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Abstract: Successful software systems have to adapt to the evolving needs of their users. However, adding and 
extending functional features often becomes more difficult over time due to aggregated complexity and 
eroded modularity. This erosion can be quantified by measuring scattering and tangling of feature 
implementations in the source code, to track long-term regressions and to plan refactorings. This paper 
argues that the traditional usage of only the absolute values of modularity metrics is, however, insufficient 
and proposes to use their relative values instead. These relative values are referred to as the drift of feature-
oriented modularity, and are defined as the distance between the actual metric values for a given source 
code and their values achievable for the source code’s ideally modularized counterpart. The proposed 
approach, called modularization compass, computes the modularity drift by optimizing the feature-oriented 
modularization of source code based on traceability links between features and source code. The optimized 
modularizations are created automatically by transforming the groupings of classes into packages, which is 
guided by a multi-objective grouping genetic algorithm. The proposed approach was evaluated by 
application to long-term release histories of three open-source Java applications. 

1 INTRODUCTION 

Incorporating changes requested by the users during 
software evolution is non-trivial, because it requires 
a deep understanding of the relations between the 
software’s problem domain and its solution domain 
(Turner et al., 1999). Doing so is difficult because 
the problem domain is centered around user-
observable units of functionality, the so-called 
features (Turner et al., 1999)(Tarr et al., 1999), 
whereas the solution domain is arranged around 
source-code units such as modules, packages, 
classes, methods and instructions. Hence, during 
modification of a feature in response to a particular 
change requested by users, it is important to be able 
to efficiently map the feature to the concrete source-
code units that need to be inspected, modified and 
tested. Furthermore, in order to aid software 
inspection and modification, one needs to properly 
modularize the implementations of features into 
source-code modules (Parnas, 1972). 

Unfortunately, it is common that 
implementations of features are not explicitly 
represented in the organizations of software into 
source-code modules. Instead, the organization of 

software traditionally focuses on separating 
technical concerns such as model, view, controller 
or persistence into separate architectural layers each 
represented by one or more source-code modules. 
As a result, the implementations of features become 
scattered over multiple source-code modules and 
tangled with one another, as each feature typically 
crosscut multiple architectural layers. These 
relations between feature specifications and source-
code modules affect software evolution in several 
ways: 
 Scattering denotes the delocalization of the 

implementation of a feature over several 
source-code units of an application (Turner et 
al., 1999) and corresponds to the software 
comprehension phenomenon of delocalized 
plans (Letovsky and Soloway, 1986). The 
presence of delocalized plans is known to make 
it difficult to identify the relevant source-code 
units during change tasks (Letovsky and 
Soloway, 1986)(Eaddy et al., 2008). 

 Tangling of features denotes the interleaving of 
the implementation of multiple features within a 
single module of source code (Rugaber et al., 
1995). Such interleaving is known to make it 
difficult to understand how multiple features 
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relate and how they reuse fragments of each 
others’ implementations (Benestad et al., 2009). 

Apart from software comprehension, the 
representation gap between features and source-code 
modules makes it more difficult to modify source 
code. Due to scattering, modification of one feature 
may require understanding and modification of 
several seemingly unrelated source-code modules. 
Due to tangling, a modification intended to affect 
only one feature may cause accidental change 
propagation to other features that happen to use the 
source-code module being modified. 

Due to the evolutionary implications of 
scattering and tangling, it is important to keep track 
of the development of their values over subsequent 
evolutionary releases of software. The erosion of 
feature-oriented modularity, as indicated by 
increasing scattering and tangling, has to be 
observed to provide feedback on the extent of the 
development overhead that they may incur. 
Ultimately, such knowledge can be used to inform 
planning of feature-oriented remodularization 
efforts. 

This paper proposes an approach called 
modularization compass that quantifies the so-called 
drift of feature-oriented modularity in software. We 
define the drift in feature-oriented modularity as the 
distance between the scattering and tangling metric 
values for the actual source code of a software 
release and counterpart that is ideally modularized 
with respect to the metrics of interest. The idealized 
counterparts are created through a remodularization 
process that optimizes the grouping of classes into 
packages according to feature-oriented criteria using 
a multi-objective grouping genetic algorithm. To 
compute the values of scattering and tangling, the 
approach assumes availability of traceability links 
between features and source-code units, as 
obtainable from several existing feature-location 
approaches. Based on the measurements of 
scattering and tangling drifts, the modularization 
compass approach provides so-called compass views 
that depict the evolution of drift of feature-oriented 
modularity over an application’s lifetime. 

