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Abstract: A query-answering problem (QA problem) is concerned with finding all ground instances of a query atomic
formula that are logical consequences of a given logical formula describing the background knowledge of the
problem. A method for solving QA problems on full first-order logic has been invented based on the equivalent
transformation (ET) principle, where a given QA problem on first-order logic is converted into a QA problem
on extended clauses and is then further transformed repeatedly and equivalently into simpler forms until its
answer set can be readily obtained. In this paper, such a clause-based solution is extended by proposing
a new method for effectively utilizing a universally quantified if-and-only-if statement defining a predicate,
which is called aniff-formula. The background knowledge of a given QA problem is separated into two parts:
(i) a conjunction of iff-formulas and (ii) other types of knowledge. Special ET rules for manipulating iff-
formulas are introduced. The new solution method deals with both iff-knowledge in first-order logic and a set
of extended clauses. Application of this solution method is illustrated.

1 INTRODUCTION

Query-answering problems (QA problems) form an
important class of problems, which has attracted in-
creasing interest recently. In contrast to proof prob-
lems, which are “yes/no” problems, a QA problem
is characteristically an “all-answers finding” problem,
i.e., it is concerned with finding all ground instances
of a query atomic formula that follow logically from
a given logical formula representing the background
knowledge of the problem.

Subclasses of QA problems have been considered
in the Semantic Web community (Horrocks et al.,
2005; Motik et al., 2005; Motik and Rosati, 2010)
and in logic programming and deductive databases
(Lloyd, 1987; Minker, 1988). These subclasses are
however relatively small compared to the class of QA
problems considered by human beings in natural lan-
guage sentences. The class of all QA problems on
full first-order logic is very important for natural lan-
guage understanding and human problem solving. A
large number of studies have been carried out in logic
programming based on specific semantics, such as the
well-founded semantics and the stable model seman-
tics. Specific semantics for sets of clauses (possibly
with negation as failure), which can be useful for pro-
gramming, are however not so expressive and natural

for the direct translation of natural language sentences
and for natural language understanding. For this rea-
son, we take full first-order logic with the standard
semantics for QA problems.

A method for solving QA problems on full first-
order logic has been discussed in (Akama and Nan-
tajeewarawat, 2013b; Akama and Nantajeewarawat,
2014), and as far as we know, it provides the only ex-
isting general approach that deals with QA problems
on full first-order logic with standard semantics. This
solution method is based on the equivalent transfor-
mation (ET) principle. A given QA problem is suc-
cessively transformed equivalently into simpler forms
until its answer set can be readily obtained.

To enable the ET-based strategy, meaning-
preserving Skolemization has been developed in
(Akama and Nantajeewarawat, 2011) together with a
new extended space, called the ECLSF space, over
the set of all first-order formulas. This extended
space includes function variables, which are variables
ranging over function constants. Since function con-
stants are mappings from tuples of ground terms to
ground terms, atomic formulas (atoms) with func-
tion variables are regarded as “second-order” atoms.
For problem transformation on the extended space,
many ET rules have been devised in (Akama and Nan-
tajeewarawat, 2013c; Akama and Nantajeewarawat,
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2013b; Akama and Nantajeewarawat, 2014), includ-
ing ET rules for unfolding, for removing useless def-
inite clauses, for resolution, for factoring, for dealing
with atoms with function variables, and for erasing
independent satisfiable atoms.

In this paper, we extend the ET-based proce-
dure in (Akama and Nantajeewarawat, 2013b; Akama
and Nantajeewarawat, 2014) by introducing a method
for effectively utilizing if-and-only-if formulas (iff-
formulas, for short) in given background knowl-
edge. Iff-formulas are often used for defining con-
cepts in a knowledge base. Compared to unfold-
ing using clauses obtained from given iff-formulas,
the iff-formulas themselves allow clause transforma-
tion with unrestricted applicability for simplification
of QA problems. Iff-formulas are thus useful for ef-
fective and efficient computation.

To begin with, Section 2 formalizes QA prob-
lems on first-order logic, introduces the ECLSF space
and meaning-preserving Skolemization, and identi-
fies the main objective of this paper. Section 3 de-
fines iff-formulas and a quadruple form for represent-
ing a QA problem with iff-formulas, and presents the
extended ET-based procedure. Section 4 gives ET
rules for clause transformation using iff-formulas and
for removal of useless iff-formulas. Section 5 com-
pares transformation using iff-formulas with unfold-
ing. Section 6 illustrates application of our method.
Section 7 provides conclusions.

2 QA PROBLEMS ON AN
EXTENDED SPACE

2.1 QA Problems

A query-answering problem(QA problem) on first-
order logic is a pair〈K,q〉, whereK is a first-order for-
mula, representing background knowledge, andq is
a usual atomic formula (atom), representing a query.
When no confusion is caused, the qualification “on
first-order logic” is often dropped. The standard se-
mantics for first-order formulas is used, in the sense
that all models of a given first-order formula are con-
sidered instead of restricting models to be consid-
ered using specific semantics. Interpretations and
models are sets of ground atoms, which are simi-
lar to Herbrand interpretations and Herbrand mod-
els. The answer to a QA problem〈K,q〉, denoted
by answer(K,q), is the set of all ground instances of
q that are logical consequences ofK. As shown in
(Akama and Nantajeewarawat, 2013b),answer(K,q)

can be equivalently defined as

answer(K,q) = (
⋂

Models(K))∩ rep(q), (1)

whereModels(K) denotes the set of all models ofK
andrep(q) the set of all ground instances ofq.

The main features of the ET-based method for
solving QA problems on first-order logic with stan-
dard semantics (Akama and Nantajeewarawat, 2013b;
Akama and Nantajeewarawat, 2014) include: (i) the
use of a new extended space, which is an exten-
sion of first-order logic by incorporation of function
variables; (ii) the use of meaning-preserving Skol-
emization (Akama and Nantajeewarawat, 2011), in
place of the conventional Skolemization (Chang and
Lee, 1973), for converting a first-order formula into a
clause set in the extended space; and (iii) the use of
equivalent transformation on the extended space for
computation of solutions. They are described below
along with the primary objective of this paper.

2.2 The Extended Space ECLSF

A usual function symbol in first-order logic denotes
an unevaluated function; it is used for constructing
from existing terms a syntactically new term with-
out evaluating the obtained term. A different class
of functions, calledfunction constants, is used in
the extended space. A function constant is an ac-
tual mathematical function, sayf , on ground terms;
when it takes ground terms, sayt1, . . . , tn, as input,
f (t1, . . . , tn) is evaluated for determining an output
term. Variables of a new type, calledfunction vari-
ables, are introduced; they can be instantiated into
function constants or function variables, but not into
usual terms.

