A Self-adaptive Iterated L ocal Search Algorithm on
the Permutation Flow Shop Scheduling Problem

Xingye Dongd, Maciek Nowak, Ping Chend and Youfang Lif
1Beijing Key Lab of Traffic Data Analysis and Mining, School of Computer and IT,
Beijing Jiaotong University, Beijing 100044, China
2Quinlan School of Business, Loyola University, Chicago, IL 60611, U.S.A.
3TEDA College, NanKai University, Tianjin 300457, China

Keywords: Scheduling, Permutation Flow Shop, Total Flow Time, Iterated Local Search, Self-adaptive Perturbation.

Abstract: Iterated local search (ILS) is a simple, effective and efficient metaheuristic, displaying strong performance on
the permutation flow shop scheduling problem minimizing total flow time. Its perturbation method plays an
important role in practice. However, in ILS, current methodology does not use an evaluation of the search
status to adjust the perturbation strength. In this work, a method is proposed that evaluates the neighborhoods
around the local optimum and adjusts the perturbation strength according to this evaluation using a technique
derived from simulated-annealing. Basically, if the neighboring solutions are considerably worse than the
best solution found so far, indicating that it is hard to escape from the local optimum, then the perturbation
strength is likely to increase. A self-adaptive ILS named SAILS is proposed by incorporating this perturbation
strategy. Experimental results on benchmark instances show that the proposed perturbation strategy is effective
and SAILS performs better than three state of the art algorithms.

1 INTRODUCTION working with well designed local search procedures
and performing better than some constructive heuris-
Since the pioneering work of Johnson (Johnson, tics by Liu and Reeves (Liu and Reeves, 2001). Tas-
1954), the permutation flow shop problem (PFSP) getiren et al. (Tasgetiren et al., 2007) apply a par-
has attracted considerable attention. In this problem,ticle swarm optimization (PSO) algorithm by using
there aren jobs andm machines, and each job has the smallest position value rule. They also propose a
operations. The jobs need to be processechana- hybrid algorithm with variable neighborhood search
chines in the same sequence, that is to say no pre{VNS), called PSQns, and it performs quite well on
emption is allowed. Théth operation of each job Taillard’s benchmark instances (Taillard, 1993). Pan
needs to be processed on title machine. All the et al. (Pan et al., 2008) develop two metaheuristics, a
jobs are available at time zero and each machine candifferential evolution algorithm and an iterated greedy
serve at most one job at any time. Any operation algorithm hybridized with a referenced local search
can be processed only if its previous operation has procedure. Local search procedures are also used
been processed and the requested machine is availin several genetic algorithms (Tseng and Lin, 2009;
able. The PFSP is NP-complete when minimizing Zhang et al., 2009; Tseng and Lin, 2010). Recently,
total flow time with more than one machine (Garey Tasgetiren et al. (Tasgetiren et al., 2011) designed an
etal., 1976). artificial bee colony algorithm and a discrete differen-
For the purpose of finding high-quality solutions tial evolution algorithm. Both algorithms use a local
within a reasonable computation time, many methods, search procedure taking advantage of the iterated lo-
including simple heuristics and more complex meta- cal search (ILS) by Dong etal. (Dong et al., 2009) and
heuristics (Dong et al., 2013), have been proposed.the iterated greedy (IG) algorithm by Ruiz and Stiitzle
Among the existing metaheuristics, local search pro- (Ruiz and Stitzle, 2007). An asynchronous genetic
cedure plays an important role. Several ant colony local search algorithm, embedding an enhanced vari-
algorithms are proposed by Rajendran et al. (Rajen-able neighborhood search, is also addressed by Xu et
dran and Ziegler, 2004; Rajendran and Ziegler, 2005), al. (Xu et al., 2011) for the PFSP minimizing total

378 Dong X., Nowak M., Chen P. and Lin Y..
A Self-adaptive Iterated Local Search Algorithm on the Permutation Flow Shop Scheduling Problem.
DOI: 10.5220/0005092003780384
In Proceedings of the 11th International Conference on Informatics in Control, Automation and Robotics (ICINCO-2014), pages 378-384
ISBN: 978-989-758-039-0
Copyright ¢ 2014 SCITEPRESS (Science and Technology Publications, Lda.)