This approach was implemented for the Java 
programming language and evaluated using long-
term release histories of three open-source Java 
applications. There, the drift information from the 
modularization compass views was used to identify 
the development periods in which the potential 
benefits from restructuring the code would have 
been largest, and to determine whether this 
restructuring effort should have focused on reducing 
the scattering or the tangling of features. Apart from 

demonstrating the approach, a number of 
observations were made regarding the nature of drift 
of feature-oriented modularity. 

The remaining part of the paper is structured as 
follows. Section 2 describes the state of the art of 
feature-oriented modularity. Section 3 presents the 
modularization compass approach. Section 4 
evaluates the approach. Finally, Section 5 concludes 
the paper. 

2 STATE OF THE ART 

There exist several works that investigate evolution 
of features and the modularity of their 
implementations over time. 

Hsi and Potts (Hsi and Potts, 2000) proposed to 
use three views: morphological view, functional 
view and object view to study the co-evolution of 
the representation of features in the UI, their textual 
specifications and their implementation in three 
releases of Microsoft’s Word text processor. The 
presented qualitative analysis shows that the features 
providing the core functionality experience little 
change and tend to stabilize over time. This is 
because they tend to become more entangled with 
associations as new features are added. As a result, 
newer features are observed to be added on the 
periphery of the main functionality of the 
application in either small extensions or larger 
clumps. 

Fischer and Gall (Fischer and Gall, 2004) 
designed a visualization of feature co-evolution 
based on the logical coupling between source files 
created during adoption of change requests. This 
approach is used to uncover hidden dependencies 
among features and thereby to identify potential 
occurrences of architectural deterioration in 
directory structures of programs. The authors apply 
their approach to a four-year revision history of the 
Mozilla web browser to uncover unanticipated 
dependencies and co-evolution of features. 

Hou and Wang (Hou and Wang, 2009) analyzed 
the evolution of features related to usability in the 
Eclipse IDE. This was done by both qualitative and 
quantitative manual analyses of the change logs of 
the project. The authors identify the majority of the 
changes as gradual refinements or incremental 
additions well accommodated by the project’s 
architecture. The authors observe the usability-
related features to be the largest component of work 
in the project, with a shift over time towards 
focusing on features concerned with integration of 
other features and their automation. The observed 
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incremental, rather than punctuated, growth of 
features of Eclipse is believed to be enabled by the 
stability of the architecture. 

Greevy et al. (Greevy et al., 2005) focused on 
qualitative assessment and visualization of 
evolutionary changes in implementations of 
features. Using the proposed visualization, the 
authors are able to reason about functional 
specialization of classes over time, extension of 
existing features with new classes and refactorings 
performed to features. The presented results depict 
an increase of feature count and addition of feature-
specific classes over time. 

In an earlier work, Olszak and Jørgensen (Olszak 
and Jørgensen, 2012) developed an approach to bi-
directional remodularization of existing Java 
applications to improve the modularization of 
features in source code. There, feature location was 
performed using an annotation-driven dynamic 
analysis mechanism, and new feature-oriented 
package structures were created automatically using 
a multi-objective genetic algorithm aiming at 
reducing scattering, tangling, coupling and 
increasing cohesion. The observed improvements 
suggested that the modularizations produced by this 
approach to be good starting points when migrating 
applications to feature-oriented designs. 

3 THE APPROACH 

Implementing a feature inherently requires a mixture 
of technically diverse classes. In particular, each 
non-trivial feature encompasses some forms of (1) 
interfacing classes, which allow users to activate the 
feature and see the results of its execution, (2) logic 
and domain model classes, which contain the 
essential processing algorithms, and (3) persistence 
classes, which allow for storing and loading the 
results of the feature’s execution. Hence, features 
can be viewed as implicit vertical slices that crosscut 
the common horizontal layers of an application’s 
architecture. These implicit slices consist of graphs 
of collaborating classes that end up scattered and 
tangled within individual layers (Van Den Berg et 
al., 2006). This is depicted in Figure 1. 

Our approach quantifies these two facets of 
modularity of features using the following measures, 
based on formulations proposed by Brcina and 
Riebisch (Brcina and Riebisch, 2008): 
 Scattering of a feature is quantified as the 

number of packages that contribute to 
implementing that feature. The average of these 
values computed for all features in a system is 

referred to as FSCA. The formulation of FSCA 
is described in detail in Section 4.3. 

 Tangling of a package is quantified as the 
number of features that the package contributes 
to. The average of these values computed for all 
packages in a system is referred to as FTANG. 
The formulation of FTANG is described in 
detail in Section 4.3. 

 

 

Figure 1: Relations between feature specifications and 
units of source code. 

The extent to which scattering and tangling of 
features is minimized is a measure of how well 
features are modularized within source-code units. 
We refer to this as the degree of feature-oriented 
modularity of software. 

