
Modularization Compass
Navigating the White Waters of Feature-Oriented Modularity

Andrzej Olszak and Bo Nørregaard Jørgensen
The Maersk Mc-Kinney Moller Institute, University of Southern Denmark, Odense, Denmark

Keywords: Software Evolution, Measurement, Modularity, Features.

Abstract: Successful software systems have to adapt to the evolving needs of their users. However, adding and
extending functional features often becomes more difficult over time due to aggregated complexity and
eroded modularity. This erosion can be quantified by measuring scattering and tangling of feature
implementations in the source code, to track long-term regressions and to plan refactorings. This paper
argues that the traditional usage of only the absolute values of modularity metrics is, however, insufficient
and proposes to use their relative values instead. These relative values are referred to as the drift of feature-
oriented modularity, and are defined as the distance between the actual metric values for a given source
code and their values achievable for the source code’s ideally modularized counterpart. The proposed
approach, called modularization compass, computes the modularity drift by optimizing the feature-oriented
modularization of source code based on traceability links between features and source code. The optimized
modularizations are created automatically by transforming the groupings of classes into packages, which is
guided by a multi-objective grouping genetic algorithm. The proposed approach was evaluated by
application to long-term release histories of three open-source Java applications.

1 INTRODUCTION

Incorporating changes requested by the users during
software evolution is non-trivial, because it requires
a deep understanding of the relations between the
software’s problem domain and its solution domain
(Turner et al., 1999). Doing so is difficult because
the problem domain is centered around user-
observable units of functionality, the so-called
features (Turner et al., 1999)(Tarr et al., 1999),
whereas the solution domain is arranged around
source-code units such as modules, packages,
classes, methods and instructions. Hence, during
modification of a feature in response to a particular
change requested by users, it is important to be able
to efficiently map the feature to the concrete source-
code units that need to be inspected, modified and
tested. Furthermore, in order to aid software
inspection and modification, one needs to properly
modularize the implementations of features into
source-code modules (Parnas, 1972).

Unfortunately, it is common that
implementations of features are not explicitly
represented in the organizations of software into
source-code modules. Instead, the organization of

software traditionally focuses on separating
technical concerns such as model, view, controller
or persistence into separate architectural layers each
represented by one or more source-code modules.
As a result, the implementations of features become
scattered over multiple source-code modules and
tangled with one another, as each feature typically
crosscut multiple architectural layers. These
relations between feature specifications and source-
code modules affect software evolution in several
ways:
 Scattering denotes the delocalization of the

implementation of a feature over several
source-code units of an application (Turner et
al., 1999) and corresponds to the software
comprehension phenomenon of delocalized
plans (Letovsky and Soloway, 1986). The
presence of delocalized plans is known to make
it difficult to identify the relevant source-code
units during change tasks (Letovsky and
Soloway, 1986)(Eaddy et al., 2008).

 Tangling of features denotes the interleaving of
the implementation of multiple features within a
single module of source code (Rugaber et al.,
1995). Such interleaving is known to make it
difficult to understand how multiple features

48 Olszak A. and Nørregaard Jørgensen B..
Modularization Compass - Navigating the White Waters of Feature-Oriented Modularity.
DOI: 10.5220/0005092800480059
In Proceedings of the 9th International Conference on Software Engineering and Applications (ICSOFT-EA-2014), pages 48-59
ISBN: 978-989-758-036-9
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)

relate and how they reuse fragments of each
others’ implementations (Benestad et al., 2009).

Apart from software comprehension, the
representation gap between features and source-code
modules makes it more difficult to modify source
code. Due to scattering, modification of one feature
may require understanding and modification of
several seemingly unrelated source-code modules.
Due to tangling, a modification intended to affect
only one feature may cause accidental change
propagation to other features that happen to use the
source-code module being modified.

Due to the evolutionary implications of
scattering and tangling, it is important to keep track
of the development of their values over subsequent
evolutionary releases of software. The erosion of
feature-oriented modularity, as indicated by
increasing scattering and tangling, has to be
observed to provide feedback on the extent of the
development overhead that they may incur.
Ultimately, such knowledge can be used to inform
planning of feature-oriented remodularization
efforts.

This paper proposes an approach called
modularization compass that quantifies the so-called
drift of feature-oriented modularity in software. We
define the drift in feature-oriented modularity as the
distance between the scattering and tangling metric
values for the actual source code of a software
release and counterpart that is ideally modularized
with respect to the metrics of interest. The idealized
counterparts are created through a remodularization
process that optimizes the grouping of classes into
packages according to feature-oriented criteria using
a multi-objective grouping genetic algorithm. To
compute the values of scattering and tangling, the
approach assumes availability of traceability links
between features and source-code units, as
obtainable from several existing feature-location
approaches. Based on the measurements of
scattering and tangling drifts, the modularization
compass approach provides so-called compass views
that depict the evolution of drift of feature-oriented
modularity over an application’s lifetime.

This approach was implemented for the Java
programming language and evaluated using long-
term release histories of three open-source Java
applications. There, the drift information from the
modularization compass views was used to identify
the development periods in which the potential
benefits from restructuring the code would have
been largest, and to determine whether this
restructuring effort should have focused on reducing
the scattering or the tangling of features. Apart from

demonstrating the approach, a number of
observations were made regarding the nature of drift
of feature-oriented modularity.

The remaining part of the paper is structured as
follows. Section 2 describes the state of the art of
feature-oriented modularity. Section 3 presents the
modularization compass approach. Section 4
evaluates the approach. Finally, Section 5 concludes
the paper.

2 STATE OF THE ART

There exist several works that investigate evolution
of features and the modularity of their
implementations over time.

