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Abstract: Software today provides an important and vital role in providing the functionality and user experience in 
automotive domain. With ever increasing size and complexity of software together with high demands on 
quality and dependability, managing software development process effectively is an important challenge. 
Methods of software defect predictions provide useful information for optimal resource allocation and 
release planning; they also help track and model software and system reliability. In this paper we present an 
overview of defect prediction methods and their applicability in different software lifecycle phases in the 
automotive domain. Based on the overview and current trends we identify that close monitoring of in-
service performance of software based systems will provide useful feedback to software development teams 
and allow them to develop more robust and user friendly systems.  

1 INTRODUCTION 

Software is now an important part of automotive 
products, over 2000 software functions running on 
up to 70 Electronic Control Units (ECUs) provide a 
range of functionality and services in modern cars   
(Broy, 2006). With premium segment cars today 
carrying about 100 million lines of code, which is 
more than fighter jets and airliners (Charette, 2009). 
Automotive software development projects at full 
EE (Electronics & Electrical System) level usually 
are large and span several months. Given the size, 
complexity, demands on quality and dependability, 
managing such projects efficiently and tracking the 
software evolution and quality over the project 
lifecycle is important. 

Defects in software provide observable 
indicators to track the quality of software 
project/product under development.  Different 
methods for analysis of software defect data have 
been developed and evaluated, these methods have 
also been used to provide a range of benefits such as 
allowing early planning and allocation of resouces to 
meet the desried goals of projects. The different 
methods of software defect analysis and predictions 
have different characterstics. They need different 
types of input data, are only appropriate to be 

applied at specific granularity levels and for certain 
applications. In this paper we summarize the state of 
the art methods for software defect predicitons. We 
place these methods where these are applicable on 
the automotive software development life . The 
methods are mapped to their appropriate level of 
granularity and application type. We also contend 
for the position that with technology enabling 
collection and analysis of in-operations data 
efficently will enable software designers and 
developers to use this information to design more 
robust and user friendly features and functions.  

2 BACKGROUND  

2.1 Automotive Software Development 
Life Cycle 

Most automotive Original Equipment Manufacturers 
(OEMs) follow Model Driven Development (MDD). 
And since car/platform projects are often large and 
spread over several months, they are executed in 
number of iterations. Software development in this 
domain has been illustrated as variants of iterative 
development based on spiral process model (Boehm

377Rana R., Staron M., Hansson J. and Nilsson M..
Defect Prediction over Software Life Cycle in Automotive Domain - State of the Art and Road Map for Future.
DOI: 10.5220/0005099203770382
In Proceedings of the 9th International Conference on Software Engineering and Applications (ICSOFT-EA-2014), pages 377-382
ISBN: 978-989-758-036-9
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)



 

Figure 1: Time Line of Automotive Software Development Life Cycle. 

 1988) and approaches based on V-model (Dieterle, 
2005; ISO 2011). 

The full EE (Electronics & Electrical System) 
development constitutes the complete development 
of software and hardware (Electronic Control Units). 
Different stages of software development process in 
the automotive domain (illustrated by Figure 1) are:  
1. Concept Phase: Where a new functionality is 

designed and tested on prototypes and Proof of 
Concept (POC) is demonstrated. 

2. Production Software: The main requirements (on 
vehicle level) are set for the upgrade and new 
functions approved for market introduction. 
Software and hardware intended to be included 
in production automobiles is developed in 
iterative manner following V-model or spiral 
development process.  

The first part of developing production 
software is dominated by the addition of the new 
functionality. Unit, integration and function 
testing are also part of each iteration. In the 
second part, also carried out in number of 
iterations – the focus is shifted to integration and 
acceptance testing.  

3. In Operation: Once the new vehicle model is 
released into the market, the performance of 
software and hardware is monitored (through 
diagnostics) during its operation.  

2.2 Methods for Software Defect 
Predictions (SDP) 

Early estimations of software defects can be used 
effectively to do better resource planning and 
allocations. It can also help to track the progress of 
given software project and improve release planning. 

A number of methods have been used for 
predicting software defects. These methods differ 
from one another based on the type of input 
required; the amount of data needed, prediction 
made and sensitivity to give stable predictions 

varies. Based on their characteristics, the models can 
be categorized as: 
 Causal Models, 
 Using Expert Opinions, 
 Analogy Based Predictions, 
 Models based on Code and Change Metrics,  
 Software Reliability Growth Models 

(SRGMs), etc. 

2.3 Related Work 

Expert opinions were used and their performance 
compared to other data based models in a study by 
Staron and Meding (Staron and Meding, 2008). 
Long term predictive power of SRGMs within the 
automotive domain was studied in authors earlier 
works (Rana, Staron, Mellegård, et al. 2013; Rana, 
Staron, Berger, et al., 2013), demonstrating their 
usefulness in making defect and reliability 
predictions.  