Given anyn-ary function constant orn-ary func-
tion variable f , an expressionfunc( f , t1, . . . , tn, tn+1),
where theti are usual terms, is considered as an atom
of a new type, called afunc-atom. When f is a func-
tion constant and theti are all ground, the truth value
of this atom is true ifff (t1, . . . , tn) = tn+1.

In addition to usual atoms andfunc-atoms, con-
straint atoms may be used in a clause. While the truth
value of a ground usual atom depends on an inter-
pretation, the truth value of a ground constraint atom
is determined in advance independently of any inter-
pretation. Examples of constraint atoms areeq(t1, t2),
neq(t1, t2), le(t1, t2), andge(t1, t2), wheret1 andt2 are
terms. Whent1 andt2 are ground terms,eq(t1, t2) and
neq(t1, t2) are true ifft1 = t2 andt1 6= t2, respectively.
Whent1 andt2 are numbers,le(t1, t2) andge(t1, t2) are
true iff t1≤ t2 andt1 ≥ t2, respectively.

A clause Cin the extended space is a formula of
the form

a1, . . . ,am← b1, . . . ,bn, f1, . . . , fo,
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where (i)a1, . . . ,am are usual atoms, (ii) each ofb1,

. . . ,bn is a usual atom or a constraint atom, and (iii)f1,

. . . , fo arefunc-atoms. The sets{a1, . . . ,am} and{b1,

. . . ,bn, f1, . . . , fo} are called theleft-hand sideand the
right-hand side, respectively, of the clauseC, denoted
by lhs(C) andrhs(C), respectively. Whenm= 0, C
is called anegative clause. Whenm= 1, C is called
a definite clause, the only atom inlhs(C) is called the
headof C, denoted byhead(C), and the setrhs(C) is
also called thebodyof C, denoted bybody(C). When
m> 1,C is called amulti-head clause. All usual vari-
ables in a clause are universally quantified and their
scope is restricted to the clause itself.

The set of all clause sets in the extended space
is called the ECLSF space. Function variables in a
clause set in ECLSF are all existentially quantified
and their scope covers entirely all clauses in the set.
Given a clause setCs in ECLSF, let Models(Cs) de-
note the set of all models ofCs.

2.3 Meaning-Preserving Skolemization

In the conventional proof theory, a first-order formula
is usually converted into a conjunctive normal form
in the usual first-order formula space. The conver-
sion involves removal of existential quantifications by
Skolemization, i.e., by replacement of an existentially
quantified variable with a Skolem term determined by
its relevant quantification structure. The conventional
Skolemization, however, does not generally preserve
the logical meaning of a formula (Chang and Lee,
1973); as a result, it causes difficulties in solving QA
problems by equivalent transformation.

In order to transform a first-order formula equiv-
alently into a set of clauses, meaning-preserving
Skolemization was invented in (Akama and Nan-
tajeewarawat, 2008; Akama and Nantajeewarawat,
2011). Let MPS(K) denote the result of meaning-
preserving Skolemization of a given first-order for-
mulaK. MPS(K) is obtained fromK by repeated sub-
formula transformation and conversion to a clausal
form. For subformula transformation, sayT, model-
preserving transformation is used. For example,
T(¬(¬E)) = E andT(¬(E1∨E2)) = (¬E1)∧ (¬E2).
Although the forms of these transformations are simi-
lar to those in the conventional Skolemization, they
are totally different in the sense that the formu-
las E, E1, and E2 may containfunc-atoms, func-
tion variables, and function constants. WhenK =
(∀x1∀x2 · · ·∀xn∃y : E), the transformationT intro-
duces a new function variable and a newfunc-atom,
i.e.,T(K) is the formula

∃h∀x1∀x2 · · ·∀xn∀y : (E∨¬func(h,x1,x2, . . . ,xn,y)),

whereh is ann-ary function variable. For example,

T(∀x∃y : motherOf(y,x))
= ∃h∀x∀y : (motherOf(y,x)∨¬func(h,x,y)),

which is further converted into the extended clause
(motherOf(y,x)← func(h,x,y)). The transformation
rules used in (Akama and Nantajeewarawat, 2011) for
meaning-preserving Skolemization are given in the
appendix.

It was shown in (Akama and Nantajeewarawat,
2008) that:

Theorem 1. Models(K) = Models(MPS(K)) for any
first-order formulaK.

2.4 A Triple Form and Equivalent
Transformation (ET)

A triple form of a QA problem is introduced in
(Akama and Nantajeewarawat, 2014) for flexible rep-
resentation and transformation. LetA be the set of
all usual atoms and for any atoma ∈ A , let rep(a)
denote the set of all ground instances ofa. A triple
form of a QA problem on ECLSF is a tuple〈Cs,q,π〉,
whereCs is a clause set in ECLSF representing back-
ground knowledge,q is a usual atom representing
a query, andπ is a partial mapping fromA to A

such that the range ofπ contains all instances ofq.
The answer to the QA problem〈Cs,q,π〉, denoted by
answer(Cs,q,π), is defined by

answer(Cs,q,π) = π((
⋂

Models(Cs))∩ rep(q)). (2)

An ET-based procedure for solving QA problems
is a state-transition procedure consisting of three main
phases:

1. A QA problem 〈K,q〉 on first-order logic is
first converted into a QA problem〈Cs,q, id〉 on
ECLSF, whereCs= MPS(K) andid is the iden-
tity mapping. By Theorem 1,answer(K,q) =
answer(Cs,q, id).

2. The QA problem〈Cs,q, id〉 is transformed by suc-
cessive application of various ET rules. In gen-
eral, each application of an ET rule transforms a
given QA problem〈Ĉs, q̂, π̂〉 into 〈C̃s, q̃, π̃〉 pre-
serving the answer set, i.e.,answer(Ĉs, q̂, π̂) =
answer(C̃s, q̃, π̃).

3. From the resulting simplified QA problem, the an-
swer set of the original QA problem is derived.

Each transition step preserves the answer set of a
given input QA problem and therefore the correctness
of this procedure is guaranteed.
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2.5 The Primary Objective of This
Paper

Given a QA problem〈K,q〉 on first-order logic, the
first-order formulaK often includes a universally
quantified closed formula of the form∀(a ↔ F),
wherea is a usual atom andF is a first-order formula.
This form of knowledge is referred to herein asif-and-
only-if knowledge(for short,iff-knowledge). It is very
useful since it enables direct transformation of a QA
problem by replacement of an instance ofa with its
corresponding instance ofF . However, the transfor-
mation to a clausal form in the previous triple-form
method (Section 2.4) does not utilize this advantage
(see Section 5).