Hsi and Potts (Hsi and Potts, 2000) proposed to
use three views: morphological view, functional
view and object view to study the co-evolution of
the representation of features in the UI, their textual
specifications and their implementation in three
releases of Microsoft’s Word text processor. The
presented qualitative analysis shows that the features
providing the core functionality experience little
change and tend to stabilize over time. This is
because they tend to become more entangled with
associations as new features are added. As a result,
newer features are observed to be added on the
periphery of the main functionality of the
application in either small extensions or larger
clumps.

Fischer and Gall (Fischer and Gall, 2004)
designed a visualization of feature co-evolution
based on the logical coupling between source files
created during adoption of change requests. This
approach is used to uncover hidden dependencies
among features and thereby to identify potential
occurrences of architectural deterioration in
directory structures of programs. The authors apply
their approach to a four-year revision history of the
Mozilla web browser to uncover unanticipated
dependencies and co-evolution of features.

Hou and Wang (Hou and Wang, 2009) analyzed
the evolution of features related to usability in the
Eclipse IDE. This was done by both qualitative and
quantitative manual analyses of the change logs of
the project. The authors identify the majority of the
changes as gradual refinements or incremental
additions well accommodated by the project’s
architecture. The authors observe the usability-
related features to be the largest component of work
in the project, with a shift over time towards
focusing on features concerned with integration of
other features and their automation. The observed

Modularization�Compass�-�Navigating�the�White�Waters�of�Feature-Oriented�Modularity

49

incremental, rather than punctuated, growth of
features of Eclipse is believed to be enabled by the
stability of the architecture.

Greevy et al. (Greevy et al., 2005) focused on
qualitative assessment and visualization of
evolutionary changes in implementations of
features. Using the proposed visualization, the
authors are able to reason about functional
specialization of classes over time, extension of
existing features with new classes and refactorings
performed to features. The presented results depict
an increase of feature count and addition of feature-
specific classes over time.

In an earlier work, Olszak and Jørgensen (Olszak
and Jørgensen, 2012) developed an approach to bi-
directional remodularization of existing Java
applications to improve the modularization of
features in source code. There, feature location was
performed using an annotation-driven dynamic
analysis mechanism, and new feature-oriented
package structures were created automatically using
a multi-objective genetic algorithm aiming at
reducing scattering, tangling, coupling and
increasing cohesion. The observed improvements
suggested that the modularizations produced by this
approach to be good starting points when migrating
applications to feature-oriented designs.

3 THE APPROACH

Implementing a feature inherently requires a mixture
of technically diverse classes. In particular, each
non-trivial feature encompasses some forms of (1)
interfacing classes, which allow users to activate the
feature and see the results of its execution, (2) logic
and domain model classes, which contain the
essential processing algorithms, and (3) persistence
classes, which allow for storing and loading the
results of the feature’s execution. Hence, features
can be viewed as implicit vertical slices that crosscut
the common horizontal layers of an application’s
architecture. These implicit slices consist of graphs
of collaborating classes that end up scattered and
tangled within individual layers (Van Den Berg et
al., 2006). This is depicted in Figure 1.

Our approach quantifies these two facets of
modularity of features using the following measures,
based on formulations proposed by Brcina and
Riebisch (Brcina and Riebisch, 2008):
 Scattering of a feature is quantified as the

number of packages that contribute to
implementing that feature. The average of these
values computed for all features in a system is

referred to as FSCA. The formulation of FSCA
is described in detail in Section 4.3.

 Tangling of a package is quantified as the
number of features that the package contributes
to. The average of these values computed for all
packages in a system is referred to as FTANG.
The formulation of FTANG is described in
detail in Section 4.3.

Figure 1: Relations between feature specifications and
units of source code.

The extent to which scattering and tangling of
features is minimized is a measure of how well
features are modularized within source-code units.
We refer to this as the degree of feature-oriented
modularity of software.

In order to measure feature-oriented complexity
of evolving features in terms of scattering and
tangling, relations between the source-code units
and individual features have to be identified. The
process of identifying the relations between source-
code units and observable functionality of a system
is known as feature location (Wilde et al., 1992).
This work assumes that traceability links are readily
available or are recovered for an application using
one of the feature-location approaches available in
the literature. In particular, for the evaluation
purposes, Section 4 uses an existing feature-location
approach based on source-code annotation and
dynamic analysis.

3.1 Evolution of Feature-Oriented
Modularity

The essence of how features of software applications
evolve is well expressed by the laws of continuing
growth and the law of increasing complexity
formulated by Lehman (Lehman, 1980). According
to the first, software applications need to expand and
enhance their features over time in order to remain
useful to their users. The second postulates that
these expansions will lead to increasing complexity

ICSOFT-EA�2014�-�9th�International�Conference�on�Software�Engineering�and�Applications

50

of the source code, unless work is done to reduce it.
One of the facets of the increasing complexity is the
increasing complexity of how features are
modularized in source code, as will be exemplified
in the following.

The example application schematically depicted
in Figure 2 initially provides only one feature that is
implemented by two layered modules. Hence, the
initial average tangling FTANG in the application
equals 1 (initially each module implements one
feature), and the initial average scattering FSCA
equals 2 (the feature is implemented by two
modules).

The first change scenario depicts the effects of
adding a new feature to the application without
modifying the structure of the source code. Such a
functional extension will naturally tend to increase
the tangling of the application’s modules, as a result
of reusing parts of existing code among features.

The second scenario shows the effects of
enhancing one of the existing features. Because the
enhancement is implemented as a new module in the
application (a realistic example of doing so would
be adding persistence capabilities), the scattering of
the feature increases.