Number of software metrics based on code 
characteristics such as size, complexity etc., has 
been successfully used to classify defect prone 
software modules or estimate software defect 
densities. Khoshgoftaar and Allen (Khoshgoftaar 
and Allen, 1999) used logistic regression for 
classifying modules as fault-prone, while Menzies, 
Greenwald and Frank (Menzies, Greenwald, and 
Frank 2007) used static code attributes to make 
defect prone forecasts. Methods that use code and 
change metrics as inputs and use machine learning 
methods for classification and forecasting have also 
been studied by Iker Gondra (Gondra, 2008) and 
(Ceylan, Kutlubay, and Bener 2006).  

Fenton and Neil (N. E. Fenton and Neil, 1999) 
critique the use of statistical based software defect 
prediction models for their lack of causal link 
modelling and proposes use of Bayesian Belief 
Networks (BBNs). Bayesian Nets have been used to 
show their applicability for defect forecasting at very 
early stages of software projects (N. Fenton et al., 
2008). 
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Our study complements earlier studies in defect 
predictions by illustrating when different methods of 
SDP are most appropriate over a software 
development life cycle.  

3 DEFECTS PREDICITON OVER 
AUTOMOTIVE SOFTWARE 
LIFE CYCLE 

Applicability of various methods for software defect 
predictions over the life cycle phases of automotive 
software development is represented in Figure 2 and 
the characteristics of each method are summarized in 
Table 1. At earliest (concept) phase models that can 
be applied (given the availability of data about 
requirements, designs and implementation) are:  
 Causal Models 
 Using Expert Opinions 
 Analogy Based Predictions 
 COnstructive QUALity MOdel (COQUALMO)  

Models applied at this (concept) phase usually 
also use information from similar historical projects. 
Experts in the company draw on their experience to 
make such forecasts, while data based models 
require the data to be supplied as inputs. The larger 
the amount of information available on similar 
historical projects, the higher is the likelihood for 
these models to make accurate and stable 
predictions. 

Other SDP methods require data from the 
development/testing phase. Examples of such 
methods are: 
 Correlation Analysis 
 Methods based on Code & Change Metrics 
 Software Reliability Growth Models (SRGM) 

Correlation analysis models uses number of 
defects discovered in given iteration (and possibly 
more attributes) to predict number of defects for 
following iterations or defect count at project level. 
Methods based on code and change metrics require 
access to source code/functional models to measure 
characteristics such as size, complexity, 
dependencies etc., which are then used to make the 
defect proneness classification or forecasting of 
defect counts/densities. Thus methods based on code 
and change metrics can only be applied when access 
to source code/functional models is available. After 
end of iteration 1, such data is usually available and 
can be used for making such forecasts. In some 
cases which is often the situation in automotive 
software development, access to source code may be 
an issue when software is sourced through a sub-
supplier. Further since the software development in 
automotive domain pre-dominantly uses MDD, 
functional/behavioural model metrics alternatives to 
code metrics may need to be used where their 
applicability and performance is currently not well 
investigated/documented.

 

Figure 2: Methods for software defect predictions, applicability over SW life cycle in automotive domain. 
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SRGMs on the other hand do not need access to 
source code/model metrics data; these are black-box 
techniques that only use defect inflow data during 
development/testing to model the reliability of 
software systems. While these models can be 
applied when the software is under 
development/testing – they need substantial data 
points (defect inflow) to make stable predictions. 

Analysing defects data over software life cycle 
 
Another characteristic of defect analysis methods is 
at what level they can be applied. Based on the type 
of method and input data needed different models 
provide optimal results at different granularity 
levels. They can also be used for variety of different 
purposes. Table 2 summarizes the levels and 
appropriate applications for each model type. The 
granularity level at which analysis can be done are: 

Table 1: Software defect prediction models, characteristics and applicability over Automotive SW life cycle. 

Method Input Data Required Advantages and Limitations 

Causal 
Models 

Inputs about estimated 
size, complexity, 
qualitative inputs on 
planned testing and 
quality requirements. 

 Causal models biggest advantage is that they can be applied very early in 
the development process. 

 Possible to analyse what-if scenarios to estimate output quality or level of 
testing needed to meet desired quality goals. 

Expert 
Opinions 

Domain experience 
(software development, 
testing and quality 
assessment). 

 This is the quickest and most easy way to get the predictions (if experts are 
available). 

 Uncertainty of predictions is high and forecasts may be subjected to 
individual biases. 

