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Abstract: An extension to the classic von Neumann paradigms is suggested, which –from the point of view of chip
designers– considers modern many-core processors, and –from the point of view of programmers– still remains
the classic von Neumann programming model. The work is based on the ideas that 1) the order in which the
instructions (and/or code blocks) are executed does not matter, if some constraints do not force a special
order of execution 2) a High Level Parallelism for code blocks (similar to Instruction Level Parallelism for
instructions) can be introduced, allowing high-level out of order execution 3) discovering the possibilities for
out of order execution can be done during compile time rather than runtime 4) the optimization possibilities
discovered by the compile toolchain can be communicated to the processor in form of meta-information 5)
the many computing resources (cores) can be assigned dynamically to machine instructions. It is shown that
the multicore architectures could be transformed to a strongly enhanced single core processor. The key blocks
of the proposal are a toolchain preparing the program code to run on many cores, a dispatch unit within the
processor making effective use of the parallelized code, and also a much smarter communication method
between the two key blocks is needed.

1 INTRODUCTION

In the forecasts given for even the farther future, sus-
tained improvements in computer performance are
always included, either implicitly or explicitly. A
decade ago, however, it became clear that the com-
puting performance cannot be increased any more
through increasing clock frequency (Agarwal et al.,
2000). Rather, the number of computing units started
to rise. Recently, even this technology solution run
into walls of ”Dark Silicon” (Esmaeilzadeh et al.,
2012).

The single-processor performance seems to be not
able to follow the expectations, extrapolated from its
historical trend a decade ago. The ratio of the miss-
ing computing performance will reach 100 around
2020 (Fuller and Millett, 2011), see Fig. 1. The
warning signs reached the level of government and
scientific advisory boards, both in the technology
leader USA (Fuller and Millett, 2011) and Europe
(S(o)OS project, 2010).

In case of attempting to use the cores in paral-
lel, one faces the problems of ineffectivity of paral-
lelization. At the beginning, at least recompiling is
needed (even if you have auto-parallelizing compiler),

and more typically manual parallelization must take
place. It is especially hard to parallelize codes includ-
ing foreign parts, like libraries. In addition, ”paral-
lel programs . . . are notoriously difficult to write, test,
analyze, debug, and verify, much more so than the se-
quential versions” (Yang et al., 2014).

Although there exist for a while ”look ahead” and
”out-of-order” solutions in processors (with rather
poor performance with respect to using the cores ef-
fectively, for example (Intel, 1998)), the present ef-
forts concentrate mainly on exa-scale computing, be-
lieving that the ”brute force” method, although in a
very ineffective way, will solve the problem. The time
and efforts needed to let the many processors cooper-
ate, result in most cases in insignificant gain only. The
efforts resulted in decreasing electric power consump-
tion (also in absolute measure), improving computa-
tional efficiency and providing closer ways for coop-
erating between the cores, and even partly reconfig-
urable processors appeared allowing for open source
hardware design for the end-user (Xilinx, 2012; Al-
tera, 2013; Adapteva, 2014). Also, the possible high-
level support is intensively searched (for examples see
(HLPGPU workshop, 2012; World Scientific, 2014)),
apparently with no breakthrough ideas.
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Figure 1: Historical growth in single-processor perfor-
mance and a forecast of processor performance to 2020,
based on the ITRS roadmap. A dashed line represents ex-
pectations if single-processor performance had continued
its historical trend (Fuller and Millett, 2011).

The technology today allows to implement liter-
ally hundreds of cores in a single chip (for example,
(Adapteva, 2014) is delivered recently with 64 cores,
but its architecture is prepared for 4096 cores, In-
tel also developed chips with dozens of cores, etc.).
However, as summarized on the project homepage
(S(o)OS project, 2010): ”Processor and network ar-
chitectures are making rapid progress with more and
more cores being integrated into single processors
and more and more machines getting connected with
increasing bandwidth. Processors become heteroge-
neous and reconfigurable . . . No current program-
ming model is able to cope with this development,
though, as they essentially still follow the classical
van Neumann model.”