Thereafter, depicted are two possible contrasting
scenarios of source-code restructurings undertaken
to improve modularization of features. One of them
is based on the merging of existing modules to
minimize the scattering of features. As can be seen,
this causes features to be more tangled with one
another. The other restructuring reduces feature
tangling by dividing existing modules along the
boundaries of features. As a side effect, the
scattering of features increases.

Based on this simple example, two important
observations can be made:

Addition and enhancement of user functionality
will tend to increase the tangling and scattering of
features. Accordingly, the difficulties of code
comprehension and change propagation associated
with these phenomena should be expected to
increase as well.

Restructuring the source code to minimize only
one of the two properties of feature-oriented
modularity (i.e. scattering or tangling) will tend to
degrade the other property. Hence, in order to
achieve a simultaneous optimization of both these
conflicting criteria, a middle-ground restructuring
needs to be devised. As for the presented toy
example, this could be done by simply enumerating
all possible modularizations, but it would certainly
not be feasible for larger systems, since the number
of all possible distributions of N classes among M
modules is equal to MN.

3.2 The Drift of Modularity

There are multiple factors that have to be considered
when planning a feature-oriented restructuring of an
application. Fundamentally, undertaking a
restructuring is only worthwhile if the costs of doing
so are regained by lower development costs for
subsequent releases. The costs of a restructuring
include factors such as the actual effort required, the
impact on time-to-market of the product, changes to
design documentation, etc. On the benefits side, one
should expect improvements of changeability and
understandability of feature implementations during
subsequent releases and hence a reduction of
development costs. Unfortunately, estimating these

feature a

ad
d

fe
at

ur
e

en
ha

nc
e

fe
at

ur
e

FTANG: 2→5/3
FSCA: 2→5/2

feature a feature b

FTANG: 1→2
FSCA: 2→2

feature a feature b

feature a feature b

 se
pa

ra
te

fe
at

ur
es

FTANG: 5/3→7/6
FSCA: 5/2→7/2

lo
ca

li
ze

fe

at
ur

es

FTANG: 5/3→2
FSCA: 5/2→1

feature a feature b

Figure 2: Example impact of evolutionary changes on feature-oriented modularity.

Modularization�Compass�-�Navigating�the�White�Waters�of�Feature-Oriented�Modularity

51

benefits remains difficult without knowing how
much the modularization of features can actually be
improved by means of restructuring.

Hence, to make informed feature-oriented
restructuring decisions, one should be able to
foresee the consequences of performing a feature-
oriented restructuring. In practice, this boils down to
being able to foresee how much the current values of
feature scattering and tangling can be reduced in
course of restructurings.

Unfortunately, the achievable benefits of
restructurings cannot be estimated by simply
computing the distance between the current values
of scattering and tangling metrics and their
numerical minima. This is because the numerical
minima of these and other metrics often do not
correspond to realistic optimal modularizations of
non-trivial applications, e.g. tangling equal to 1
requires no code sharing among features; scattering
equal to 1 requires each feature to be fully contained
in a single module; coupling equal to 0 requires no
dependencies among modules, etc. The situation is
further complicated by the presence and the type of
normalization factors embedded in each metric.

In order to identify the maximum possible
improvements of feature-oriented modularization, it
is therefore necessary to actually construct its
optimized modularization, on which the reference
scattering and tangling values can be measured.
Assuming that doing so is possible with sufficient
accuracy and in an automated manner (which
assumption will be expanded on in the next section),
it would be possible to calculate the distance
between the current values of scattering and tangling
and their optimized values achievable, if the
application is restructured according to feature-
oriented criteria.

Based on this, we define the drift of feature-
oriented modularity in an application as the
distances between the absolute and the optimal
values of the scattering, measured here using FSCA,
and of tangling, measured here using FTANG.

Figure 3: Relativity of metric drift.

As schematically depicted in Figure 3, the drift
of feature-oriented modularity can be plotted over
time for a given application to serve as a
metaphorical compass that indicates how much the
modularization of features diverges from the
optimum with each subsequent release. Observing
the drift trends can be used in several ways by
developers to determine the need for initiating
feature-oriented restructurings of the next releases of
their applications.

The compass views of scattering and tangling
drifts can be used to identify periods in which
restructuring efforts would be most beneficial.
Types of such periods include the ones in which the
drift constitutes a large portion of the absolute
metric value. An example of such a period is the
release r4 in Figure 3, where there is a large
potential for reducing the absolute metric value by
improving modularization of features. Moreover, in
the release r4 the drift increased significantly with
relation to the previous release, and therefore
restructuring could be considered in r4 to prevent
further divergence of the application’s
modularization from the optimum in the next
release.

Furthermore, by contrasting the drift plots for
scattering and tangling, one can determine the
character of restructuring most needed at a given
point in time. For instance, large drift of scattering
indicates a need for improving localization of
individual features within modules, which may
require reducing the overall number of modules. In
contrast, large drift of tangling indicates a need for
improving separation of features within modules,
which may require increasing the overall number of
modules.

3.3 Calculating Drift using
Optimization

As demonstrated by Murphy et al. (Murphy et al.,
2001), there exist tradeoffs between the known
approaches to improving modularization of features.
Firstly, Murphy et al. found pure class-based
refactorings to have a limited potential for
separating tangled features. In contrast, approaches
based on AspectJ and Hyper/J were found to have a
better separation potential, but also more difficult to
apply and making some of the resulting isolated
code fragments difficult to understand. In addition, it
was demonstrated that aspect-oriented techniques
are sensitive to the order of composition, which
resulted in coupling of features to one another. r1 r2 r3 r4

M
e
tr
ic
 v
a
lu
e

Release

Actual
modularization

A
bs

ol
ut

e
m

et
ri

c
va

lu
e

D
rift as the distance to the

 optim
ized m

odularization

ICSOFT-EA�2014�-�9th�International�Conference�on�Software�Engineering�and�Applications

52

Given the known technical characteristics and
automation potentials of the existing methods for
separating features, the modularization compass
approach is based on regrouping classes in terms of
packages to reduce scattering and tangling of
features. While this purely class-based approach has
limits to the level of feature separation that it can
achieve, it has the important property from the point
of view of this work that it allows for complete
automation of searching for desired feature-oriented
package structures and subsequently establishing
them in source code by using refactorings.