In order to measure feature-oriented complexity 
of evolving features in terms of scattering and 
tangling, relations between the source-code units 
and individual features have to be identified. The 
process of identifying the relations between source-
code units and observable functionality of a system 
is known as feature location (Wilde et al., 1992). 
This work assumes that traceability links are readily 
available or are recovered for an application using 
one of the feature-location approaches available in 
the literature. In particular, for the evaluation 
purposes, Section 4 uses an existing feature-location 
approach based on source-code annotation and 
dynamic analysis. 

3.1 Evolution of Feature-Oriented 
Modularity 

The essence of how features of software applications 
evolve is well expressed by the laws of continuing 
growth and the law of increasing complexity 
formulated by Lehman (Lehman, 1980). According 
to the first, software applications need to expand and 
enhance their features over time in order to remain 
useful to their users. The second postulates that 
these expansions will lead to increasing complexity 
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of the source code, unless work is done to reduce it. 
One of the facets of the increasing complexity is the 
increasing complexity of how features are 
modularized in source code, as will be exemplified 
in the following. 

The example application schematically depicted 
in Figure 2 initially provides only one feature that is 
implemented by two layered modules. Hence, the 
initial average tangling FTANG in the application 
equals 1 (initially each module implements one 
feature), and the initial average scattering FSCA 
equals 2 (the feature is implemented by two 
modules). 

The first change scenario depicts the effects of 
adding a new feature to the application without 
modifying the structure of the source code. Such a 
functional extension will naturally tend to increase 
the tangling of the application’s modules, as a result 
of reusing parts of existing code among features. 

The second scenario shows the effects of 
enhancing one of the existing features. Because the 
enhancement is implemented as a new module in the 
application (a realistic example of doing so would 
be adding persistence capabilities), the scattering of 
the feature increases. 

Thereafter, depicted are two possible contrasting 
scenarios of source-code restructurings undertaken 
to improve modularization of features. One of them 
is based on the merging of existing modules to 
minimize the scattering of features. As can be seen, 
this causes features to be more tangled with one 
another. The other restructuring reduces feature 
tangling by dividing existing modules along the 
boundaries of features. As a side effect, the 
scattering of features increases. 

Based on this simple example, two important 
observations can be made: 

Addition and enhancement of user functionality 
will tend to increase the tangling and scattering of 
features. Accordingly, the difficulties of code 
comprehension and change propagation associated 
with these phenomena should be expected to 
increase as well. 

Restructuring the source code to minimize only 
one of the two properties of feature-oriented 
modularity (i.e. scattering or tangling) will tend to 
degrade the other property. Hence, in order to 
achieve a simultaneous optimization of both these 
conflicting criteria, a middle-ground restructuring 
needs to be devised. As for the presented toy 
example, this could be done by simply enumerating 
all possible modularizations, but it would certainly 
not be feasible for larger systems, since the number 
of all possible distributions of N classes among M 
modules is equal to MN. 

3.2 The Drift of Modularity 

There are multiple factors that have to be considered 
when planning a feature-oriented restructuring of an 
application. Fundamentally, undertaking a 
restructuring is only worthwhile if the costs of doing 
so are regained by lower development costs for 
subsequent releases. The costs of a restructuring 
include factors such as the actual effort required, the 
impact on time-to-market of the product, changes to 
design documentation, etc. On the benefits side, one 
should expect improvements of changeability and 
understandability of feature implementations during 
subsequent releases and hence a reduction of 
development costs. Unfortunately, estimating these 
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Figure 2: Example impact of evolutionary changes on feature-oriented modularity. 
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benefits remains difficult without knowing how 
much the modularization of features can actually be 
improved by means of restructuring. 

Hence, to make informed feature-oriented 
restructuring decisions, one should be able to 
foresee the consequences of performing a feature-
oriented restructuring. In practice, this boils down to 
being able to foresee how much the current values of 
feature scattering and tangling can be reduced in 
course of restructurings. 

Unfortunately, the achievable benefits of 
restructurings cannot be estimated by simply 
computing the distance between the current values 
of scattering and tangling metrics and their 
numerical minima. This is because the numerical 
minima of these and other metrics often do not 
correspond to realistic optimal modularizations of 
non-trivial applications, e.g. tangling equal to 1 
requires no code sharing among features; scattering 
equal to 1 requires each feature to be fully contained 
in a single module; coupling equal to 0 requires no 
dependencies among modules, etc. The situation is 
further complicated by the presence and the type of 
normalization factors embedded in each metric. 

