomes a big problem
when too many diagrammatic and other notations
are used to support software development.
Consistency checking between the models becomes
a time consuming complex process that wastes a lot
of resources. The fewer the models the easier it is to
have proper uniformity in place. The more complex
a system is the more difficult is uniformity
mantained. If FMC (fundamental modeling

concepts) and TAM (technical architectural
modeling) used at SAP are examined, the concept of
uniformity becomes clearly visible. The notations
used in FMC for architectural modeling, combine
i)compositional structures, ii) behaviour and iii)
data/value structures. I.e. there is uniformity
between the three types of structures. On the other
hand, if notations from UML are taken and
combined with other notations quite often it is
possible that the concept of uniformity is ignored.

6 BEST PRACTICE APPROACH

The ideas of the four U’s presented can be
implemented as part of a best practice approach, or
in an appropriate framework. The concept of best
practice is based on work related excellence. The
idea is for continuous quality improvement and the
learning process that requires due consideration.
There is the concept that one size does not fit all.
This means that there is no identical solution for
different problems. For modeling this is more of an
issue because it is intrinsically very difficult to
compare system requirements. A certain degree of
flexibility in modeling is a must, but the flexibility
must be properly balanced against complexity. The
experience required for proper modeling cannot be
achieved only by formal training, but requires on the
job training and perhaps a number of years of
practical experience. But obviously formal training
is imperative to get started on the concepts related to
modelling (Stone and Madigan, 2007). Perhaps, in
certain computer courses and training, there is still a
lack or proper problem solving formulation which is
propagated further up. A best practice approach
means that one learns from mistakes and applies
expertise that can only be developed with time.
Sometimes it might look unpleasant to try to enforce
a culture where design notations and modeling are
given a great amount of importance. Because of
excessive rigor, certain individuals might prefer to
keep concepts and system details in their mind
creating problems. Proper judgement and intuition
provide for proper reasoning to problem solving. In
a best practice approach notations, modeling and
documentation are a must.

Elaborate solutions are not always desirable and
elegant approaches do not mean that elaborate
features and complexities are dealt with. Under-
engineering might be a problem just as over
engineering. Certain challenges implicate that a best
practice culture is developed and instilled in the

A�Rational�Perspective�on�Software�Modeling

349

organization that is using modelling techniques, so
that a rational perspective on modeling is taken.

Unfortunately the philosophy of a best practice
approach has to pervade the entire culture of the
organization and this might imply that it will take a
long time to develop it properly.

7 CONCLUSIONS

The importance of proper modelling in the field of
software and systems engineering cannot be over
emphasized. In modern environments where
complex holistic solutions are always increasingly
demanding, models must prevail at every stage of
proper project management. Considering the
difficulties for selecting proper models, a rational
perspective for software modelling has been
presented. The concepts can be applied to any type
of project ranging from small to large size and
independently of whichever method is used.

Obviously users of Agile methods like Scrum
and XP might find these ideas of interest to them.
Even users of the UP (unified process) might
consider implementing the concepts for further
quality improvement in the design of software
products.

It is obvious that commonsense should prevail
when using these ideas and that the concept of one
solution fits all one can never fulfill the complete
needs of different problem domains. Hence the
concept of adaptability that is fundamental in
principle to agile methods must be given due
consideration.

Best practice approaches can only be learned
through acute observation and mistakes that can
happen in time. This is similar to the idea of the
capability maturity model where the experience
gained over a number of years and projects in the
field of software engineering are quantifiable.
Obviously the approach presented here needs to be
validated in future work.

REFERENCES

Aleksy, M., 2012. Coverage of Design for Service
Principles in Software Engineering, 6th Int. Conf. on
Complex, Intelligent, and Software Intensive Systems
(CISIS), 100-105.

Booch, G., 2009. The Defenestration of Superfluous
Architectural Accoutrements, IEEE Software Domain
Specific Languages and Modeling, vo.l 26, no. 4., pp.
7-8.

Cao, L., Ramesh, B., Rossi, M., 2009. Are Domain-
Specific Models Easier to Maintain than UML
Models?, IEEE Software Domain Specific Languages
and Modeling, vo.l 26., no. 4., pp. 19-21.

Collier, R., O’Hare, G., Rooney, C., 2004. A UML-based
Software Engineering Methodology for Agent
Factory, Int. Conf. on Software Eng. And Knowledge
Eng.

FMC., 2013, TAM - The SAP way combining FMC and
UML, Technical report and documentation:
http://www.fmc-modeling.org/fmc-and-tam

Jeusfeld, M.A.., Jarke, M., Mylopoulos, J., 2009.
Metamodeling for Method Engineering, The MIT
press 1st edition.

Jeusfeld, M.A.., Jarke, M., Nissen, H.W., Staudt, M.,
1998. ConceptBase Managing Conceptual Models
about Information Systems, Handbook on
Architectures of Information Systems, Springer, ch.
12, pp. 265-285.

Knopfel. A., Grone, B.,Tabeling, P., 2006. Fundamental
Modeling Concepts, Wiley 1st edition.

Moody, D.L., 2009, “The Physics of Notations: Towards a
Scientific Basis for Constructing Visuals in Software
Engineering”, IEEE trans. On Software Eng.
35(6):756-779.

Stone, J.A., Madigan E., 2007. Inconsistencies and
Disconnects, Communications of the ACM, vol.5.,
no.4., pp. 76-79.

OMG., 2013, MDA - The Architecture of Choice for a
Changing World, OMG Documentation Website:
http://www.omg.org/mda.

ICSOFT-EA�2014�-�9th�International�Conference�on�Software�Engineering�and�Applications

350