In order to calculate the drift of feature-oriented
modularity, the modularization compass approach
uses the so-called feature-oriented remodularization.
Feature-oriented remodularization is the process of
multi-objective optimization of the distribution of
classes among packages, which aims at identifying
Pareto-optimal package structures that minimize
both scattering FSCA and tangling FTANG metrics
(Olszak and Jørgensen, 2012).

In addition, this formulation encompasses two
traditional object-oriented objectives that govern the
inter- and intra-module dependencies among class,
i.e. the objectives of maximizing cohesion in
packages and minimizing coupling among packages.
Formalized definitions of the four metrics used as
evaluation criteria for the mentioned optimization
objectives are listed in Figure 4. There, the set of all
features in an application is denotes as F, the set of
all packages that contribute to at least one feature as
PF, and the set of all types as T.

ሻܨሺࡿࡲ ൌ ∑ |ሼ∈ಷ:⇝ሽ|

|ி|∈ி →min

ሺࡳࡺࢀࡲ ிܲሻ ൌ ∑ |ሼ∈ி:⇝ሽ|

|ಷ|
∈ →min

ሺܲሻࡴࡻࡼ ൌ
∑ ሺ,்ሻ∈ು
⇒

||
,	 	

,ሺࢎࢉ		 ܶሻ ൌ
∑ ∑ หభ,మ∪ெభ,మหమ∈

మ⇒
భ∈
భ⇒

∑ ∑ หெ௫భ,మ∪ெ௫ெభ,మหమ∈
మ⇒

భ∈
భ⇒

→max

ሺܲሻࡼࢁࡻࡼ ൌ ∑ ,ሺݑܿ ܶሻ∈
்⇒

, 	

,ሺ࢛ࢉ		 ܶሻ ൌ ∑ ∑ หܦܦ௧ଵ,௧ଶ ∪ ்∋௧ଵ,௧ଶห௧ଶܯܦ
௧ଶ⇏

௧ଵ∈்
௧ଵ⇒

→min

Figure 4: Objectives for optimizing modularity of features.

The definitions of FSCA and FTANG
correspond to the ones mentioned earlier and are
simplified versions of the metrics proposed by
Brcina and Riebisch (Brcina and Riebisch, 2008)
that are defined based on the ⇝ (i.e. “implemented
by”) relation between features and packages. The

reformulation made in this work removes the
additional normalization factors and makes the
metrics correspond directly to the numbers of
features tangled in a package, and packages that a
feature is scattered over. Doing so allows for easier
interpretation of the metric values, and is possible
due to the modularity drift calculation being
independent of metric normalization, as discussed
earlier.

The cohesion metric PCOH is the package-level
version of the RCI metric based on data-data (DD)
and data-method (DM) relations proposed by Briand
et al (Briand et al., 1998). In its essence, this metric
computes for the set of packages P the average
quotient of the actual number of intra-package static
dependencies among classes and the maximum
possible number of such dependencies. In turn, the
package coupling metric PCOUP corresponds to a
sum of the ACAIC, OCAIC, ACMIC, and OCMIC
coupling measures, as defined by the same authors
in (Briand et al., 1999), and thereby constitutes the
sum of all inter-package static dependencies in an
application.

The actual process of optimizing the
application’s modularity with respect to all the
metrics is performed using a tailored formulation of
a genetic algorithm that we refer to as multi-
objective grouping genetic algorithm (MOGGA)
(Olszak and Jørgensen, 2012). The multi-objectivity
is achieved by exploiting the notion of Pareto-
optimality, whose efficiency in optimizing
modularization of software systems according to
multiple conflicting criteria was demonstrated by
Harman and Tratt (Harman and Tratt, 2007). The
grouping nature of the problem is exploited by using
a set of tailored genetic operators based on the work
of Seng et al. (Seng et al., 2005), who demonstrated
their significant effect on improving the efficiency
of traversing the search space of alternative
modularizations. Hereby, MOGGA constitutes a
composition of these two well-established
approaches that is aims at leveraging their respective
advantages.

In its essence, MOGGA evolves a population of
individuals by means of selection, reproduction and
mutation driven by the score of the individuals with
respect to a fitness function. Each individual
represents a particular distribution of classes among
packages, expressed by an array of integers. Within
this array, classes are represented by indexes in the
arrays, and their assignment to packages is
represented by the values of the corresponding array
cells.

Modularization�Compass�-�Navigating�the�White�Waters�of�Feature-Oriented�Modularity

53

MOGGA adapts two genetic operators that
exploit the grouping-based nature of the
remodularization problem. First, the crossover
operator that forms two children from two parents is
made to preserve packages as the building blocks of
modularizations. Secondly, a mutation operator is
defined to randomly perform one of three actions:
merge two packages with the smallest number of
classes, split the largest package into two packages,
and adopt an orphan class (Tzerpos and Holt, 2000)
being alone in a package into another package.