In order to identify the maximum possible 
improvements of feature-oriented modularization, it 
is therefore necessary to actually construct its 
optimized modularization, on which the reference 
scattering and tangling values can be measured. 
Assuming that doing so is possible with sufficient 
accuracy and in an automated manner (which 
assumption will be expanded on in the next section), 
it would be possible to calculate the distance 
between the current values of scattering and tangling 
and their optimized values achievable, if the 
application is restructured according to feature-
oriented criteria. 

Based on this, we define the drift of feature-
oriented modularity in an application as the 
distances between the absolute and the optimal 
values of the scattering, measured here using FSCA, 
and of tangling, measured here using FTANG. 

 

 

Figure 3: Relativity of metric drift. 

As schematically depicted in Figure 3, the drift 
of feature-oriented modularity can be plotted over 
time for a given application to serve as a 
metaphorical compass that indicates how much the 
modularization of features diverges from the 
optimum with each subsequent release. Observing 
the drift trends can be used in several ways by 
developers to determine the need for initiating 
feature-oriented restructurings of the next releases of 
their applications. 

The compass views of scattering and tangling 
drifts can be used to identify periods in which 
restructuring efforts would be most beneficial. 
Types of such periods include the ones in which the 
drift constitutes a large portion of the absolute 
metric value. An example of such a period is the 
release r4 in Figure 3, where there is a large 
potential for reducing the absolute metric value by 
improving modularization of features. Moreover, in 
the release r4 the drift increased significantly with 
relation to the previous release, and therefore 
restructuring could be considered in r4 to prevent 
further divergence of the application’s 
modularization from the optimum in the next 
release. 

Furthermore, by contrasting the drift plots for 
scattering and tangling, one can determine the 
character of restructuring most needed at a given 
point in time. For instance, large drift of scattering 
indicates a need for improving localization of 
individual features within modules, which may 
require reducing the overall number of modules. In 
contrast, large drift of tangling indicates a need for 
improving separation of features within modules, 
which may require increasing the overall number of 
modules. 

3.3 Calculating Drift using 
Optimization 

As demonstrated by Murphy et al. (Murphy et al., 
2001), there exist tradeoffs between the known 
approaches to improving modularization of features. 
Firstly, Murphy et al. found pure class-based 
refactorings to have a limited potential for 
separating tangled features. In contrast, approaches 
based on AspectJ and Hyper/J were found to have a 
better separation potential, but also more difficult to 
apply and making some of the resulting isolated 
code fragments difficult to understand. In addition, it 
was demonstrated that aspect-oriented techniques 
are sensitive to the order of composition, which 
resulted in coupling of features to one another. r1 r2 r3 r4
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Given the known technical characteristics and 
automation potentials of the existing methods for 
separating features, the modularization compass 
approach is based on regrouping classes in terms of 
packages to reduce scattering and tangling of 
features. While this purely class-based approach has 
limits to the level of feature separation that it can 
achieve, it has the important property from the point 
of view of this work that it allows for complete 
automation of searching for desired feature-oriented 
package structures and subsequently establishing 
them in source code by using refactorings. 

In order to calculate the drift of feature-oriented 
modularity, the modularization compass approach 
uses the so-called feature-oriented remodularization. 
Feature-oriented remodularization is the process of 
multi-objective optimization of the distribution of 
classes among packages, which aims at identifying 
Pareto-optimal package structures that minimize 
both scattering FSCA and tangling FTANG metrics 
(Olszak and Jørgensen, 2012). 

In addition, this formulation encompasses two 
traditional object-oriented objectives that govern the 
inter- and intra-module dependencies among class, 
i.e. the objectives of maximizing cohesion in 
packages and minimizing coupling among packages. 
Formalized definitions of the four metrics used as 
evaluation criteria for the mentioned optimization 
objectives are listed in Figure 4. There, the set of all 
features in an application is denotes as F, the set of 
all packages that contribute to at least one feature as 
PF, and the set of all types as T. 
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Figure 4: Objectives for optimizing modularity of features. 

The definitions of FSCA and FTANG 
correspond to the ones mentioned earlier and are 
simplified versions of the metrics proposed by 
Brcina and Riebisch (Brcina and Riebisch, 2008) 
that are defined based on the ⇝ (i.e. “implemented 
by”) relation between features and packages. The 

reformulation made in this work removes the 
additional normalization factors and makes the 
metrics correspond directly to the numbers of 
features tangled in a package, and packages that a 
feature is scattered over. Doing so allows for easier 
interpretation of the metric values, and is possible 
due to the modularity drift calculation being 
independent of metric normalization, as discussed 
earlier. 