The primary purpose of the paper is to develop
a new method for effectively utilizing iff-knowledge.
More precisely, we divide the background knowledge
of a QA problem into two parts: (i) a conjunction
of iff-knowledge and (ii) other types of knowledge.
We introduce special ET rules for manipulating iff-
knowledge. For ease of transformation, we assume
in this paper that the form of the formulaF in iff-
knowledge∀(a↔ F) is a disjunction of atom con-
junctions.

3 SOLVING QA PROBLEMS
WITH IFF-FORMULAS

The class of iff-formulas considered in this paper is
formally defined in Section 3.1 along with related no-
tation. In order to make a clear separation between iff-
formulas and knowledge of other types, a quadruple
form of a QA problem is introduced in Section 3.2.
An ET-based procedure for solving QA problems
with iff-formulas is presented in Section 3.3.

In the rest of this paper, letA be the set of all usual
atoms and for any atoma ∈ A , let rep(a) denote the
set of all ground instances ofa.

3.1 If-and-Only-If Formulas
(Iff-Formulas)

Given an atom or a constraint atoma, let var(a) de-
note the set of all variables occurring ina. Given a
setA of atoms and/or constraint atoms, letvar(A) =⋃
{var(a) | a∈ A}.

An if-and-only-if formula(for short,iff-formula) I
on A is a formula of the form

a↔ (con j1∨·· ·∨con jn),

wherea∈A and each of thecon ji is a set of atoms in
A and/or constraint atoms. The atoma is called the

headof the iff-formulaI , denoted byhead(I). When
emphasis is given to its head, an iff-formula whose
head is an atoma is often referred to asiff(a).

Let I = (a↔ (con j1 ∨ ·· · ∨ con jn)) be an iff-
formula. For eachi ∈ {1, . . . ,n}, con ji corresponds
to the the existentially quantified atom conjunction
FOL(con ji ,a) given by

FOL(con ji ,a) = ∃y1 · · ·∃yk :
∧
{b | b∈ con ji},

where{y1, . . . ,yk} = var(con ji)− var(a). The iff-
formula I corresponds to the universally quantified
formula

∀(a↔ (FOL(con j1,a)∨·· ·∨FOL(con jn,a))),

which is denoted by FOL(I).
An iff-formula (a↔ (con j1∨·· · ∨con jn)) is in a

standard formiff for any i, j ∈ {1, . . . ,n}, if i 6= j, then

(var(con ji)− var(a))∩ (var(con jj)− var(a)) =∅.

An iff-formula I can always be converted into a stan-
dard form, with its meaning given by FOL(I) being
preserved, through variable renaming. It is assumed
that all iff-formulas considered henceforth are in stan-
dard forms.

Assume thatI is an iff-formula. The if-part and the
only-if-part of FOL(I) are denoted by FOLIf (I) and
FOLonlyIf(I), respectively. Let IF(I), ONLY IF(I), and
CLS(I) be the clause sets defined as follows:

• IF(I) = MPS(FOLIf (I)).

• ONLY IF(I) = MPS(FOLonlyIf(I)).

• CLS(I) = IF(I)∪ONLY IF(I).

Note that CLS(I) can be equivalently defined as
MPS(FOL(I)), i.e., it is the clause set obtained by
converting FOL(I) into a conjunctive normal form by
meaning-preserving Skolemization.

Example 1. Suppose thatI is an iff-formula

p(x,y)↔ ({q(x,y,z), r(z)}∨{eq(x,w),s(x,y,w)}),

wherew, x, y, andzare usual variables. Then

FOL(I) = ∀x∀y : p(x,y)↔ ((∃z : q(x,y,z)∧ r(z))∨
(∃w : eq(x,w)∧s(x,y,w))),

IF(I) = {(p(x,y)← q(x,y,z), r(z)),
(p(x,y)← eq(x,w),s(x,y,w))},

ONLY IF(I)
= {(q(x,y,z),eq(x,w)← p(x,y), func( f0,y,x,z),

func( f1,y,x,w)),
(q(x,y,z),s(x,y,w)← p(x,y), func( f0,y,x,z),

func( f1,y,x,w)),
(r(z),eq(x,w)← p(x,y), func( f0,y,x,z),

func( f2,y,x,w)),
(r(z),s(x,y,w)← p(x,y), func( f0,y,x,z),

func( f2,y,x,w))}.
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Two iff-formulasI andI ′ on A are said to bedis-
joint iff rep(head(I)) and rep(head(I ′)) are disjoint.
Let E be a set of mutually disjoint iff-formulas onA .
E corresponds to the conjunction

∧
{FOL(I) | I ∈ E},

which is denoted by FOL(E). Let IF(E) =
⋃
{IF(I) |

I ∈ E}, ONLY IF(E) =
⋃
{ONLY IF(I) | I ∈ E}, and

CLS(E) = IF(E)∪ONLY IF(E).
A ground substitutionfor an iff-formula (a↔

(con j1∨·· ·∨con jn)) is a substitutionθ such thataθ,
con j1θ, . . . ,con jnθ are all ground.

3.2 Quadruples for Transformation of
QA Problems

3.2.1 A Quadruple Form

In order to clearly separate iff-formulas from clauses
in background knowledge, we extend a QA problem
on ECLSF into a quadruple〈Cs,E,q,π〉 on A , where
(i) Csis a clause set in the ECLSF space such that each
usual atom appearing inCs belongs toA , (ii) E is a
set of mutually disjoint iff-formulas onA , (iii) q∈A ,
and (iv)π is a partial mapping fromA to A such that
the domain ofπ contains all ground instances ofq.
The answer to the QA problem〈Cs,E,q,π〉, denoted
by answer(Cs,E,q,π), is defined by

answer(Cs,E,q,π)
= π((

⋂
Models(Cs∪CLS(E)))∩ rep(q)). (3)

3.2.2 Transformation into Quadruples

A QA problem 〈K,q〉 on first-order logic is trans-
formed into a quadruple form on ECLSF as follows:

1. FromK, identify a first-order formulaK′ and a
setE of mutually disjoint iff-formulas such that
K = K′∧FOL(E).

2. ConvertK′ by meaning-preserving Skolemization
into a clause setCs in the ECLSF space, i.e.,Cs=
MPS(K′).

3. Construct〈Cs,E,q, id〉, where id is the identity
mapping, as the resulting quadruple.

Finding a nonempty setE of iff-formulas for con-
vertingK into K′ ∧FOL(E) is useful for solving QA
problems since iff-formulas increase the possibility of
transforming QA problems with less cost (see Sec-
tion 5). As the number of iff-formulas in the setE
increases, such possibility is higher.