Evaluation of the fitness of the individual
modularization alternatives is done by computing
the four metrics of FSCA, FTANG, PCOH and
PCOUP. In order to appropriately represent the
regions of the four-dimensional search space that the
individual modularizations in the population occupy,
MOGGA adopts the concept of Pareto-optimality.
Hence, the fitness of each individual becomes a
tuple consisting of four independent metric values.
Such a multi-modal fitness is used for comparing
individuals based on the Pareto-dominance relation,
which states that one out of two individuals is better
than the other individual, if all of its fitness values
are not worse, and at least one of the values is better.
Thereby, it becomes possible to partially order
individuals and to determine the set of non-
dominated individuals in a population, i.e. the so-
called Pareto-front.

Starting with an initial population consisting of
98% randomized individuals and 2% of the
individuals from the original modularization, a
predefined number of evolutionary iterations are
executed. Then the last Pareto-front is used to select
a single individual being the optimization result.
This is done by ranking the individuals in the
obtained four-dimensional Pareto-front with respect
to each metric separately, and then choosing the
individual that is ranked best on average. Please note
that while this method is used here, existing
literature defines a range of diverse methods for
choosing a single solution out of a Pareto-front.

4 EVALUATION

We have implemented the presented
remodularization approach as part of the freely
available Featureous tool for feature-oriented
analysis of Java software (Featureous). The code
transformations required for establishing the source-
code modularizations were implemented using the
Recoder code transformation library (Recoder).
Furthermore, as will be discussed later, this

evaluation relies on a dynamic feature-location
approach provided by Featureous.

The goal of the study presented in this section is
formulated as follows:

To evaluate whether drift-based metrics bring
new insights into the evolution of feature-oriented
modularity of applications, as compared to using
their absolutes values.

This is done by applying the approach to long-
term release histories of three open-source Java
applications that were chosen based on their size,
maturity and availability of the historical revisions.
The used applications are: RText – a text editor for
programmers (17 releases spanning, 3 years)
(RText), FreeMind – a mind-mapping tool (13
releases, 5 years) (FreeMind) and JHotDraw Pert –
a diagramming application being a showcase for the
JHotDraw framework (11 releases, 8 years)
(JHotDraw).

4.1 Results of Feature Location

While the modularization compass approach does
not impose any constraint on the feature-location
approach to be used, we have chosen to use the
dynamic feature-location approach provided by the
Featureous tool. This feature-location approach
identifies code units involved in implementing
individual features by tracing the execution of an
instrumented program during its interaction with a
user. The tracing agent used for this purpose is
guided by annotations that have to be placed by a
programmer at appropriate starting methods of each
feature. Apart from the use of annotations and user-
driven feature triggering, this approach remains
analogous to other dynamic approaches, such as
software reconnaissance (Wilde et al., 1992). An
extensive discussion of the conceptual and technical
details of the used feature-location approach can be
found in (Olszak and Jørgensen, 2012).

The part of the feature-location process that was
most sensitive to human interpretation was the
recovery of feature specifications for each release of
the three investigated applications. We have
performed this recovery by inspecting the available
user documentation and by listing the functionality
exposed in the user interfaces of the applications.
Table 1 lists the identified features and the release in
which they were added to the systems, if they were
added during the investigated periods.

ICSOFT-EA�2014�-�9th�International�Conference�on�Software�Engineering�and�Applications

54

Table 1: Investigated releases and their identified features.

Application
releases

Identified features

RText

Releases:
0.8.0; 0.8.1;
0.8.2; 0.8.3;
0.8.4; 0.8.5;
0.8.6; 0.8.7;
0.8.8; 0.8.9;
0.9.0; 0.9.2;
0.9.3; 0.9.4;
0 9 5 0 9 7 0 9 8

Display text, Document properties (0.9.0), Edit
basic, Edit text, Exit program, Export document
(0.8.7), Init program, Modify options,
Customize text (0.9.0), Multiple documents,
Navigate text, New document, Open document,
Playback macro (0.9.0), Print document, Record
macro, Save document, Show documentation,
Source browser (added in 0.8.8 and removed in
0.9.0), Undo redo, Plugins (0.9.0)

FreeMind

Releases:
0.0.2; 0.0.3;
0.1.0; 0.2.0;
0.3.0; 0.3.1;
0.4.0; 0.5.0;
0.6.0; 0.6.1;
0.6.5; 0.6.7;
0 7 1

Browse mode (0.3.0), Cloud node (0.7.1),
Display map, Show documentation (0.2.0), Edit
basic, Edit map, Evaluate (0.3.0), Exit program,
Export map (0.5.0), File mode (0.1.0), Icons
(0.6.7), Import/export branch (0.2.0), Init
program, Link node (0.0.3), Modify edge,
Modify node, Multiple maps (0.0.3), Multiple
modes (0.1.0), Navigate map, New map, Open
map, Print map (0.03), Save map, Zoom

JHotDraw
Pert

Releases: 5.2;
5.3; 5.4b1; 6.0b1;
7.0.7; 7.0.8;
7.0.9; 7.1; 7.2;
7.3; 7.3.1

Align, Dependency tool, Edit basic, Edit figure,
Exit program, Export drawing (7.0.7), Group
figures, Init program, Line tool (removed in
6.0b1), Modify figure, Multiple windows
(7.0.7), New drawing, Open drawing, Order
figures, Save as drawing, Selection tool, Snap to
grid, Task tool, Text tool, Undo redo (5.3),
Zoom (7 0 7)

4.2 Results of Feature Drift
Measurement

In this evaluation, the drift of feature-oriented
modularity was calculated by executing MOGGA on
each release of the three applications. Based on
observations from a series of pilot executions of the
MOGGA on the target applications, we arrived at
the following configuration of the algorithm that
reduces the overall execution times while preserving
high optimization level of the resulting
modularizations. MOGGA was executed for a
population of 300 individuals for 500 evolutionary
iterations with mutation probability of 5%. This
configuration of the algorithm was applied to each
release ten times to reduce the impact of non-
determinism of genetic computation. The best of the
solutions found was used as the final result for each
release. It is worth mentioning that while this
configuration of MOGGA was observed to produce
Pareto-optimal solutions in acceptable timeframes
for all the investigated releases (i.e. in the order of
magnitude of days), further adjustments to the
algorithm parameters could lead to reducing these
times even further.