The cohesion metric PCOH is the package-level 
version of the RCI metric based on data-data (DD) 
and data-method (DM) relations proposed by Briand 
et al (Briand et al., 1998). In its essence, this metric 
computes for the set of packages P the average 
quotient of the actual number of intra-package static 
dependencies among classes and the maximum 
possible number of such dependencies. In turn, the 
package coupling metric PCOUP corresponds to a 
sum of the ACAIC, OCAIC, ACMIC, and OCMIC 
coupling measures, as defined by the same authors 
in (Briand et al., 1999), and thereby constitutes the 
sum of all inter-package static dependencies in an 
application.  

The actual process of optimizing the 
application’s modularity with respect to all the 
metrics is performed using a tailored formulation of 
a genetic algorithm that we refer to as multi-
objective grouping genetic algorithm (MOGGA) 
(Olszak and Jørgensen, 2012). The multi-objectivity 
is achieved by exploiting the notion of Pareto-
optimality, whose efficiency in optimizing 
modularization of software systems according to 
multiple conflicting criteria was demonstrated by 
Harman and Tratt (Harman and Tratt, 2007). The 
grouping nature of the problem is exploited by using 
a set of tailored genetic operators based on the work 
of Seng et al. (Seng et al., 2005), who demonstrated 
their significant effect on improving the efficiency 
of traversing the search space of alternative 
modularizations. Hereby, MOGGA constitutes a 
composition of these two well-established 
approaches that is aims at leveraging their respective 
advantages. 

In its essence, MOGGA evolves a population of 
individuals by means of selection, reproduction and 
mutation driven by the score of the individuals with 
respect to a fitness function. Each individual 
represents a particular distribution of classes among 
packages, expressed by an array of integers. Within 
this array, classes are represented by indexes in the 
arrays, and their assignment to packages is 
represented by the values of the corresponding array 
cells. 
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MOGGA adapts two genetic operators that 
exploit the grouping-based nature of the 
remodularization problem. First, the crossover 
operator that forms two children from two parents is 
made to preserve packages as the building blocks of 
modularizations. Secondly, a mutation operator is 
defined to randomly perform one of three actions: 
merge two packages with the smallest number of 
classes, split the largest package into two packages, 
and adopt an orphan class (Tzerpos and Holt, 2000) 
being alone in a package into another package. 

Evaluation of the fitness of the individual 
modularization alternatives is done by computing 
the four metrics of FSCA, FTANG, PCOH and 
PCOUP. In order to appropriately represent the 
regions of the four-dimensional search space that the 
individual modularizations in the population occupy, 
MOGGA adopts the concept of Pareto-optimality. 
Hence, the fitness of each individual becomes a 
tuple consisting of four independent metric values. 
Such a multi-modal fitness is used for comparing 
individuals based on the Pareto-dominance relation, 
which states that one out of two individuals is better 
than the other individual, if all of its fitness values 
are not worse, and at least one of the values is better. 
Thereby, it becomes possible to partially order 
individuals and to determine the set of non-
dominated individuals in a population, i.e. the so-
called Pareto-front. 

Starting with an initial population consisting of 
98% randomized individuals and 2% of the 
individuals from the original modularization, a 
predefined number of evolutionary iterations are 
executed. Then the last Pareto-front is used to select 
a single individual being the optimization result. 
This is done by ranking the individuals in the 
obtained four-dimensional Pareto-front with respect 
to each metric separately, and then choosing the 
individual that is ranked best on average. Please note 
that while this method is used here, existing 
literature defines a range of diverse methods for 
choosing a single solution out of a Pareto-front. 

4 EVALUATION 

We have implemented the presented 
remodularization approach as part of the freely 
available Featureous tool for feature-oriented 
analysis of Java software (Featureous). The code 
transformations required for establishing the source-
code modularizations were implemented using the 
Recoder code transformation library (Recoder). 
Furthermore, as will be discussed later, this 

evaluation relies on a dynamic feature-location 
approach provided by Featureous. 

The goal of the study presented in this section is 
formulated as follows: 

To evaluate whether drift-based metrics bring 
new insights into the evolution of feature-oriented 
modularity of applications, as compared to using 
their absolutes values. 

This is done by applying the approach to long-
term release histories of three open-source Java 
applications that were chosen based on their size, 
maturity and availability of the historical revisions. 
The used applications are: RText – a text editor for 
programmers (17 releases spanning, 3 years) 
(RText), FreeMind – a mind-mapping tool (13 
releases, 5 years) (FreeMind) and JHotDraw Pert – 
a diagramming application being a showcase for the 
JHotDraw framework (11 releases, 8 years) 
(JHotDraw). 