2 THE CLASSICAL VON
NEUMANN MODEL – IN LESS
CLASSICAL TERMS

The primary reason of the missing performance is,
that although the computing resources are available,
the programming methodology is not able to use them
properly. Really, the abstractions used presently (and
are known for the masses of programmers and engi-
neers, including chip designers, educated till recently)
are based on easy to understand, but outdated and
non-technical view of computing.

The overwhelming majority of the plethora of
the today’s code is written for sequential processors,
by programmers having sequential programming in
mind. Even the concurrent (sometimes erroneously
called ”parallel”) programming deals with pieces of
sequential code. So, it would be of great importance
to find a way which allows some automatic paral-
lelization of single-thread programs, in this way con-
verting the existing single-thread programs to mas-
sively parallelized ones.

On the other hand, one absolutely needs some
level of abstraction and also the new model must be
compatible to some measure with the old one. In or-
der to preserve compatibility with the existing pro-
gramming paradigms, the best way would be to mod-
ify the interpretation of the existing abstractions in a
way which allows taking into account the present-day
achievements of technology. In the sections below,
first some of the vN abstractions are re-formulated us-
ing a somewhat unusual terminology, which makes
the changes to be introduced easier to understand.
Following that, a new meaning will be introduced for
those old abstractions, having in mind some of the
technical developments. Finally, the principles of a
possible implementation will be presented.

2.1 The Old Picture

As (Godfrey and Hendry, 1993) mentions, although
”The von Neumann report contains a wealth of insight
and analysis still not available elsewhere”, the com-
puter described by von Neumann (vN) ”was never
built, and its architecture and design seem now to be
forgotten”. Well, the todays processors are far from
those ones in the ancient ages. But, from program-
ming point of view, we still can describe their opera-
tion using vN abstractions. The programming model
was constructed early and – because of compatibility
– kept some features of the early primitive implemen-
tations. Unfortunately, both hardware and software
developers use that old model.

2.2 Computing Resource

In the vN world, the sole computing resource was the
processor. Since only the processor had such process-
ing ability, every single bit had to pass through the
processor, and all parts of the processor were busy
with executing the current instruction. This feature
excluded any chance for executing instructions in par-
allel, and concluded the serial execution of instruc-
tions. Combined with the stored instructions princi-
ple, the fetch-decode-execute cycle mode processing
was needed. The computing flaw was built up from
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elementary machine instructions, which were stored
in some addressable stores (memory cells).

In order to reduce the length of the instruction
code, a simplified addressing was introduced. In nor-
mal cases, the control unit only advanced that special
register to the next address by an external hardware.
In exceptional cases the address of the next instruc-
tion was concluded from the stored instruction itself
(jumps, calls, returns). The same control unit can
even direct the instruction pointer to an address, de-
fined by some external hardware. No contradiction
with the vN principles: it only required ”proper se-
quencing of operations”.

This feature lead to the abstraction process, in
which the running program has the exclusive use of
the processor and the memory (and actually, all of its
resources). Notice, that nothing changes if we take
another physical processor or core (even if we use
different cores for the different machine instructions):
we are using an abstract one. So, the abstraction ”pro-
cess” can be trivially extended to multi-core case.

2.3 Instruction Set

At abstraction level, the instruction set tells what the
processor is able to do and the processor is its actual
implemention, with all of its technical details. The ab-
straction instruction specifies only the input and out-
put, and leaves the implementation for the engineers.
(That was the intention of Neumann: ”we will base
our considerations on a hypothetical element, which
functions essentially like a vacuum tube . . . but which
can be discussed as an isolated entity. . . . After the
conclusions of the preliminary discussion the ele-
ments will have to be reconsidered.” (Aspray, 1990))
So, the instruction execution could be accelerated, us-
ing any trick, as long as it does not interfere with the
established mathematical model, constructed on the
basis of the von Neumann architecture.

If there exists only one executing engine (one
CPU), it is naturally implied that that processor will
execute all instructions. In this simplified picture it is
trivial, that the processor will be available for execut-
ing the next instruction only after finishing the current
instruction. So, the computing resource that can be
assigned for executing an instruction, is always the
same and is always busy.