3.3 A Procedure for Solving QA
Problems with Iff-Formulas

Assume that a QA problem〈K,q〉 on first-order logic
is given. To solve this problem using ET, perform the

following steps:

1. Transform〈K,q〉 into a quadruple〈Cs,E,q, id〉
using the transformation given in Section 3.2.

2. Successively transform the quadruple〈Cs,E,q,
id〉 in the ECLSF space using the following ET
rules: Assume that〈Ĉs, Ê, q̂,π〉 is a QA problem.

(a) If Ê contains an iff-formulaiff(a) and C̃s is
obtained fromĈs by replacement usingiff(a),
then transform〈Ĉs, Ê, q̂,π〉 into 〈C̃s, Ê, q̂,π〉,

(b) If Ê contains an iff-formulaiff(a) and for each
atomb that occurs inĈsor Ê−{iff(a)}, a and
b are not unifiable, then transform〈Ĉs, Ê, q̂,π〉
into 〈Ĉs, Ê−{iff(a)}, q̂,π〉.

(c) Transform〈Ĉs, Ê, q̂,π〉 by transformation ofĈs
and/orπ using ET rules on ECLSF, including
the ET rules for unfolding (UNF) and definite-
clause removal (RMD) in Section 5.2, and
the ET rules given in (Akama and Nantajee-
warawat, 2014) for

• side-change transformation (SCH),
• resolution (RESO),
• elimination of isolatedfunc-atoms (EIF),
• elimination of subsumed clauses (ESUB),
• elimination of valid clauses (EVAD),
• erasing independent satisfiable atoms (EIS),

and
• elimination of satisfiable independent clauses

(ESI).
(d) Transform〈Ĉs, Ê, q̂,π〉 using ET rules for con-

straints, e.g., ET rules for equality constraints.

3. Assume that the transformation yields a quadruple
〈Cs′,E′,q′,φ〉. Then:

(a) If Cs′ is not satisfiable, then outputrep(φ(q′))
as the answer set.

(b) If Cs′ is a set of unit clauses the head of which
are instances ofq′, then output the answer set⋃

C∈Cs′ rep(φ(head(C))).
(c) Otherwise stop with failure.

The obtained answer set is always correct since all
transformation steps in the procedure are answer-
preserving.

4 ET RULES IN THE PRESENCE
OF IFF-FORMULAS

Next, the replacement operation using an iff-formula
is defined. It is followed by ET rules for replace-
ment using iff-formulas and for removing useless iff-
formulas.
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4.1 Replacement Using Iff-Formulas

Assume that (i)Cs is a set of clauses, (ii)occ is an
occurrence of an atomb in a clauseC∈Cs, (iii) iff(a)
is an iff-formula(a↔ (con j1∨·· ·∨con jn)), (iv) ρ is
a renaming substitution for usual variables such that
C andiff(a)ρ have no usual variable in common, and
(v) θ is the most general matcher ofaρ into b (i.e., the
most general substitution such thataρθ = b). Then:

• Let REPL(C,occ, iff(a),ρ,θ) denote the first-
order formula obtained by replacingb at occ
with the disjunction FOL(con j1ρθ,aρθ) ∨ ·· · ∨
FOL(con jnρθ,aρθ) usingρ andθ.

• Let REPL(Cs,C,occ, iff(a),ρ,θ) denote the con-
junction of REPL(C,occ, iff(a),ρ,θ) and all
clauses inCs−{C}.

Note that occ is an occurrence at any arbitrary
position in C (i.e., it can be in the left-hand
side or the right-hand side ofC). In general,
REPL(C,occ, iff(a),ρ,θ) is not a clause. After the re-
placement ofocc, a new clause set, sayCs′, is ob-
tained by using meaning-preserving Skolemization,
i.e., Cs′ = MPS(REPL(Cs,C,occ, iff(a),ρ,θ)). The
resulting clause setCs′ is often simply said to be ob-
tained by replacement usingiff(a) at the occurrence
occof b in C.

4.2 ET Rules for Iff-Formulas and
Their Correctness

An ET rule on ECLSF for replacement using an iff-
formula is given by Theorem 2 and that for remov-
ing a useless iff-formula is given by Theorem 3. Let
〈Cs,E,q,π〉 be a QA problem on ECLSF.

Theorem 2. (Replacement Using an Iff-Formula) As-
sume that:

1. E contains an iff-formulaiff(a).
2. rep(a)∩ rep(q) =∅.
3. occ is an occurrence of an atomb in a clauseC ∈

Cs.
4. ρ is a renaming substitution for usual variables

such thatC and iff(a)ρ have no usual variable in
common.

5. θ is the most general matcher ofaρ into b.
6. Cs′ = MPS(REPL(Cs,C,occ, iff(a),ρ,θ)).
Then 〈Cs,E,q,π〉 can be equivalently transformed
into 〈Cs′,E,q,π〉.

Proof. Assume that iff(a) = (a ↔ (con j1 ∨ ·· · ∨
con jn)) andF is the disjunction

FOL(con j1ρθ,aρθ)∨·· ·∨FOL(con jnρθ,aρθ).

ThenCs′ is obtained by applying meaning-preserving
Skolemization to the formula resulting from replac-
ing aρθ in Cswith F . Sinceaρθ is logically equiva-
lent to F , Cs andCs′ are logically equivalent in the
presence of CLS(E). Henceanswer(Cs,E,q,π) =
answer(Cs′,E,q,π).

Theorem 3. (Removal of an Iff-Formula) Assume
that:

1. E contains an iff-formulaiff(a).
2. rep(a)∩ rep(q) =∅.
3. For each atomb that occurs inĈsor Ê−{iff(a)},

a andb are not unifiable.

Then 〈Cs,E,q,π〉 can be equivalently transformed
into 〈Cs,E−{iff(a)},q,π〉.

Proof. Let Cs1 = Cs∪ CLS(E) and Cs2 = Cs∪
(CLS(E)−CLS(iff(a))). Obviously,Models(Cs1) ⊆
Models(Cs2). Based on this, we prove that

rep(q)∩ (
⋂

Models(Cs1))

= rep(q)∩ (
⋂

Models(Cs2)) (4)

by further showing as follows that for anyG ∈
Models(Cs2), there existsM ∈ Models(Cs1) such
that G∩ rep(q) = M ∩ rep(q). Assume thatG ∈
Models(Cs2). Let G′ = G− rep(a). By Assumption 3
of this theorem,G′ is also a model ofCs2. Assum-
ing that iff(a) = (a↔ (con j1∨ ·· · ∨ con jn)), let Dp
be defined as the set of definite clauses

{C | (i ∈ {1, . . . ,n}) &
(θ is a ground substitution foriff(a)) &
(G′ contains all atoms incon jiθ that are not
instances ofa) &
(C is a definite clause withhead(C) = aθ
andbody(C) = con jiθ−G′)}.