A Self-adaptive Iterated Local Search Algorithm on the Permutation Flow Shop Scheduling Problem

flow time. Taillard’s benchmark instances (Taillard, 1993) show
d_that the new perturbation method leads to improved
performance.

The remainder of this paper is organized as fol-
lows. In Section 2, the formulation of the PFSP with
total flow time criterion is presented. Section 3 de-
scribes the evaluation method and illustrates the pro-
posed algorithm. The evaluation method is analyzed
and SAILS is compared with several state of the art
algorithms in Section 4, then the paper is concluded
in Section 5.

Local search procedure is used as an embe
ded procedure in the aforementioned metaheuristics.
However, it is also used in an iterative way to form a
metaheuristic called iterated local search (ILS). Dong
et al. (Dong et al., 2009) develop an ILS to solve the
PFSP minimizing total flow time, in which the per-
turbation method swaps several pairs of adjacent jobs
and the perturbation strength, denoted by the number
of swapping pairs, is evaluated. A multi-restart iter-
ated local search (MRSILS) algorithm is proposed by
Dong et al. (Dong et al., 2013), improving the per-
turbation method mainly by generating restart solu-
tions from a set of elite solutions. Their experiments 2 PROBLEM FORMULATION
show that the MRSILS increases the performance of
the methodology used in Dong et al. (Dong et al., Inthis paper, the PFSP is discussed with the objective
2009) significantly, while performing comparably to of minimizing total flow time. This problem is an im-
or better than five other state of the art metaheuristics portant and well-known combinatorial optimization
(Pan et al., 2008; Zhang et al., 2009; Tasgetiren et al.,problem. In the PFSP, a set of jobs= {1,2,...,n}
2011). Costa et al. (Costa et al., 2012b) study the available at time zero must be processednoma-
combination of the most commonly used local search chines, where > 1 andm > 1. Each job hasnoper-
neighborhoods, the swap neighborhood and the in-ations, each of which has an uninterrupted processing
sertion neighborhood. Six different combinations in time. The processing time of thi operation of joly
total are calibrated. Later, they extend this work is denoted bypij, wherepj; > 0. Theith operation of
by developing an algorithm hybridizing VNS and a job is processed on thith machine. An operation
path-relinking on a particle swarm framework, with ~of a job is processed only if the previous operation
promising experimental results on Taillard’s bench- of the job is completed and the requested machine
mark instances (Costa et al., 2012a). Pan and Ruizis available. Each machine processes these jobs in
(Pan and Ruiz, 2012) propose two local search meth-the same order and at most one operation of each job
ods based on the well known ILS and IG frameworks. can be processed at a time. The PFSP to minimize
They also extend them to population-based versions;total flow time is usually denoted bl prmul 5 C;
however, their experiments show that the two local (Pinedo, 2001), wheréy, describes the environment,
search methods perform better than the population- prmuis the set of constraints a@j denotes the com-
based versions. pletion time of jobj. Let tdenote a permutation on
the setJ, representing a job processing order. Let
mn(k), k=1,...,n, denote thekth job in 1, then the
completion time of jolri(k) on each machinecan be
'‘computed through a set of recursive equations:

Though ILS has performed well on the PFSP min-
imizing total flow time, one limitation is that the
search process often cannotimprove the best solution
even with dozens of iterations. For example, this oc-

curs with the MRSILS by Dong et al. (Dong et al., Cimt) = 11 Prmy) i=1...m (1)
2013), although the pooling strategy in this algorithm C — gk k=1...n 2
augments the ability to find better solutions. A reason . 1’n(k>7 mé;(*l Pl’"m _ ’ ’ @)
for the search process to be limited is that the pertur- O = MX{Ciztnitg, Gimt } + Pimt (3)

bation method moves randomly selected jobs to other i=2,...,mk=2,...,n

randomly selected positions without considering the . T"€NCriy = Cmngg, k= 1,...,n. The total flow
search status. In order to improve perturbation qual- iMeiS3 Cr), or the sum of completion times on ma-
ity, this work proposes a method to evaluate the con- chinemfor all jobs. The objective of the PFSP when
vergence status of the search. With a greater focusMinimizing total flow time is to minimize Cry,), or

on convergence, the probability increases that a job is Cn for short.