Let us consider the same situation differently. The
control unit points to an address where it finds some
machine instruction. Before executing the instruction,
the control unit allocates a computing resource from
the pool and assigns it to the instruction. Then in-
structs the allocated computing resource to execute
the instruction, waits until the instruction gets termi-

nated and releases the resource back to the pool. From
this change nothing appears for the abstraction ”pro-
cess”, it is only an internal business of the control unit,
being not part of the abstraction. If only one such ex-
ecution unit exists, it will be continuously allocated
and then released, with no gain in performance. Un-
til the current instruction provides a result, the next
instruction is waiting for either the input data or the
resource, which is the result of the current instruction
or the processor itself. Notice too, that in this simple
picture the computing unit will be ready for execut-
ing another instruction exactly at the time when the
result is also provided, i.e. waiting for a result or for
availability of a resource is the same action.

2.4 Timeliness of Execution

Generally it is believed that in the vN model the in-
structions must be executed one after the other, in
the order as the programmer wrote them. How-
ever, the vN model requires only that the control unit
must assure a proper sequencing for executing the in-
structions (Aspray, 1990). The control unit executes
the instructions actually pointed out by its instruc-
tion pointer, one at a time, really provides the illu-
sion that the instructions are executed according to
some strict time sequence. However, the instructions
are executed by the processor in a simple order-of-
appearance. So, one may consider the possibility to
reorder the instructions in the object file without af-
fecting the final result.

In modern processors, the pipelining simply re-
uses parts of the processor logic through cutting in-
struction executing into stages, and so introducing
overlapped execution of instructions, which, in strict
sense, does not preserve the one after another method
of execution. This method however preserves the
original execution sequence. So does also the out of
order execution in modern processors, because a lot
of efforts are done to reorder the states after executing
the instructions in out of their order (including condi-
tional and forecasted execution). Do we really need
to preserve the original ordering of the instructions,
if we are allowed to execute them in a different order?

3 THE MULTICORE VON
NEUMANN COMPUTING
MODEL

Modern processors might have many computing re-
sources, in close vicinity to each other, so it is time
to re-consider, whether the vN operating model really
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requires separating the instruction execution in time
and keeping the semantic order (as they were writ-
ten in the program), or those requirements were just
concluded from the technical possibilities of the time
of the conclusion. The new model is the result of re-
thinking the complete process, comprising code gen-
eration, transmission and execution.

3.1 Instruction Level Parallelism (ILP)

Since the beginning of the computer era, the need
for computing performance rose much quicker than
the hardware and especially the software technology
could provide it. At the very beginning, it was a
technical necessity to use a sequential execution of
instructions (and so: to introduce an appearance-
ordered execution) : the CPU was very expensive, and
it was only available in one single instance, so it had
to do every single operation. Just a bit later, the ques-
tion rose: could we make some instructions in paral-
lel, at the cost of building some extra hardware?

The theory of the problem has been scrutinized
around 1990 (Wall, 1993). Since this classic work,
just minor improvements have been made, but this
serves as a base for pipelining, as well as for the
increasingly popular out-of-order evaluation in the
modern processors. The author analysed many of the
factors affecting the different dependencies, and con-
cluded, that ”parallelism within a basic block rarely
exceeds 3 or 4 on the average. This is unsurpris-
ing: basic blocks are typically around 10 instruc-
tions long, leaving little scope for a lot of parallelism.
At the other extreme is a study (Nicolau and Fisher,
1984) that finds average parallelism as high as 1000,
by considering highly parallel numeric programs and
simulating a machine with unlimited hardware paral-
lelism and an omniscient scheduler (Wall, 1993).”

Not to surprise, many of the results of the conclu-
sions are present in the modern processors. A kind
of omniscient scheduler is implemented in hyper-
threading processors, and the basic blocks are used
when attempting to parallelize execution of a single
thread using out-of-order execution within a multi-
core processor. It looks like the question about the
appearance-ordered execution is not yet decided: the
out of order execution is allowed, but after that, a con-
siderable amount of time is spent with reordering the
result, in order to preserve the illusion that they were
executed in order. But, do we need to do that? Can be
really a higher (at least around 100) parallelization
reached, if the proper number of computing resources
are available, and a wide enough instruction window
is used?