Let M = M (Dp) ∪G′, where M (Dp) is the least
model ofDp. By Assumption 3 of this theorem,M
is a model ofCs1. By Assumption 2 of this theorem,
G∩ rep(q) = G′∩ rep(q) = M∩ rep(q).

As a result, (4) holds. It follows from Equa-
tion (3) in Section 3.2 thatanswer(Cs,E,q,π) =
answer(Cs,E−{iff(a)},q,π).

Application of Theorems 2 and 3 is illustrated be-
low.

Example 2. Assume thatansis a query atom andK
is the union of a clause setCsand the set{IB,C1,C2},
whereIB is the iff-formula

IB: B↔ ({C,D}∨{H})

andC1 andC2 are the following clauses:
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C1: ans← A,B
C2: B← A,C

By Theorem 2, the clauseC1 can be transformed by
replacement usingIB into:

C3: ans← A,C,D
C4: ans← A,H

Again by Theorem 2, replacement usingIB is applica-
ble toC2, and the replacement transformsC2 into:

C5: C,H ← A,C
C6: D,H ← A,C

Note that{C5,C6}= MPS(((C∧D)∨H)← (A∧C)).
By Theorem 3, if the clause setCs contains no oc-
currence ofB, then the iff-formulaIB can be re-
moved.

5 A COMPARISON BETWEEN
REPLACEMENT AND
UNFOLDING

After introducing the unfolding operation on ECLSF
in Section 5.1 and presenting ET rules for unfold-
ing and for definite-clause removal in Section 5.2, re-
placement using an iff-formula is compared with un-
folding in Section 5.3. Section 5.4 illustrates how iff-
formulas are useful for reduction of computation cost.

5.1 Unfolding Operation on ECLSF

Assume thatCs is a clause set in ECLSF, D is a
definite-clause set in ECLSF, andoccis an occurrence
of an atomb in the right-hand side of a clauseC in Cs.
By unfolding Cs using D at occ, Cs is transformed
into

(Cs−{C})∪ (
⋃
{resolvent(C,C′,b) |C′ ∈ D}),

where for eachC′ ∈ D, resolvent(C,C′,b) is defined
as follows, assuming thatρ is a renaming substitution
for usual variables such thatC andC′ρ have no usual
variable in common:

1. If b and head(C′ρ) are not unifiable, then
resolvent(C,C′,b) =∅.

2. If they are unifiable, withθ being their most
general unifier, thenresolvent(C,C′,b) = {C′′},
whereC′′ is the clause obtained fromC andC′ρ
as follows:

(a) lhs(C′′) = lhs(Cθ)
(b) rhs(C′′) = (rhs(Cθ)−{bθ})∪body(C′ρθ)

The resulting clause set is denoted by UNF(Cs,C,occ,
D).

5.2 ET by Unfolding and
Definite-Clause Removal

For any predicatep, let Atoms(p) denote the set of
all atoms having the predicatep. ET rules on ECLSF
for unfolding and for definite-clause removal (Akama
and Nantajeewarawat, 2013c) are given below. As-
sume that〈Cs,E,q,π〉 is a QA problem on ECLSF.

5.2.1 ET by Unfolding (UNF)

Suppose that:

1. pq is the predicate of the query atomq.

2. p is a predicate such thatp 6= pq.

3. D is a set of definite clauses inCsthat satisfies the
following conditions:

(a) For any definite clauseC ∈ D, head(C) ∈
Atoms(p).

(b) For any clauseC′ ∈ (Cs∪ CLS(E)) − D,
lhs(C′)∩Atoms(p) =∅.

4. occis an occurrence of an atom inAtoms(p) in the
right-hand side of a clauseC in (Cs∪ IF(E))−D.

Then 〈Cs,E,q,π〉 can be equivalently transformed
into the QA problem〈UNF(Cs,C,occ,D),E,q,π〉.

In order to apply unfolding to〈Cs,E,q,π〉, we
have to find a setD of definite clauses inCs that sat-
isfies Condition 3. By Conditions 3a and 3b, we se-
lect a predicatep and collect all definite clauses with
p-atoms in their heads. To satisfy Condition 3b, a
p-atom can neither appear in the left-hand side of a
multi-head clause inCs nor appear in an iff-formula
in E. These conditions often disable application of
unfolding ET rules in solving problems with multi-
head clauses.

5.2.2 ET by Definite-Clause Removal (RMD)

Suppose that:

1. pq is the predicate of the query atomq.

2. p is a predicate such thatp 6= pq.

3. D is a set of definite clauses inCsthat satisfies the
following conditions:

(a) For any definite clauseC ∈ D, head(C) ∈
Atoms(p).

(b) For any clauseC′ ∈ (Cs∪ CLS(E)) − D,
lhs(C′)∩Atoms(p) =∅.

4. For any clauseC′ ∈ (Cs∪CLS(E))−D, rhs(C′)∩
Atoms(p) =∅.
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Then 〈Cs,E,q,π〉 can be equivalently transformed
into the QA problem〈Cs−D,E,q,π〉.

Next, an example showing application of unfold-
ing and definite-clause removal is given.

Example 3. Consider the Oedipus problem described
in (Baader et al., 2007). Oedipus killed his father,
married his mother Iokaste, and had children with her,
among them Polyneikes. Polyneikes also had chil-
dren, among them Thersandros, who is not a patri-
cide. The problem is to find a person who has a pat-
ricide child who has a non-patricide child. The dif-
ficulty of this problem arises from the absence of in-
formation as to whether Polyneikes is a patricide or
not.

Assume that “oe,” “ io,” “ po,” and “th” stand,
respectively, for Oedipus, Iokaste, Polyneikes, and
Thersandros. This problem is represented as a
QA problem with the query atomprob(x) and the
background knowledge consisting of the following
clauses:

C1: prob(x),pat(y)← isChildOf(z,x),pat(z),
isChildOf(y,z)

C2: isChildOf(oe, io)←
C3: isChildOf(po, io)←
C4: isChildOf(po,oe)←
C5: isChildOf(th,po)←
C6: pat(oe)←
C7: ← pat(th)

SinceC1 is a multi-head clause containing apat-atom
in its left-hand side, unfolding at thepat-atom in the
right-hand side ofC1 is disabled. By unfolding at the
first isChildOf-atom, i.e.,isChildOf(z,x), in its right-
hand side, the clauseC1 is transformed into the fol-
lowing four clauses:

C8: prob(io),pat(y)← pat(oe), isChildOf(y,oe)
C9: prob(io),pat(y)← pat(po), isChildOf(y,po)
C10: prob(oe),pat(y)← pat(po), isChildOf(y,po)
C11: prob(po),pat(y)← pat(th), isChildOf(y, th)

By further unfolding atisChildOf-atoms four times
successively, the clausesC8–C11 are transformed into:

C12: prob(io),pat(po)← pat(oe)
C13: prob(io),pat(th)← pat(po)
C14: prob(oe),pat(th)← pat(po)

Since the predicateisChildOf does not appear in the
right-hand side of any ofC6, C7 andC12–C14, the def-
inite clausesC2–C5 are removed. The resulting clause
set isCs= {C6,C7,C12,C13,C14}. At this point,pat
is the only predicate of a possible target body atom
for unfolding. However, since each ofC12, C13 and
C14 also contains apat-atom in its left-hand side, no
further unfolding is applicable toCs.