moved to a position where a solution with larger ob-

jective can be generated. Based on this observation,

a self-adaptive ILS (SAILS) is proposed and evalu- 3 THE PROPOSED ALGORITHM
ated. Comparison results with the MRSILS by Dong

et al. (Dong et al., 2013) and two local search based According to Lourenco et al. (Lourenco et al., 2010),
algorithms by Pan and Ruiz (Pan and Ruiz, 2012) on the general framework of ILS has four key compo-

379

ICINCO 2014 - 11th International Conference on Informatics in Control, Automation and Robotics

nents: the method generating the initial solution, the procedure InsertionL S(m)
local search procedure, the acceptance criterion and 1. cnt« 0,idX < 0, Teq« TT;
the method to perturb a solution. In this work, the 2. while(cnt<n) do
H(2) heuristic by Liu and Reeves (Liu and Reeves, 3. Find j, wherem(j) = Tedidx+ 1);
2001) is used to generate the initial solution, asitcan 4 Move(j) to othem — 1 positions in
generate an initial solution in negligible time and has T, respectively; denote the best solut-
been used by Dong et al. (Dong et al., 2013; Dong ion asTt; updateFy concurrently;
et al., 2009) to form quite good ILS algorithms. As 5. if C; <Crthen
for the other three key components, the local search 6, T« T, cnt « O:
procedure and the evaluation method used to indicate dse
the convergence status are discussed in Section 3.1. 7, cnt« cnt+1;
The acceptance criterion and the perturbation method endif
are addressed together in Section 3.2. Finally, the pro- g, if Crt < Crieq then
posed ILS algorithm is illustrated in Section 3.3. 0. Teq— TG
endif
3.1 Evaluation Method and L ocal 10. idx « (idx+ 1) modn;
Sear Ch endwhile
11. returnTy
end

In this work, a solution to the discussed problem is
presented as a permutation of the jobs and the com- Figure 1: Pseudo code of the insertion local search.
monly used insertion local search is chosen as the lo-

cal search procedure. During the local search, eachthe best solution found so far in the search process,
job is removed from its original position and inserted and F; and F denote the objective matrices corre-
into the othem — 1 positions to see whether the so- sponding tatandrt, respectively.
lution can be improved. Suppose the current local
optimum solution isit and fyy; ; denotes the objec- 3.2 Acceptance and Perturbation
tive value of the solution generated by removing job
1(i) and inserting it into position. Among then—1 Method
solutions, the best one is chosen and its objective is
denoted byf;; . The objective values form a matrix In the general framework of the ILS (Lourenco et al.,
F, called the objective matrix. For all of the jobs, 2010),a decisionis made whether to accept a solution
the average objective value §f, i = 1,...,ncan be as the local optimum when it is reached, and then the
solution may be perturbed to generate a restart solu-
tion that continues the local search procedure. Dong
100 et al. (Dong et al., 2013) propose a pooling strat-
avg = — zi fri)- (4) egy that leads the search to a more promising solu-
1= tion space, generating highly competitive solutions.
This average objective value can be used as an in-In this work, the pooling strategy is also used, while
dicator of the convergence status. Suppose the currenthe perturbation method is adapted by using the indi-
best objective value in the search procesfisThe catoravg, and incorporating the concept of tempera-

larger the differencavg:— fp,, the worse the solutions tyre control from simulated annealing (Nikolaev and
in the neighborhood surroundingand the more dif- jacobson, 2010).

ficult it is to escape from the local minimum in this According to Dong et al. (Dong et al., 2013),
neighborhood. This is an indicator that the perturba- 5 set of elite solutions is pooled during the local

tion strength should be increased. In order to tem- gearch. Suppose the set of elite solutiongil
per the influence of this indicator as the difference be- gnd i is the solution chosen from it. It is perturbed

tweenavgr and f, becomes larger, this difference is py randomly selecting a jobi, and moving it to

computed as:

adjusted such that: another randomly selected position with probability
;o 1k exp(—avg,/T), whereT denotes temperature. In this
avg, = (avgn— fo) " (5) work, T is a constant value. Alternatively, with prob-
wherek is an integer, and its value is tuned in Section ability 1 — exp(—avg,/T) the randomly selected job
4, is moved to a position that can generate a worse so-