4.1 Results of Feature Location 

While the modularization compass approach does 
not impose any constraint on the feature-location 
approach to be used, we have chosen to use the 
dynamic feature-location approach provided by the 
Featureous tool. This feature-location approach 
identifies code units involved in implementing 
individual features by tracing the execution of an 
instrumented program during its interaction with a 
user. The tracing agent used for this purpose is 
guided by annotations that have to be placed by a 
programmer at appropriate starting methods of each 
feature. Apart from the use of annotations and user-
driven feature triggering, this approach remains 
analogous to other dynamic approaches, such as 
software reconnaissance (Wilde et al., 1992). An 
extensive discussion of the conceptual and technical 
details of the used feature-location approach can be 
found in (Olszak and Jørgensen, 2012). 

The part of the feature-location process that was 
most sensitive to human interpretation was the 
recovery of feature specifications for each release of 
the three investigated applications. We have 
performed this recovery by inspecting the available 
user documentation and by listing the functionality 
exposed in the user interfaces of the applications. 
Table 1 lists the identified features and the release in 
which they were added to the systems, if they were 
added during the investigated periods. 
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Table 1: Investigated releases and their identified features. 

Application 
releases 

Identified features 

RText 
 
Releases: 
0.8.0; 0.8.1; 
0.8.2; 0.8.3; 
0.8.4; 0.8.5; 
0.8.6; 0.8.7; 
0.8.8; 0.8.9; 
0.9.0; 0.9.2; 
0.9.3; 0.9.4; 
0 9 5 0 9 7 0 9 8

Display text, Document properties (0.9.0), Edit 
basic, Edit text, Exit program, Export document 
(0.8.7), Init program, Modify options, 
Customize text (0.9.0), Multiple documents, 
Navigate text, New document, Open document, 
Playback macro (0.9.0), Print document, Record 
macro, Save document, Show documentation, 
Source browser (added in 0.8.8 and removed in 
0.9.0), Undo redo, Plugins (0.9.0) 

FreeMind 
 
Releases: 
0.0.2; 0.0.3; 
0.1.0; 0.2.0; 
0.3.0; 0.3.1; 
0.4.0; 0.5.0; 
0.6.0; 0.6.1; 
0.6.5; 0.6.7; 
0 7 1

Browse mode (0.3.0), Cloud node (0.7.1), 
Display map, Show documentation (0.2.0), Edit 
basic, Edit map, Evaluate (0.3.0), Exit program, 
Export map (0.5.0), File mode (0.1.0), Icons 
(0.6.7), Import/export branch (0.2.0), Init 
program, Link node (0.0.3), Modify edge, 
Modify node, Multiple maps (0.0.3), Multiple 
modes (0.1.0), Navigate map, New map, Open 
map, Print map (0.03), Save map, Zoom 

JHotDraw 
Pert 
 
Releases: 5.2; 
5.3; 5.4b1; 6.0b1; 
7.0.7; 7.0.8; 
7.0.9; 7.1; 7.2; 
7.3; 7.3.1 

Align, Dependency tool, Edit basic, Edit figure, 
Exit program, Export drawing (7.0.7), Group 
figures, Init program, Line tool (removed in 
6.0b1), Modify figure, Multiple windows 
(7.0.7), New drawing, Open drawing, Order 
figures, Save as drawing, Selection tool, Snap to 
grid, Task tool, Text tool, Undo redo (5.3), 
Zoom (7 0 7)

4.2 Results of Feature Drift 
Measurement 

In this evaluation, the drift of feature-oriented 
modularity was calculated by executing MOGGA on 
each release of the three applications. Based on 
observations from a series of pilot executions of the 
MOGGA on the target applications, we arrived at 
the following configuration of the algorithm that 
reduces the overall execution times while preserving 
high optimization level of the resulting 
modularizations. MOGGA was executed for a 
population of 300 individuals for 500 evolutionary 
iterations with mutation probability of 5%. This 
configuration of the algorithm was applied to each 
release ten times to reduce the impact of non-
determinism of genetic computation. The best of the 
solutions found was used as the final result for each 
release. It is worth mentioning that while this 
configuration of MOGGA was observed to produce 
Pareto-optimal solutions in acceptable timeframes 
for all the investigated releases (i.e. in the order of 
magnitude of days), further adjustments to the 
algorithm parameters could lead to reducing these 
times even further. 

The results of measuring the drift of feature-
oriented modularity using MOGGA are presented in 

the form of compass views in Figure 5 for RText, in 
Figure 6 for FreeMind, and in Figure 7 for 
JHotDraw Pert. For each application, two plots are 
shown – one for evolution of scattering and one for 
evolution of tangling. In the plots, the absolute 
metric values are displayed as a line, whereas the 
calculated drift is displayed as an area at the bottom 
of the plots. This is aimed at simplifying the 
observation of development and relation of the drift 
to the absolute metric value. 