The results of measuring the drift of feature-
oriented modularity using MOGGA are presented in

the form of compass views in Figure 5 for RText, in
Figure 6 for FreeMind, and in Figure 7 for
JHotDraw Pert. For each application, two plots are
shown – one for evolution of scattering and one for
evolution of tangling. In the plots, the absolute
metric values are displayed as a line, whereas the
calculated drift is displayed as an area at the bottom
of the plots. This is aimed at simplifying the
observation of development and relation of the drift
to the absolute metric value.

The scattering drift plot for RText, shown in
Figure 5, can be divided into two distinct periods.
The first period, ranging from the release 0.8.0 to
the 0.8.6, is a period of overall growth of the
scattering drift. Despite of minor reductions
observed in a few intermediate releases (i.e., 0.8.1,
0.8.3 and 0.8.5), the drift value doubled in this first
period.

Figure 5: Drift measurements for releases of RText.

This was also the period, in which the drift
increased together with the absolute scattering and
constituted on average 42% of the scattering’s value.
During the second period, between the releases 0.8.6
and 0.9.8, the drift was initially decreased, and

0

2

4

6

8

10

FS
C
A

Release

Scattering drift of RText

Drift of scattering Absolute scattering

0

2

4

6

8

10

12

FT
A
N
G

Release

Tangling drift of RText

Drift of tangling Absolute tangling

Modularization�Compass�-�Navigating�the�White�Waters�of�Feature-Oriented�Modularity

55

thereafter maintained a relatively constant level.
Interestingly, this was achieved despite of an over
twofold increase in the absolute scattering of the
application. This indicates that the modularization
decisions of the developers with regard to confining
features to a small number of packages were close to
optimum in this period.

The tangling drift plot for RText, shown in
Figure 5, contains three interesting periods. Firstly,
the period between the releases 0.8.0 and 0.8.3 is the
period of sharp decreases of drift and absolute
tangling and a decrease of the relative contribution
of drift to the absolute tangling value. Secondly,
between the releases 0.8.3 and 0.9.2, both the drift
and the absolute tangling were increasing at a
similar rate. Despite the overall growth, the drift
appears here to be periodically reduced by the
developers. Lastly, in the period 0.9.2 to 0.9.8 both
the drift and the absolute tangling remain fairly
constant. It is also this period, where the relative
contribution of the drift is the lowest. However, it
remains significantly higher than the relative
contribution observed earlier of the scattering drift.
Together, this data indicates that the features of
RText were better localized than separated from one
another in terms of packages.

The scattering drift plot for FreeMind, shown in
Figure 6, depicts several oscillations of the
scattering drift over time. Initially, the oscillations
are stronger but they eventually weaken over time.
In comparison, the value of the absolute scattering
of the application increases sharply between the
releases 0.0.2 and 0.1.0, and thereafter remains
approximately constant over the next 10 releases.
This suggests that the application structure
established at release 0.1.0 served well for the
purpose of adding new features and extending the
existing ones in a localized fashion.

The tangling drift plot for FreeMind, shown in
Figure 6, can be divided into three periods: the
period of increasing drift and increasing absolute
tangling (0.0.2 – 0.3.0), the period of decreasing
drift and stabilized absolute tangling (0.3.0 – 0.6.0),
and the period of continued growth in both the drift
and the absolute tangling. It can be seen that the
overall changes of tangling drift and the absolute
tangling reflect each other over time; only a minor
difference in the growth rates can be observed, i.e. in
the release 0.0.2 the drift constitutes 59% of the
absolute tangling value, whereas in release 0.7.1. it
constitutes 47% of the absolute tangling value. This
high contribution indicates that FreeMind has a
relatively high potential for improving the

separation of features through source code
restructuring.

Figure 6: Drift measurements for releases of FreeMind.

A potential trace of such efforts undertaken by
the FreeMind developers is the transition from the
release 0.5.0 to 0.6.0, where the drift of tangling was
reduced by 34%.

In both the scattering and tangling drift plots for
JHotDraw Pert, shown in Figure 7, it can be seen
that the feature-oriented evolution of the application
underwent a dramatic shift after release 6.0b1. Up
till then, both the drifts and the absolute values of
scattering and tangling were generally increasing.
Starting from the release 7.0.7, these trends have
changed. During the transition from 6.0b1 to 7.0.7,
the drift of scattering was reduced almost
completely, despite an increase in the absolute
scattering, and both the drift and the absolute value
of tangling were decreased significantly. Thereafter,
both scattering and tangling drifts experienced only
very small increases, whereas the absolute scattering
value continued to rise and the absolute tangling
value continued to slightly decrease.

0

5

10

15

20

FT
A
N
G

Release

Tangling drift of FreeMind

Drift of tangling Absolute tangling

0

1

2

3

4

5

6

7

FS
C
A

Release

Scattering drift of FreeMind

Drift of scattering Absolute scattering

ICSOFT-EA�2014�-�9th�International�Conference�on�Software�Engineering�and�Applications

56

Figure 7: Drift measurements for releases of JHotDraw
Pert.