3.2 Changing Execution Order of
Instructions

The order in which the instructions (and/or some se-
ries of instructions) are executed in most (maybe: in
majority of) cases does not matter, if some constraints
do not force a special order of execution. Examples
include ILP (see above); the processes running un-
der multitasking operating systems, where the code
fragments are interleaved to each other; the out of or-
der and speculative evaluation in modern processors;
different hardware accelerators; synchronized multi-
thread execution, GPUs, distributed processing, etc.
Although those technical implementations work, and
are widely used, the so called ”semantic order of ex-
ecution”, dictated by the early primitive computer ar-
chitectures, is still required.

3.3 High Level Parallelism for Code
Blocks

As outlined above, the ILP provides an obvious
method for parallelizing the execution of a single
thread. One can, however, consider code blocks (like
subroutines, functions, even loops or programmer-
defined blocks) as a kind of super-complex instruc-
tions, and so an analogous technology can be used by
the compiler to find out the data-dependence of this
code flow comprising ”instructions” from this ”Super
Complex Instruction Set”. As a result, the method
High Level Parallelism (HLP) can be developed, al-
lowing high-level out of order execution. Just note,
that the high level language possibilities introduce
several new points to consider, so a lot of new HLP (in
addition to ILP) algorithms must be developed. Since
one of the important bottlenecks is the low number of
registers in the processors, this step can increase by
an order of magnitude the number of cores that can
be used for parallelizing a single-thread process.

As (Nicolau and Fisher, 1984) pointed out, if the
hardware resources are not limited (and, this situa-
tion is approached if the parallelization analysis takes
place at compile time, rather than at runtime), par-
allelization of the order of several hundreds can be
reached. Although the analysis of the possibilities of
instruction-level parallelization takes place at compile
time, one has to consider that the larger the size of the
instruction window considered, the longer will be the
analysis time and the temporary storage needed. For-
tunately, the high level language compiler can provide
information on a reasonable segmentation.
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3.4 Discover Parallelization Possibilities
at Compile Time

As shown in section 3.1, the simple ILP can enhance
the single processor performance by a factor 3-4, even
if an order of magnitude more cores are available.
This situation is experienced in the modern many-
core processors: only 3-5 cores (out of say 64) can be
used simultanously for executing a single thread. The
reason is that those modern processors discover the
ILP possibilities at execution time, so due to the need
for real-time operation size of the basic blocks cannot
exceed just about a dozen of instructions. However,
at compiler time we do have (nearly) unlimited time
to discover and (nearly) unlimited hardware resources
to find out those dependencies, so the conditions as-
sumed by (Nicolau and Fisher, 1984) are (nearly) ful-
filled.

Since the possible data dependencies must be
scrutinized, and the time to discover those dependen-
cies grows in a factorial way with the number of in-
structions considered, this task cannot be solved with
a good performance at execution time. In the practice
the high level programming units provide hints for se-
lecting natural chunks for parallelizing. Also, the ex-
periences with profilers can help a lot. On lower level,
the known methods of ILP can be used, both at source
code level and at machine code level.

In this way, this toolchain can generate object
code, which provides the possibility (and the meta-
information) for a smart processor to highly paral-
lelize the code. The processor will ”see” the instruc-
tions in the order as they appear in the memory (which
is mostly the same as in the object file), so the in-
structions which can be executed independently (par-
allel) should come first. The primary point of view
should be to put the instructions in the order as they
can be executed maximally independently. A sec-
ondary point of view can be to put mini-threads (actu-
ally: fragments, a piece of strongly sequential code)
in consecutive locations, thus using out the pipelines
structure of the cores. The expected maximum num-
ber of cores can be a parameter for the compilation
process, and in such a case optimization for the actual
case can be carried out.