Using other equivalent transformation rules,Cs
can be further transformed as follows: By forwarding
transformation (Akama and Nantajeewarawat, 2012b)
with respect toC7, the clausesC13 and C14 are
changed into:

C15: prob(io)← pat(po)
C16: prob(oe)← pat(po)

By erasing independent satisfiable atoms (Akama and
Nantajeewarawat, 2014),C12 is replaced with:

C17: prob(io),pat(po)←

By resolution and elimination of subsumed clauses,
C15 andC17 are replaced with:

C18: prob(io)←

The resulting clause set isCs′ = {C6,C7,C16,C18}.
Since no atom in the left-hand side of any clause
in Cs′ can be instantiated intopat(po), C16 is re-
moved. The obtained answer set is thus the single-
ton set{prob(io)}, i.e., Iokaste is the only answer to
this problem (no matter whether Polyneikes is a pat-
ricide).

Alternatively, after the original background know-
ledge is simplified by unfolding and definite-clause
removal intoCs= {C6,C7,C12,C13,C14}, the simpli-
fied QA problem〈Cs,prob(x)〉 can also be solved by
using bottom-up computation (Akama and Nantajee-
warawat, 2012a) or by using a SAT solver (Akama
and Nantajeewarawat, 2013a).

5.3 Replacement Using Iff-Formulas vs.
Unfolding

Assume thatCs is a clause set in the ECLSF space,C
is a clause inCs, occ is an occurrence of an atomb in
the right-hand side ofC, andiff(a) is an iff-formula.
Consider two QA problemsPrb1 andPrb2, given by:

• Prb1 = 〈Cs,E∪{iff(a)},q, id〉,

• Prb2 = 〈Cs∪CLS(iff(a)),E,q, id〉.

By the definitional equation (3),Prb1 is equivalent to
Prb2.

Whenever replacement is applicable using a re-
naming substitutionρ and the most general matcher
θ of aρ into b, Prb1 is transformed into an equiv-
alent QA problemPrb′1 = 〈Cs′,E ∪ {iff(a)},q, id〉,
whereCs′ = MPS(REPL(Cs,C,occ, iff(a),ρ,θ)). Re-
ferring to Section 5.2, if the required conditions for
ET by unfolding Cs∪ CLS(iff(a)) using IF(iff(a))
at occ are satisfied, thenPrb2 can be equiva-
lently transformed by unfolding into a QA prob-
lem Prb′2 = 〈Cs′′,E,q, id〉, whereCs′′ = UNF(Cs∪
CLS(iff(a)),C,occ, IF(iff(a))). The changes are made
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by the above two transformation steps only in the
clause-set parts, i.e., at the first arguments of the
quadruples representingPrb1 andPrb2.

It can be shown that the changes made by them
are exactly the same (i.e.,Cs′ ∪CLS(iff(a)) = Cs′′)
as follows: Assume thatiff(a) = (a↔ (con j1∨ ·· · ∨
con jn)), ρ is a renaming substitution for usual vari-
ables such thatC and iff(a)ρ have no usual variable
in common, andθ is the most general matcher ofaρ
into b. The substitutionθ used above is also the most
general unifier ofaρ andb. It is thus also used for
unifying aρ andb in the unfolding step.

• By replacement usingiff(a) followed by con-
version using meaning-preserving Skolemization,
n copies ofC are produced and for eachi ∈
{1, . . . ,n}, the atomb at occ in the ith copy is re-
placed withcon jiρθ. All other atoms in each copy
of C are unchanged.

• By the unfolding operation with respect to
IF(iff(a)), which is the set{(a← con ji) | i ∈
{1, . . . ,n}}, C is transformed inton clauses, say,
C1, . . . ,Cn, and for eachi ∈ {1, . . . ,n}, the atom
b at the occurrenceocc is replaced withcon jiρθ
in the construction ofCi . Althoughθ is also ap-
plied to all other atoms inC, it makes no change
to those atoms sinceC andaρ have no usual vari-
able in common andθ only instantiates variables
occurring inaρ.

Hence the two transformation steps make the same
change to the target clauseC. As a result,Cs′ ∪
CLS(iff(a)) = Cs′′.

However, the required conditions for applicability
of the two transformations are totally different. While
replacement is always applicable, the required con-
ditions for unfolding (cf. Section 5.2) are easily vio-
lated whenCs contains a multi-head clause with an
instance ofa in its left-hand side. Such violation dis-
ables unfolding. As a consequence, replacement by
iff-formulas in the quadruple form gives higher possi-
bility of transformation compared to unfolding in the
quadruple form (and, thus, also unfolding in the triple
form).

Example 4. Assume that the query atom isprob(x)
and the background knowledgeK includes the con-
junction of the following first-order formulas, where
“Co,” “ nt,” “ te,” “ AC,” and “BC” are abbreviations
for “course,” “non-teaching professor,” “teach,” “ad-
vanced course,” and “basic course,” respectively:

F1: ∀x : ((∃y : (Co(y)∧ te(x,y)))→ prob(x))
F2: ∀x : (nt(x)↔¬(∃y : te(x,y)∧Co(y)))
F3: ∀x : (Co(x)↔ (AC(x)∨BC(x)))

By meaning-preserving Skolemization (Akama and
Nantajeewarawat, 2011), the conjunctionF1 ∧ F2 ∧

F3 is converted into the following extended clauses,
where f is a unary function variable:

C1: prob(x)← Co(y), te(x,y)
C2: ← nt(x), te(x,y),Co(y)
C3: te(x,y),nt(x)← func( f ,x,y)
C4: Co(x),nt(y)← func( f ,y,x)
C5: Co(x)← AC(x)
C6: Co(x)← BC(x)
C7: AC(x),BC(x)←Co(x)

These clauses are used in the triple form. Using them,
unfolding at theCo-atom in the body ofC1 is blocked
due to the presence of aCo-atom in the left-hand side
of the multi-head clauseC4. If such an unfolding step
is not blocked, then it transformsC1 into:

Ca: prob(x)← AC(y), te(x,y)
Cb: prob(x)← BC(y), te(x,y)

By contrast, if the quadruple form is used, then the
clausesC5–C7 are replaced with a single iff-formula

ICo: Co(x)↔ ({AC(x)}∨{BC(x)})

and replacement usingICo is applicable at theCo-
atom inC1. This replacement transformsC1 into the
following two clauses:

C8: prob(x)← AC(y), te(x,y)
C9: prob(x)← BC(y), te(x,y)

The resulting clausesC8 andC9 are equal toCa and
Cb, respectively.