It turns out that these observations find their
reflection in the types of work on the application
that the developers undertook in the period
preceding the 7.0.7 release. The release notes from
that period mention a large-scale architectural
refactoring of the underlying JHotDraw framework.
While it is difficult to tell whether improving the
separation of individual features of Pert was among
the intentions of these refactorings, it certainly
became one of the results. Furthermore, the obtained
reductions for both the drifts and the absolute value
of scattering and tangling have shown to remain
fairly stable after the source code refactoring –
especially if compared to the rapid developments
prior to the refactoring. Interestingly, the absolute
value of tangling began to decrease over a longer
period, which is a behavior unseen in the two other
investigated software applications.

4.3 Discussion

The reported study applied the modularization
compass approach to three real-world Java
applications. The measured drift values were
observed to evolve over the subsequent releases of
the three applications in ways that were not trivially
related to evolution of the absolute metric values.
This indicates that for the study subjects, the drift
measurements add a new type of information about
the evolution of the applications’ modularity over
time.

The obtained drift measurements were used as an
input to formulating a number of hypotheses about
the reasons for the observed changes of the
applications’ feature-oriented modularity over time
and a number of restructuring recommendations.

Overall, in all the investigated applications the
tangling drift constituted a significantly higher
portion of FTANG than the scattering drift did for
FSCA. This suggests that it is the separation of
features from one another, rather than their
confinement in few packages, that should be the
primary restructuring goal for the three investigated
applications. While at this point it is not possible to
judge whether the insufficient separation of features
is a common trait of layered object-oriented
architectures, we see it as a viable hypothesis for
further investigation.

Furthermore, periodical oscillations of the drift
were observed in several cases that were not
observed on the absolute metric values. This initial
observation appears possibly be related to the
observations of Anton and Potts (Antón and Potts,
2003) about the burst-like nature of adding new
features. In a 50-year evolution of a telephone
system, they observed new features to be introduced
in discrete bursts, i.e. they exhibit punctuated rather
than incremental or gradual evolution. These bursts
were typically followed by periods of retrenchment
that merged similar features and phased out older
versions of new features. In our context, burst-like
additions or enhancements of features could have
resulted in rapid increases of drift, which were
thereafter reduced during retrenchment periods.

There are several threats to validity of the
obtained results, as well as several aspects of the
presented study that can be improved in the future.

Firstly, in order to strengthen the internal validity
of the results, a separate systematic exploration of
MOGGA configuration parameters can be
performed to improve the configuration of the
algorithm. Even though care was taken during the
configuration process to obtain a set of parameters

0

2

4

6

8

10
FS
C
A

Release

Scattering drift of Pert

Drift of scattering Absolute scattering

0

2

4

6

8

10

12

14

FT
A
N
G

Release

Tangling drift of Pert

Drift of tangling Absolute tangling

Modularization�Compass�-�Navigating�the�White�Waters�of�Feature-Oriented�Modularity

57

that produces the best observable solutions, it
remains interesting to compare the performance of
different configurations of MOGGA and other
optimization approaches. Performing such a
systematic follow-up comparison, similarly as done
by Mitchell and Mancoridis (Mitchell and
Mancoridis, 2007), would be important to learning
about the characteristics of MOGGA.

Secondly, it is worthwhile to equip the
remodularization approach with method-level
refactorings (e.g. move method, extract method,
etc.), so that drift at the granularity of methods can
also be detected. Nevertheless, such a refinement is
expected to have only a limited impact on the results
presented in this paper, according to an earlier work
of the authors showing that method-level
refactorings only have a minor effect on scattering
and tangling optimization (Olszak and Jørgensen,
2012).

Lastly, while the presented work was motivated
by influence of modularization of features on
evolvability of software, it remains possible to apply
the modularization compass approach to other
characteristics of software design. This can be done
as long as these ‘other characteristics’ are
quantifiable and can be shaped by means of source-
code restructuring. In practice, the presented
approach can be re-purposed by replacing the
metrics that are used to drive the MOGGA.
Guidelines for doing so can be found in the work of
Harman and Clark (Harman and Clark, 2004).

5 CONCLUSION

The ability to change is both a blessing and a burden
to software. On the one hand, it allows systems to
adapt to changing requirements imposed by users.
On the other hand, changing existing source code is
often difficult and the adoption of repetitive changes
tends to erode the original structure of source code.

The work presented in this paper focused on the
drift of feature-oriented modularity during the
evolution of software applications. The proposed
approach called modularization compass measures
this type of drift by comparing the original version
of an application to its automatically remodularized
counterpart. The remodularization process is
performed by using a multi-objective grouping
genetic algorithm that uses metrics of scattering,
tangling, cohesion and coupling as the objectives for
package structure optimization.

The approach was implemented in Java, and
applied to three open-source Java applications. The

obtained compass views showed the significant
differences between the evolution of absolute values
of scattering and tangling and the evolution of their
drifts. Based on the analysis of drifts over
subsequent releases, we were able to identify when
restructuring brings the largest improvement in
feature modularity, and to determine that the
restructuring effort for all three applications should
focus on separating features from one another to
reduce the significant drifts of their tangling.

Finally, the design and the evaluation of the
approach resulted in several promising directions for
future research and provided several preliminary
observations about the general nature of evolution of
software features.

REFERENCES

Recoder, http://recoder.sourceforge.net/
Hou, D. and Wang, Y. 2009. An empirical analysis of the

evolution of user-visible features in an integrated
development environment. In Proceedings of the 2009
Conference of the Center For Advanced Studies on
Collaborative Research, CASCON '09, 122-135.

Antón, A. I. and Potts, C. 2003. Functional Paleontology:
The Evolution of User-Visible System Services. IEEE
Trans. Softw. Eng. 29, 2, 151-166.