The local search used in this work is shown in Fig- lution. The probability of moving jol to positionj,
ure 1, wheratdenotes the start solutior; denotes ~ wherej # i, is denoted byp; and can be determined

380

A Self-adaptive Iterated Local Search Algorithm on the Permutation Flow Shop Scheduling Problem

procedur e Perturbation() 1. Definepool_size k andT;
1. if |pool| < pool_sizethen 2. T+ Generate an initial solution;
2. T+ T, Fp < Fe; 3. Initialize F by setting every entry tGr;
else 4. T < T Fe < Fg pool <= 0; Fpool < 0;
3. Choose a solution frompool asT, get 5. while(termination criterion is not satisfiedp
the correspondinBr from Fpool; 6. T« InsertionLS(1);
endif 7. if Ct < C then
4. Computevg, usingFr; 8. Pool < 0, Fpool +— 0, Fre < Fry;
5. Randomly select a jotx(i) from g, endif
6. ifrand() < exp—avg,/T) then 9. if ¢ poolthen
7. MoverTt(i) to another randomly selected 10. Addmtto pool, addF to Fyoor;
position inTtto form a newrt, endif _
ese 11. if |[pool| > pool.sizethen
8. MoverTt(i) to another position im acc- 12. Delete the worst solution ipool, and the
ording to Eq. (6) to form a newt corresponding objective matrix Fpool;
endif endif
9. returnTr 13. 1<« Perturbation();
end end

14. Outputrt and stop.

Figure 2: Pseudo code of the perturbation method.
Figure 3: Pseudo code of the proposed SAILS.

Table 1: Global variables used in the perturbation method.
work, the latter is applied on line 5.in order to more

easily compare the SAILS with other algorithms.

variables Description

™ The best solution found SWyar In considering insertion local search, the number
T A variable denotes a solution f soluti : t? luated is at | t< 1
pool The set of elite solutions of solutions Iggpe evaluated Is al leds (n).
poolsize The size limitation ofpool f';\nd the time complexny for e_/aluatlng one solution
Fr Objective matrix corresponding to 1S W 53 t?e time complexity of the local search
Fre Objective matrix corresponding o |tst§\t Ie.ast?t(n m).t tIn I|terafc|llj_re, thedCPUht|me.I|m|-
Fpool Pool of objective matrix correspond- ation 1S ofren set pnm mll Iseconds, w erq:()j a |
ing to pool constant (Tasgetiren et al., 2007; Ruiz and Stitzle,

2007; Xu et al., 2011; Costa et al., 2012b; Costa
using a roulette methodology, such that the probabil- et al., 2012a; Pan and Ruiz, 2012). This setting has
ity increases with the cost of the solution generated a shortcoming in that smaller instances can run with
by the move. This probability is determined as: more CPU time relative to larger instances. For ex-
ample, an instance with 20 jobs and 20 machines
o n(i),j — Ib+1 6 may have 1006 20x (20— 1) solutions evaluated in
Pi= ZEfO'kyéi \/TW 6 p x 20x 20 milliseconds CPU time, i.e. checking all
’ ’ the jobs 1000 passes; while an instance with 500 jobs
and 20 machines still has the same number solutions
evaluated irp x 500x 20 milliseconds CPU time, i.e.
checking all the jobs only about 1.52 passes. In or-
der to avoid this unfair, the CPU time limitation is set

. to pn®m milliseconds. In this workp is set to 0.004,
3.3 Self-adaptivelLS 0.012 and 0.02, respectively.