5.4 Overcoming Computation Difficulty
by Using Iff-Formulas

Assume thatK is the first-order formula

∀x∀y∀z : (app(x,y,z)
↔ ((eq(x, [ ])∧eq(y,z)) ∨

(∃A∃X∃Z : (eq(x, [A|X])∧eq(z, [A|Z])
∧ app(X,y,Z))))),

where “app” stands for “append.” Consider the QA
problem〈K,q〉, whereq= app([1,2,3], [4,5],x). This
problem is solved by successively transforming the
clause

A1: ans(z)← app([1,2,3], [4,5],z)

into unit clauses.
We first show that a solution with the triple form,

using only unfolding and resolution, results in com-
putation difficulty. By meaning-preserving Skolemi-
zation, the first-order formulaK is converted into the
setCsconsisting of the following clauses, wheref0–
f5 are function variables:
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C1: app(x,y,z)← eq(x, [ ]),eq(y,z)
C2: app(x,y,z)← eq(x, [A|X]),eq(z, [A|Z]),

app(X,y,Z)
C3: eq(x, [ ]),eq(x, [A|X])

← app(x,y,z), func( f0,z,y,x,A),
func( f1,z,y,x,X), func( f2,z,y,x,Z)

C4: eq(x, [ ]),eq(z, [A|Z])
← app(x,y,z), func( f0,z,y,x,A),

func( f1,z,y,x,X), func( f2,z,y,x,Z)
C5: eq(x, [ ]),app(X,y,Z)

← app(x,y,z), func( f0,z,y,x,A),
func( f1,z,y,x,X), func( f2,z,y,x,Z)

C6: eq(y,z),eq(x, [A|X])
← app(x,y,z), func( f3,z,y,x,A),

func( f4,z,y,x,X), func( f5,z,y,x,Z)
C7: eq(y,z),eq(z, [A|Z])

← app(x,y,z), func( f3,z,y,x,A),
func( f4,z,y,x,X), func( f5,z,y,x,Z)

C8: eq(y,z),app(X,y,Z)
← app(x,y,z), func( f3,z,y,x,A),

func( f4,z,y,x,X), func( f5,z,y,x,Z)

AmongC1–C8, there are four clauses whose left-hand
sides containapp-atoms, i.e.,C1, C2, C5, and C8.
SinceC5 andC8 are multi-head clauses, unfolding at
theapp-atom in the body of the clauseA1 is blocked.

Instead, resolution is applicable to the clauseA1
and it produces the following resolvent clauses:

A1: ans(z)← app([1,2,3], [4,5],z)
(by applying resolution toA1 andC2)

A2: ans([1|z1])← app([2,3], [4,5],z1)
(by applying resolution toA2 andC2)

A3: ans([1,2|z2])← app([3], [4,5],z2)
(by applying resolution toA3 andC2)

A4: ans([1,2,3|z3])← app([], [4,5],z3)
(by applying resolution toA4 andC1)

A5: ans([1,2,3,4,5])←

The clauseA5 indicates that[1,2,3,4,5] is one result
of concatenating[1,2,3] and[4,5]. However, we can-
not conclude this is the only result. The reason is
that resolution adds resolvent clauses to the original
clause set and, therefore, the above resolution steps
transformCs∪{A1} as follows:

Cs∪{A1}
⇒Cs∪{A1,A2}
⇒Cs∪{A1,A2,A3}
⇒Cs∪{A1,A2,A3,A4}
⇒Cs∪{A1,A2,A3,A4,A5}

Some other result of concatenating[1,2,3] and[4,5]
may be obtained by other clauses, i.e.,C3–C8 andA1–
A4. To ensure that no such additional result exists,
removal ofA1–A4 is required. Neither unfolding nor
resolution removes them. RemovingA1–A4 by other

transformation rules, if possible, tends to take non-
negligible computation cost.

Next, we show that the above difficulty can be re-
solved by using an iff-formula. The original formula
K can be transformed equivalently into the iff-formula

Iapp: app(x,y,z)
↔ ({eq(x, [ ]),eq(y,z)} ∨
{eq(x, [A|X]),eq(z, [A|Z]),app(X,y,Z)}).

We then consider the quadruple

〈{A1},{Iapp},ans(x),π〉,

where π is a mapping such that for any termt,
π(ans(t)) = app([1,2,3], [4,5], t).

By repeated replacement usingIappand equivalent
transformation with respect toeq-atoms, the clause
set{A1} is transformed into the singleton unit-clause
set{(ans([1,2,3,4,5])←)} as follows:

{(ans(z)← app([1,2,3], [4,5],z))}
⇒ (by replacement usingIapp)
{(ans(z)← eq([1,2,3], [ ]),eq([4,5],z)),
(ans(z)← eq([1,2,3], [A|X]),eq(z, [A|Z]),

app(X, [4,5],Z))}
⇒ (by equality solving)
{(ans([1|z1])← app([2,3], [4,5],z1))}

⇒ (by replacement usingIapp)
{(ans([1|z1])← eq([2,3], [ ]),eq([4,5],z1)),
(ans([1|z1])← eq([2,3], [A|X]),eq(z1, [A|Z]),

app(X, [4,5],Z))}
⇒ (by equality solving)
{(ans([1,2|z2])← app([3], [4,5],z2))}

⇒ (by replacement usingIapp)
{(ans([1,2|z2])← eq([3], [ ]),eq([4,5],z2)),
(ans([1,2|z2])← eq([3], [A|X]),eq(z2, [A|Z]),

app(X, [4,5],Z))}
⇒ (by equality solving)
{(ans([1,2,3|z3])← app([], [4,5],z3))}

⇒ (by replacement usingIapp)
{(ans([1,2,3|z3])← eq([], [ ]),eq([4,5],z3)),
(ans([1,2,3|z3])← eq([], [A|X]),eq(z3, [A|Z]),

app(X, [4,5],Z]))}
⇒ (by equality solving)
{(ans([1,2,3,4,5])←)}

By the removal transformation for an iff-formula,Iapp
is removed. Then

answer({A1},{Iapp},ans(x),π)
= answer({(ans([1,2,3,4,5])←)},∅,ans(x),π)
= π({ans([1,2,3,4,5])}∩ rep(ans(x)))
= π({ans([1,2,3,4,5])})
= {app([1,2,3], [4,5], [1,2,3,4,5])},