Hsi, I. and Potts, C. 2000. Studying the Evolution and
Enhancement of Software Features. ICSM’00: In
Proceedings of the International Conference on
Software Maintenance, pp. 143.

Fischer, M. and Gall, H. 2004. Visualizing feature
evolution of large-scale software based on problem
and modification report data: Research Articles. J.
Softw. Maint. Evol. 16, 6 (Nov. 2004), 385-403.

Greevy, O., Ducasse, S., Girba, T. 2005. Analyzing
feature traces to incorporate the semantics of change
in software evolution analysis. ICSM '05: Proceedings
of the International Conference on Software
Maintenance, pp. 347-356.

Turner, C. R., Fuggetta, A., Lavazza, L. and Wolf, A. L.
1999. A conceptual basis for feature engineering.
Journal of Systems and Software, vol. 49, no. 1, pp.
3-15.

Parnas, D. L. 1972. On the criteria to be used in
decomposing systems into modules. Communications
of the ACM, vol. 15, no. 12, pp. 1053-1058.

Rugaber, S., Stirewalt, K. and Wills, L. M. 1995. The
interleaving problem in program understanding.
WCRE’95: In Proceedings of 2nd Working
Conference on Reverse Engineering, pp. 166-175.

Letovsky, S. and Soloway, E. 1986. Delocalized plans and
program comprehension. IEEE Software, vol. 3, no. 3,
pp. 41-49.

Eaddy, M., Zimmermann, T., Sherwood, K. D., Garg, V.,
Murphy, G. C., Nagappan, N. and Aho, A. V. 2008.

ICSOFT-EA�2014�-�9th�International�Conference�on�Software�Engineering�and�Applications

58

Do crosscutting concerns cause defects?. IEEE
Transactions on Software Engineering, 34, 497-515.

Benestad, H. C., Anda, B. and Arisholm, E. 2009.
Understanding cost drivers of software evolution: a
quantitative and qualitative investigation of change
effort in two evolving software systems. Journal of
Empirical Software Engineering, 15(2), 166-203.

Van Den Berg, K., Conejero, J. M. and Hernández, J.
2006. Analysis of crosscutting across software
development phases based on traceability. In EA’06:
Proceedings of the 2006 international workshop on
Early aspects at ICSE, 43–50.

Brcina, R. and Riebisch, M. 2008. Architecting for
evolvability by means of traceability and features. In
23rd International Conference on Automated Software
Engineering - Workshops, pp. 72-81.

RText, http://fifesoft.com/rtext/
FreeMind, http://freemind.sourceforge.net/
JHotDraw, http://www.jhotdraw.org/
Wilde, N., Gomez, J.A., Gust, T., Strasburg, D. 1992.

Locating user functionality in old code. ICSM’92: In
Proceedings of the 1992 International Conference on
Software Maintenance, pp.200-205.

Tarr, P., Osher, H., Harrison, W., Sutton, S. M. 1999. N
Degrees of Separation: Multi-Dimensional Separation
of Concerns. ICSE’99: In Proceedings of the 21st
International Conference on Software Engineering, pp
107-119.

Featureous, http://featureous.org/
Briand, L. C., Daly, J. W. and Wüst, J. 1998. A unified

framework for cohesion measurement in object-
oriented systems. Journal of Empirical Software
Engineering, vol. 3, no. 1, pp. 65-117.

Briand, L. C., Daly, J. W. and Wüst, J. 1999. A unified
framework for coupling measurement in object-
oriented systems. IEEE Transactions on Software
Engineering, vol. 13, no. 2, pp. 115-121.

Seng, O., Bauer, M., Biehl, M. and Pache, G. 2005.
Search-based improvement of subsystem
decompositions. In Proceedings of the 2005
conference on Genetic and evolutionary computation ,
1045-1051.

Olszak, A. and Jørgensen, B. N. 2012. Remodularizing
Java Programs for Improved Locality of Feature
Implementations in Source Code. Science of
Computer Programming, Vol. 77, no. 3, pp. 131-151.

Lehman, M.M. 1980. Programs, life cycles, and laws of
software evolution. Proceedings of the IEEE, 68(9),
1060-1076.

Harman, M. and Tratt, L. 2007. Pareto Optimal Search
Based Refactoring at the Design Level. GECCO’07:
In Proceedings of the 9th annual conference on
Genetic and evolutionary computation, 1106-1113.

Tzerpos, V. and Holt, R. C. 2000. ACDC: An Algorithm
for Comprehension-Driven Clustering. WCRE’00: In
Proceedings of Seventh Working Conference on
Reverse Engineering, 258-267.

Olszak, A. and Jørgensen, B. N. 2012. Modularization of
Legacy Features by Relocation and
Reconceptualization: How Much is Enough?
CSMR’12: In Proceedings of the 16th European
Conference on Software Maintenance and
Reengineering, IEEE Computer Society Press, pp.
171-180.

Harman, M. and Clark, J. 2004. Metrics Are Fitness
Functions Too. METRICS'04: In Proceedings of the
IEEE International Symposium on Software Metrics,
58-69.

Mitchell, B. S., Mancoridis, S. 2007. On the evaluation of
the Bunch search-based software modularization
algorithm. Journal of Soft Computing. 12, 1, 77-93.

Murphy, G. C., Lai, A., Walker, R. J. and Robillard, M. P.
(2001). Separating features in source code: an
exploratory study. In ICSE’01: Proceedings of the
23rd International Conference on Software
Engineering, 275-284.

Modularization�Compass�-�Navigating�the�White�Waters�of�Feature-Oriented�Modularity

59