The proposed ILS is named self-adaptive ILS
(SAILS), with the pseudo code presented in Figure
3. 4 COMPUTATIONAL RESULTS

In this work, thepool_sizeis set to 5, as this value
is found to be effective in Dong et al. (Dong et al., Inthis section, the proposed algorithms are evaluated.
2013), although the parameter is rather robust. The Firstly, two parameters of the SAILS are tuned, then
parametek (used in Eq. (5)) and temperatufeare the SAILS is compared with state of the art algorithms
tuned in Section 4.1. There are usually two termi- and shown the effective of the newly proposed pertur-
nation criteria in the literature: a maximum number bation method.
of iterations and limited computational time. In this The benchmark instances used for analysis are

The perturbation method is illustrated in Figure 2.
In this figure,rand() is a function that generates a
random number uniformly distributed in the range [0,
1], and the global variables are listed in Table 1.

381

ICINCO 2014 - 11th International Conference on Informatics in Control, Automation and Robotics

Table 2: Tuning the parameters of the SAILS. Table 3: Comparison in ARPD for MRSILS, PR-ILS, PR-
IGA and SAILS (0004®mms CPU time).
value ofk

temperaturd 1 2 3 4 njm MRSILS PR-ILS PR-IGA SAILS
3 0.306 0.298 0.294 0.314 20/5 0.007 0 0.016 0.007

4 0.309 0.292 0.299 0.318 20/10 0.002 0 0 0

5 0.318 0.309 0.312 0.292 20J20 0 0 0 0
]]]) 505 0.476 0.558 0.485 0.501
taken from Taillard (Taillard, 1993), with 120 in- 50,10 0.575 0.677 0.630 0.584
stances evenly distributed among 12 different sizes. 50,20 0.534 0.610 0589 0.393
The scale of these problems varies from 20 jobs and 5 1005 0.824 0.888 0819 0.834

machines to 500 jobs and 20 machines. In the experi- 100110 1.032 0.941 1.127 1.022
ment, five independent runs are performed for the in- 100120 1.076 1.043 1171 0.991
stances with less than 500 jobs. The ten instances with 50010 0.740 0.754 0667 0.750
500 jobs and 20 machines are run only once as they 200120 0.393 0.283 0296 0.293
are considerably more time consuming. For example, 500,20 0.121 0.020 0.063 0.149
for the terminal criterion ®2n®m milliseconds CPU Avg. 0.482 0.481 0.488 0.460
time, about 13.9 hours are required for just one run.
The performance of the algorithms are tested us- Y
ing the relative percentage deviation (RPD), which is 4-2 Evaluation of the SAILS

calculated as:
The values for the average RPD (ARPD) of all 120
RPD= (C —Cpesy) /Coest x 100 (7) instances are presented in Tables 3 - 5 for each com-
and Ruiz (Pan and Ruiz, 2012), found as the best so-Prolonging of CPU time, the superiority of the SAILS

other state of the art works. self-adaptive strategy will be applied more times in

Each algorithm is implemented in C++, run- the searchwith prolonged CPU time, and then result-
ning on three similar PCs, each with an Intel Core2 Ing significantly better performance for the SAILS.
Duo processor (2.99 GHz) and 2GB main memory. This also shows that the proposed strategy is effec-
Though each computer has two processors, only onetive, particularly with longer CPU time.
is used in the experiments, as no parallel program- ~ This phenomenon can also be observed on large

ming technique has been applied. instances. With the 500 job instances, when the CPU
time limitation is set to M04x n®m, SAILS performs
4.1 Tuning of the SAILS the worst. When the CPU time limitation is set to

0.012x n®m, SAILS surpasses MRSILS and PR-IGA,

There are two parameters in the proposed SAILS, the_bUt_'S still worse thansPR-ILS. With the CPU time lim-
first one isk, used in Eq. (5); the other is the tem- itation set to 0020x n°m, SAILS furth_er_outperforms
peratureT, used in the self-adaptive perturbation (see MRSILS and PR-IGA, and is quite similar to PR-ILS.
Fig. 2). Thekis setto 1, 2, 3 and 4, respectively, 05
and theT is set to 3, 4 and 5, respectively. So there
are 12 combinations in total. The terminal criterionis o4s -
set to 002 x mre. As it is too time consuming for the
500 jobs instances, the SAILS is only run on the first o %4 1 —e—MRSILS
110 instances. The overall averaged RPDs (ARPD) % —m—PRAILS
for these 12 combinations are listed in Table 2. From PRIGA
this table, it can be seen that the results are quite sim- . \\‘_ —=SAILS
ilar for each pair oflf andk. However, the results are Y’
generally better wittk = 2. As the performance is 0.25 : :
one of the best cases wikh= 2 andt = 4, we choose p=0.004 p=0.012 p=0.02
them in the following experiments. CPU time limitation (pms* ms)

Figure 4: Comparison results for the SAILS with the MR-

SILS, PR-ILS and PR-IGA with different CPU time set-
tings.