3.5 Smarter Communication Between
Compile Toolchain and Processor

So, a lot of parallelization information can be col-
lected at compile time. However, only the part of
the information, collected by the compile tools, con-
taining the ILP optimized machine instructions, can
be made known for the processor: namely, the object

code the processor can read from the memory and ex-
ecute it instruction by instruction. So, the processor
needs to re-discover the possibilities for paralleliza-
tion, with rather bad efficiency. When transferring the
full information in form of meta-data, the many-core
processors could do a much better job. The natural
way to do so would be to extend the object code with
those meta-data.

Some compile-time switch in the toolchain could
decide whether the traditional or this multicore format
object code should be generated, and also the proces-
sor could have a mode to decide whether to operate
in single-core or multi-core mode. In the object code
seen by the computer the instructions are ordered (as
before) as they are expected to be executed. This or-
der, however, can be mostly independent from the or-
der of appearance in the source code, since the com-
piler can rearrange the instructions, in order to reach
a high level of instruction-level parallelism. Just note,
that this kind of smarter communication would be
highly desirable in many other aspects, say for op-
erating cache memories with enhanced performance.

3.6 Assigning Computing Resource
Dynamically to the Machine
Instructions

In the classic model the only computing resource, the
lone processor, is assigned statically to the process,
and the assignment happens at the beginning of the
computation. The individual instructions simply in-
herit the computing resource, assigned to the process
they belong to. Since only one computing unit exists,
a default assignment does the job.

In the multicore model the individual cores are
considered as a computing resource, much similar to
as multiple copies of arithmetic units are present in
some modern processors. The control unit fetches
the instructions to execute one at a time, as usual in
the vN model. However, in order to execute an in-
struction, one has to assign a computing resource to
it, since there is no default assigned resource. This
assignment of one of the available allocated comput-
ing resources to the instruction occurs dynamically, at
the beginning of instruction execution. The allocation
of the resources from the pool happens at the begin-
ning of the process (although it might be dynamically
modified during the flow of the process).

In this way every single instruction has a comput-
ing resource, exactly the same way as in the classic
model, although here the computing resources, unlike
in the classical model, can be different entities. Also,
provided that the control hardware forces consider-
ing the possible constraints, there will be no differ-
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ence in the instruction execution. The instructions
are executed slightly overlapped, as also in the case
of pipelined execution. This means, that – depend-
ing on the conditions – the control unit can make any
number of quasi-parallel assignments: until no more
computing resource is available or the constraints do
not allow doing so.

To take the real advantage of the reordered code,
a hardware dispatcher placed in front of the cores is
necessary. Its operation is much similar to the dis-
patcher presently used in Intel’s P6 architectures, but
with important functional differences. First of all,
the present dispatcher uses a very narrow ILP instruc-
tion window, because that parallelization information
is assembled at runtime. In the proposed solution,
this parallelization information is already assembled
at compile time, and is ready to be used immediately
by the processor. The other difference, that there is
no need to reorder the instructions following an out-
of-order execution. In the suggested solution, the dis-
patcher – in addition to the object code – takes also the
compile-time metadata, which was assembled using
very wide instruction window, and comprising global
information on the parallelization.

For the classic processors, using reordered in-
struction sequences makes no confusion: since the
strongly sequential codes are located in consecutive
locations, no problem manifests because of the re-
ordered code. No loss of information, but no gain in
execution speed.

However, since some processors use a kind of
ILP (with strongly limited instruction window width),
feeding code optimized by the compiler over a wide
instruction window for a narrow runtime window
might result in performance gain even in case of
presently existing processors, without any hardware
change.

Using the pipeline available in the modern proces-
sors, means no theoretical advantage: a pipelined core
simply acts like a higher speed core, which is ready to
accept further instructions while still processing an-
other ones. When using many cores, the latency time
is clearly replaced by the much shorter item time.

4 CONCLUSIONS

The present model provides chances to consider-
ably increase the single-processor computing perfor-
mance. In the suggested model the many-core archi-
tectures are included in such a way, that the abstract
paradigms like process, processor and machine in-
struction, remain essentially unchanged from the pro-
grammers point of view.

The model allows the programmers to continue
writing single-thread programs and yet taking advan-
tage of the computing performance due to the many
cores. Using the new toolchain, the old source codes
can be compiled to those new processors with really
impressive enhanced raw computing power.
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