which means[1,2,3,4,5] is the only result of concate-
nating [1,2,3] and [4,5]. The aforementioned diffi-
culty is thus overcome with small computation cost.
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Structural Relational
NFP≡ FP ⊓NT curr(x,z)← exam(x,y),subject(y,z)
NT≡ ¬∃teach.Co & x: St, y: Co, z: Tp
FP⊑ FM mayDoTh(x,y)← curr(x,z),expert(y,z)
AC ⊔ BC≡ Co & x: St, z: Tp, y: FP⊓∃teach.AC
AC ⊓ BC⊑⊥ mayDoTh(x,y)← & x: St, y: NFP
john: FP, teach(john,ai) exam(paul,ai)
mary: FP⊓∀teach.AC subject(ai,kr), subject(ai, lp)
paul: St, ai : AC, kr : Tp, lp : Tp expert(john,kr), expert(mary, lp)

Figure 1: A knowledge base.

C1: ← NT(x), teach(x,y),Co(y) C2: teach(x,y),NT(x)← func( f ,x,y) C3: Co(x),NT(y)← func( f ,y,x)
C4: FM(x)← FP(x) C5: ← AC(x),BC(x) C6: FP(john)←
C7: teach(john,ai)← C8: FP(mary)← C9: AC(x)← teach(mary,x)
C10: St(paul)← C11: AC(ai)← C12: Tp(kr)←
C13: Tp(lp)← C14: exam(paul,ai)← C15: subject(ai,kr)←
C16: subject(ai, lp)← C17: expert(john,kr)← C18: expert(mary, lp)←

C19: curr(x,z)← exam(x,y),subject(y,z),St(x),Co(y),Tp(z)
C20: mayDoTh(x,y)← curr(x,z),expert(y,z),St(x),Tp(z),FP(y),AC(w), teach(y,w)
C21: mayDoTh(x,y)← St(x),NFP(y)

I1: NFP(x)↔{FP(x),NT(x)} I2: Co(x)↔ ({AC(x)}∨{BC(x)})

Figure 2: Extended clauses and iff-formulas in the ECLSF space representing the knowledge base in Fig. 1.

6 EXAMPLE

Consider the knowledge base in Fig. 1, slightly mod-
ified from (Donini et al., 1998), where (i) the two
columns refer to the structural component and the
relational component and (ii) the two rows refer to
the intensional level and the extensional level. The
structural component is described using the descrip-
tion logicALC (Baader et al., 2007). The intensional
part of the relational component is described using an
extension of Horn clauses, where class membership
constraints are specified after the symbol ‘&’. This
intensional part provides the conditions for a student
to do his/her thesis with a professor. The query to be
considered is to find every pair of a students and a
professorp such thatsmay do his/her thesis withp.

Using standard translation fromALC to first-
order logic (Baader et al., 2007), the knowledge base
in Fig. 1 can be converted into a conjunction of first-
order formulas. With reference to Fig. 2, the ob-
tained formula conjunction can further be converted
into Cs∪E, whereCs is the clause set consisting of
C1–C21 andE= {I1, I2}. The problem can then be for-
malized as the quadruple form〈Cs,E,mayDoTh(x,y),
id〉, whereid is the identity mapping.

At Step 2 of the procedure in Section 3.3, the
above quadruple is successively transformed. Re-

placement usingI1 is applied toC21 (Theorem 2), and
I1 is then removed (Theorem 3). Replacement using
I2 is applied toC19 (Theorem 2). The transformation
rules mentioned at Step 2c of the procedure are next
applied in the following order: UNF (25 times), RMD
(8 times), SCH, UNF (6 times), RMD, EIS, ESUB (4
times), RESO (3 times), EIS, EIF, ESUB (5 times),
SCH, and ESI. The final clause set consists only of
the two unit clauses(mayDoTh(paul, john) ←) and
(mayDoTh(paul,mary) ←), from which the answer
set{mayDoTh(paul, john),mayDoTh(paul,mary)} is
derived.

7 CONCLUSIONS

The ET principle provides a basis for solving a very
large class of QA problems. Our proposed ET-
based procedure for solving QA problems is a state-
transition procedure in which a state is a QA problem
and application of an ET rule results in state transi-
tion. Using ET, a given QA problem is transformed
equivalently into simpler forms until its answer set
can be readily obtained. The design of an appropri-
ate representation of the state space, i.e., an appro-
priate form for representing QA problems, is essen-
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tial for ET-based problem solving. A triple form of
a QA problem was previously used, where the first
component is a set of extended clauses with function
variables, representing the background knowledge of
the problem, the second component is a query atom,
and the third one is a mapping for converting ground
atoms into elements of an answer set.

The background knowledge of a QA problem of-
ten includes iff-formulas, which are useful for prob-
lem transformation. By introducing a set of iff-
formulas as a new component, this paper proposes a
quadruple form for representing a QA problem. Iff-
formulas in the quadruple form provide higher chance
of transformation with less cost compared to the triple
form. ET rules for using iff-formulas are invented,
i.e., an ET rule for replacement using an iff-formula
and that for removal of a useless iff-formula. Each
transition step by an ET rule preserves the answer set
of a given input problem and, consequently, the cor-
rectness of the proposed procedure with any combi-
nation of ET rules is guaranteed.
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APPENDIX

Transformation rules used in the meaning-preserving
Skolemization procedure proposed in (Akama and
Nantajeewarawat, 2011) for converting a first-order
formula into an equivalent set of extended clauses are
given below, whereα, β, γ are first-order formulas,
x,x1, . . . ,xn,y are usual variables, andh is a function
variable.

¬(¬β) ≡ β
¬(β∧ γ) ≡ ¬β∨¬γ
¬(β∨ γ) ≡ ¬β∧¬γ

β→ γ ≡ ¬β∨ γ
β↔ γ ≡ (¬β∨ γ)∧ (¬γ∨β)

(α∧β)∨ γ ≡ (α∨ γ)∧ (β∨ γ)
¬∀x : α ≡ ∃x : ¬α
¬∃x : α ≡ ∀x : ¬α

(∃x : β)∨ γ ≡ ∃x : (β∨ γ)
(∀x : β)∨ γ ≡ ∀x : (β∨ γ)
∀x : (β∧ γ) ≡ (∀x : β)∧ (∀x : γ)
(∃h : β)∧ γ ≡ ∃h : (β∧ γ)

∀x1 · · ·∀xn∃y : β ≡ ∃h∀x1 · · ·∀xn∀y :
(β∨¬func(h,x1, . . . ,xn,y))
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