382

A Self-adaptive Iterated Local Search Algorithm on the Permutation Flow Shop Scheduling Problem

Table 4: Comparison in ARPD for MRSILS, PR-ILS, PR-
IGA, SAILS (0.012n3m ms CPU time).

njm MRSILS PR-ILS PR-IGA SAILS

205 0.007 0 0.007 0.007
20/10 0 0 0 0

20J20 0 0 0 0

505 0.345 0.406 0.279 0.363
50|10 0.398 0.494 0.572 0.462
50/20 0.388 0.431 0.537 0.303
1005 0.646 0.703 0.678 0.650
10010 0.766 0.739 0.897 0.751
10020 0.841 0.836 0.853 0.738
20010 0.547 0.597 0.527 0.536
20020 0.083 -0.016 0.097 ~ 0.007
50020 -0.027 -0.110 -0.034 -0.057
Avg 0.333 0.340 0.368 0.313

Table 5: Comparison in ARPD for MRSILS, PR-ILS, PR-
IGA, SAILS (0.02n3m ms CPU time).

njm MRSILS PR-ILS PR-IGA SAILS

205 0.007 0 0.007 0.007
20/10 0 0 0 0

20J20 0 0 0 0

50,5 0.296 0.332 0.262 0.290
50|10 0.357 0.474 0.527 0.402
50/20 0.387 0.416 0.480 0.274
1005 0.602 0.648 0.590 0.557
10010 0.699 0.697 0.793 0.659
10020 0.701 0.740 0.761 0.612
20010 0.473 0.521 0.475 0.460
20020 -0.002 -0.063 0.027 -0.046
50020 -0.089 -0.165 -0.081 -0.144
Avg 0.286 0.300 0.320 0.256

5 CONCLUSIONS

Iterated local search algorithms are powerful for solv-
ing the PFSP minimizing total flow time, with the per-
turbation method playing an important role. The MR-
SILS algorithm by Dong et al. (Dong et al., 2013) is
a state of the art ILS algorithm. However, one short-

coming is that the best current solution cannot be im-
proved in many local search runs during the search
process. Further, the perturbation method only moves

The greater the difference between the average ob-
jective value and the best current objective value, the
higher the probability that the perturbation strength
is increased and a randomly selected job is moved
to a position where worse solutions can be gener-
ated. The SAILS algorithm is proposed based on the
above analysis. Experimental results on benchmark
instances show that SAILS works quite well, espe-
cially for long CPU times. The proposed method-
ology developed here may potentially be applied to
other problems, as escaping local minimums with lo-
cal search is a difficulty for many combinatorial opti-
mization problems.

ACKNOWLEDGEMENTS

This work is supported by The Fundamental Research
Funds for the Central Universities of China (Project
Ref. 2014JBMO034, Beijing Jiaotong University).

REFERENCES

Costa, W., Goldbarg, M., and Goldbard, E. (2012a). Hy-
bridizing VNS and path-relinking on a particle swarm
framework to minimize total flowtimeExpert Systems
with Applications 39:13118-13126.

Costa, W., Goldbarg, M., and Goldbard, E. (2012b). New
VNS heuristic for total flowtime flowshop scheduling
problem.Expert Systems with Applicatiqr9:8149—
8161.

Dong, X., Chen, P., Huang, H., and Nowak, M. (2013).
A multi-restart iterated local search algorithm for the
permutation flow shop problem minimizing total flow
time. Computers & Operations Research0:627—
632.

Dong, X., Huang, H., and Chen, P. (2009). An iterated
local search algorithm for the permutation flowshop
problem with total flowtime criterion.Computers &
Operations Researci36:1664—1669.