The scattering drift plot for RText, shown in 
Figure 5, can be divided into two distinct periods. 
The first period, ranging from the release 0.8.0 to 
the 0.8.6, is a period of overall growth of the 
scattering drift. Despite of minor reductions 
observed in a few intermediate releases (i.e., 0.8.1, 
0.8.3 and 0.8.5), the drift value doubled in this first 
period. 

 

 

Figure 5: Drift measurements for releases of RText. 

This was also the period, in which the drift 
increased together with the absolute scattering and 
constituted on average 42% of the scattering’s value. 
During the second period, between the releases 0.8.6 
and 0.9.8, the drift was initially decreased, and 
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thereafter maintained a relatively constant level. 
Interestingly, this was achieved despite of an over 
twofold increase in the absolute scattering of the 
application. This indicates that the modularization 
decisions of the developers with regard to confining 
features to a small number of packages were close to 
optimum in this period. 

The tangling drift plot for RText, shown in 
Figure 5, contains three interesting periods. Firstly, 
the period between the releases 0.8.0 and 0.8.3 is the 
period of sharp decreases of drift and absolute 
tangling and a decrease of the relative contribution 
of drift to the absolute tangling value. Secondly, 
between the releases 0.8.3 and 0.9.2, both the drift 
and the absolute tangling were increasing at a 
similar rate. Despite the overall growth, the drift 
appears here to be periodically reduced by the 
developers. Lastly, in the period 0.9.2 to 0.9.8 both 
the drift and the absolute tangling remain fairly 
constant. It is also this period, where the relative 
contribution of the drift is the lowest. However, it 
remains significantly higher than the relative 
contribution observed earlier of the scattering drift. 
Together, this data indicates that the features of 
RText were better localized than separated from one 
another in terms of packages. 

The scattering drift plot for FreeMind, shown in 
Figure 6, depicts several oscillations of the 
scattering drift over time. Initially, the oscillations 
are stronger but they eventually weaken over time. 
In comparison, the value of the absolute scattering 
of the application increases sharply between the 
releases 0.0.2 and 0.1.0, and thereafter remains 
approximately constant over the next 10 releases. 
This suggests that the application structure 
established at release 0.1.0 served well for the 
purpose of adding new features and extending the 
existing ones in a localized fashion. 

The tangling drift plot for FreeMind, shown in 
Figure 6, can be divided into three periods: the 
period of increasing drift and increasing absolute 
tangling (0.0.2 – 0.3.0), the period of decreasing 
drift and stabilized absolute tangling (0.3.0 – 0.6.0), 
and the period of continued growth in both the drift 
and the absolute tangling. It can be seen that the 
overall changes of tangling drift and the absolute 
tangling reflect each other over time; only a minor 
difference in the growth rates can be observed, i.e. in 
the release 0.0.2 the drift constitutes 59% of the 
absolute tangling value, whereas in release 0.7.1. it 
constitutes 47% of the absolute tangling value. This 
high contribution indicates that FreeMind has a 
relatively high potential for improving the 

separation of features through source code 
restructuring. 

 

Figure 6: Drift measurements for releases of FreeMind. 

A potential trace of such efforts undertaken by 
the FreeMind developers is the transition from the 
release 0.5.0 to 0.6.0, where the drift of tangling was 
reduced by 34%. 

In both the scattering and tangling drift plots for 
JHotDraw Pert, shown in Figure 7, it can be seen 
that the feature-oriented evolution of the application 
underwent a dramatic shift after release 6.0b1. Up 
till then, both the drifts and the absolute values of 
scattering and tangling were generally increasing. 
Starting from the release 7.0.7, these trends have 
changed. During the transition from 6.0b1 to 7.0.7, 
the drift of scattering was reduced almost 
completely, despite an increase in the absolute 
scattering, and both the drift and the absolute value 
of tangling were decreased significantly. Thereafter, 
both scattering and tangling drifts experienced only 
very small increases, whereas the absolute scattering 
value continued to rise and the absolute tangling 
value continued to slightly decrease. 
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Figure 7: Drift measurements for releases of JHotDraw 
Pert. 

It turns out that these observations find their 
reflection in the types of work on the application 
that the developers undertook in the period 
preceding the 7.0.7 release. The release notes from 
that period mention a large-scale architectural 
refactoring of the underlying JHotDraw framework. 
While it is difficult to tell whether improving the 
separation of individual features of Pert was among 
the intentions of these refactorings, it certainly 
became one of the results. Furthermore, the obtained 
reductions for both the drifts and the absolute value 
of scattering and tangling have shown to remain 
fairly stable after the source code refactoring – 
especially if compared to the rapid developments 
prior to the refactoring. Interestingly, the absolute 
value of tangling began to decrease over a longer 
period, which is a behavior unseen in the two other 
investigated software applications. 