Garey, M., Johnson, D., and Sethi, R. (1976). The complex-
ity of flowshop and jobshop schedulinylathematics
of Operations Research:117-129.

Johnson, S. (1954). Optimal two and three-stage production

schedule with setup times includetlaval Research
Logistics Quarterly1(1):61-68.

a randomly selected job to another randomly selectedLiu, J. and Reeves, C. (2001). Constructive and composite

position, without any bias, such that it is difficult to
escape from a “deep” local optimum.
In order to overcome this shortcoming, a self-

adaptive perturbation method is proposed in this pa-
In this method, the search status is evaluated
by calculating the average objective value of a sam-

per.

ple of the neighborhoods around the local optimum.

heuristic solutions to thp// 5 ¢; scheduling problem.
European Journal of Operational Researd32:439—
452,

Lourenco, H., Martin, O., and Stitzle, T. (2010Hand-
book of Metaheuristicsvolume 146 ofinternational
Series in Operations Research & Management Sci-
ence chapter Iterated Local Search: Framework and
Applications, pages 363-397. Springer US.

383

ICINCO 2014 - 11th International Conference on Informatics in Control, Automation and Robotics

Nikolaev, A. G. and Jacobson, S. H. (201®andbook of
Metaheuristicsvolume 146 ofinternational Series in
Operations Research & Management Sciemt@pter
Simulated Annealing, pages 1-39. Springer US.

Pan, Q.-K. and Ruiz, R. (2012). Local search methods for
the flowshop scheduling problem with flowtime mini-
mization.European Journal of Operational Research
222:31-43.

Pan, Q.-K., Tasgetiren, M., and Liang, Y.-C. (2008). A dis-
crete differential evolution algorithm for the permu-
tation flowshop scheduling problen€omputers and
Industrial Engineering55:795-816.

Pinedo, M. (2001). Scheduling: theory, algorithms, and
systemsPrentice Hall, 2nd edition.

Rajendran, C. and Ziegler, H. (2004). Ant-colony algo-
rithms for permutation flowshop scheduling to mini-
mize makespan/total flowtime of jobSuropean Jour-
nal of Operational Researct155:426—-438.

Rajendran, C. and Ziegler, H. (2005). Two ant-colony algo-
rithms for minimizing total flowtime in permutation
flowshops. Computers and Industrial Engineering
48:789-797.

Ruiz, R. and Stutzle, T. (2007). A simple and effective
iterated greedy algorithm for the permutation flow-
shop scheduling problemEuropean Journal of Op-
erational Researchl77:2033-2049.

Taillard, E. (1993). Benchmarks for basic scheduling prob-
lems. European Journal of Operational Research
64:278-285.

Tasgetiren, M., Liang, Y.-C., Sevkli, M., and Gencyilmaz,
G. (2007). A particle swarm optimization algorithm
for makespan and total flowtime minimization in the
permutation flowshop sequencing probleBuropean
Journal of Operational Researcthi77:1930-1947.

Tasgetiren, M., Pan, Q.-K., Suganthan, P., and Chen, A.
H.-L. (2011). A discrete artificial bee colony algo-
rithm for the total flowtime minimization in permu-
tation flow shops. Information Sciencesl81:3459—
3475.

Tseng, L.-Y. and Lin, Y.-T. (2009). A hybrid genetic lo-
cal search algorithm for the permutation flowshop
scheduling problem. European Journal of Opera-
tional Research198:84-92.

Tseng, L.-Y. and Lin, Y.-T. (2010). A genetic local search
algorithm for minimizing total flowtime in the per-
mutation flowshop scheduling problerimternational
Journal of Production Economic427:121-128.

Xu, X., Xu, Z., and Gu, X. (2011). An asynchronous genetic
local search algorithm for the permutation flowshop
scheduling problem with total flowtime minimization.
Expert Systems with Applicatiqr8:7970-7979.

Zhang, Y., Li, X., and Wang, Q. (2009). Hybrid genetic
algorithm for permutation flowshop scheduling prob-
lems with total flowtime minimization. European
Journal of Operational Researcth96(3):869-876.

384