4.3 Discussion 
 
The reported study applied the modularization 
compass approach to three real-world Java 
applications. The measured drift values were 
observed to evolve over the subsequent releases of 
the three applications in ways that were not trivially 
related to evolution of the absolute metric values. 
This indicates that for the study subjects, the drift 
measurements add a new type of information about 
the evolution of the applications’ modularity over 
time. 

The obtained drift measurements were used as an 
input to formulating a number of hypotheses about 
the reasons for the observed changes of the 
applications’ feature-oriented modularity over time 
and a number of restructuring recommendations.  

Overall, in all the investigated applications the 
tangling drift constituted a significantly higher 
portion of FTANG than the scattering drift did for 
FSCA. This suggests that it is the separation of 
features from one another, rather than their 
confinement in few packages, that should be the 
primary restructuring goal for the three investigated 
applications. While at this point it is not possible to 
judge whether the insufficient separation of features 
is a common trait of layered object-oriented 
architectures, we see it as a viable hypothesis for 
further investigation. 

Furthermore, periodical oscillations of the drift 
were observed in several cases that were not 
observed on the absolute metric values. This initial 
observation appears possibly be related to the 
observations of Anton and Potts (Antón and Potts, 
2003) about the burst-like nature of adding new 
features. In a 50-year evolution of a telephone 
system, they observed new features to be introduced 
in discrete bursts, i.e. they exhibit punctuated rather 
than incremental or gradual evolution. These bursts 
were typically followed by periods of retrenchment 
that merged similar features and phased out older 
versions of new features. In our context, burst-like 
additions or enhancements of features could have 
resulted in rapid increases of drift, which were 
thereafter reduced during retrenchment periods. 

There are several threats to validity of the 
obtained results, as well as several aspects of the 
presented study that can be improved in the future. 

Firstly, in order to strengthen the internal validity 
of the results, a separate systematic exploration of 
MOGGA configuration parameters can be 
performed to improve the configuration of the 
algorithm. Even though care was taken during the 
configuration process to obtain a set of parameters 
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that produces the best observable solutions, it 
remains interesting to compare the performance of 
different configurations of MOGGA and other 
optimization approaches. Performing such a 
systematic follow-up comparison, similarly as done 
by Mitchell and Mancoridis (Mitchell and 
Mancoridis, 2007), would be important to learning 
about the characteristics of MOGGA.  

Secondly, it is worthwhile to equip the 
remodularization approach with method-level 
refactorings (e.g. move method, extract method, 
etc.), so that drift at the granularity of methods can 
also be detected. Nevertheless, such a refinement is 
expected to have only a limited impact on the results 
presented in this paper, according to an earlier work 
of the authors showing that method-level 
refactorings only have a minor effect on scattering 
and tangling optimization (Olszak and Jørgensen, 
2012). 

Lastly, while the presented work was motivated 
by influence of modularization of features on 
evolvability of software, it remains possible to apply 
the modularization compass approach to other 
characteristics of software design. This can be done 
as long as these ‘other characteristics’ are 
quantifiable and can be shaped by means of source-
code restructuring. In practice, the presented 
approach can be re-purposed by replacing the 
metrics that are used to drive the MOGGA. 
Guidelines for doing so can be found in the work of 
Harman and Clark (Harman and Clark, 2004). 

5 CONCLUSION 

The ability to change is both a blessing and a burden 
to software. On the one hand, it allows systems to 
adapt to changing requirements imposed by users. 
On the other hand, changing existing source code is 
often difficult and the adoption of repetitive changes 
tends to erode the original structure of source code. 

The work presented in this paper focused on the 
drift of feature-oriented modularity during the 
evolution of software applications. The proposed 
approach called modularization compass measures 
this type of drift by comparing the original version 
of an application to its automatically remodularized 
counterpart. The remodularization process is 
performed by using a multi-objective grouping 
genetic algorithm that uses metrics of scattering, 
tangling, cohesion and coupling as the objectives for 
package structure optimization. 

The approach was implemented in Java, and 
applied to three open-source Java applications. The 

obtained compass views showed the significant 
differences between the evolution of absolute values 
of scattering and tangling and the evolution of their 
drifts. Based on the analysis of drifts over 
subsequent releases, we were able to identify when 
restructuring brings the largest improvement in 
feature modularity, and to determine that the 
restructuring effort for all three applications should 
focus on separating features from one another to 
reduce the significant drifts of their tangling.  

Finally, the design and the evaluation of the 
approach resulted in several promising directions for 
future research and provided several preliminary 
observations about the general nature of evolution of 
software features. 
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