Analogy 
Based 
Predictions 

Project characteristics and 
observations from large 
number of historical 
projects. 

 Quick and easy to use, the current project is compared to previous project 
with most similar characteristics. 

 Evolution of software process, development tool chain may lead to 
inapplicability or large prediction errors. 

COnstructiv
e QUALity 
MOdel 

Software size estimates, 
product, personal and 
project attributes; defect 
removal level. 

 Can be used to predict cost, schedule or the residual defect density of the 
software under development. 

 Needs large effort to calibrate the model. 

Correlation 
Analysis 

Number of defects found 
in given iteration; size and 
test effort estimates can 
also be used in extended 
models. 

 This method needs little data input which is available after each iteration. 
 The method provides easy to use rules that can be quickly applied. 
 The model can also be used to identify modules that show higher/lower 

levels of defect density and thus allow early interventions. 

Regression 
Models 

Software code (or model) 
metrics as measure of 
different characteristics of 
software code/model; 
Another input can be the 
change metrics. 

 Uses actual code/models characteristic metrics which means estimates are 
made based on data from actual software under development. 

 Can only be applied when code/models are already implemented and 
access to the source code/model is available. 

 The regression model relationship between input characteristics and output 
can be difficult to interpret – do not map causal relationship. 

Machine 
Learning 
based 
models 

Software code (or model) 
metrics as measure of 
different characteristics of 
software code/model; 
Another input can be the 
change metrics. 

 Similar to regression models, these can be used for either classification 
(defective/not defective) or to estimate defect count/densities. 

 Over time as more data is made available, the models improvise on their 
predictive accuracy by adjusting their value of parameters (learning by 
experience). 

 While some models as Decision Trees are easy to understand others may 
act like a black box (for example Artificial Neural Networks) where their 
internal working is not explicit. 

Software 
Reliability 
Growth 
Models 

Defect inflow data of 
software under 
development (life cycle 
model) or software under 
testing. 

 Can use defect inflow data to make defect predictions or forecast the 
reliability of software based system. 

 Reliability growth models are also useful to assess the maturity/release 
readiness of software close to its release 

 These models need substantial data points to make precise and stable 
predictions. 
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 Product Level (PL), 
 System Level (SL), 
 Sub-System level (SSL), 
 Functional Unit level (FU), 
 MOdule (MO), or at the 
 File Level (FL) 
 
And the applications where analysis of software 

defect data can be useful are: 
 Resource Planning and Allocations (RPA), 
 What-IF analysis (WIF), 
 Release Readiness Assessment (RR), 
 Root Cause Analysis (RCA), or for  
 Identification of Defect Prone units (IDP) 

Table 2: Application level and useful purposes. 

Model Application level 
Application 

area 
Causal Models PL, SL, SSL RPA, WIF 

Expert Opinions PL, SL, SSL, FU 
RPA, RRA, 
RCA, WIF 

Analogy Based 
Predictions 

PL, SL, SSL, FU RPA, RRA 

COQUALMO PL, SL, SSL, FU RPA 
Correlation Analysis SSL, FU, MO, FL RRA, IDP, WIF
Regression Models SSL, FU, MO, FL RRA, IDP, WIF
ML based models SSL, FU, MO, FL RRA, IDP, WIF
SRGMs PL, SL RPA, RR, RCA 

4 ROADMAP FOR INCREASING 
EFFICIENCY IN COMBINING 
DEFECT PREDICTION 
METHODS WITH FIELD DATA 

In the software domain, the post release monitoring 
have been fairly limited as software is not regarded 
same as hardware (software do not degrade or break 
down with age). Another major reason for lack of 
monitoring of software in-operation performance in 
the past has been the un-availability of necessary 
skills at the service end to retrieve the data and 
easily feed it back to OEMs for analysis. 

But with the advancements of new technology 
such as high speed data transfer, cloud storage and 
highly automated computer based diagnostics 
equipment’s available across most of the service 
points - offers unprecedented opportunity to collect 
and retrieve the data from the in-operations phase. 
This feedback information can further enhance the 
capabilities to design and develop even better, 
higher quality and safe automotive software.  

We contend that the current technologies make it 
possible for OEMs to collect and analyse in-
operations performance of software based systems 
very much like it has been the case for hardware 
components in the past. And much like how such 
monitoring helped design better hardware 
components, increase their life and reliability – 
monitoring the in-operations data of software 
systems performance will help design more robust, 
reliable and user friendly software functions in the 
future. 

For example, following and analysing detailed 
performance metrics of software based system 
during their life-time operations will: 
 Provide in-operations performance metrics of 

software based systems. 
 The qualitative and quantitative robustness 

and reliability measures from in-operations 
data will provide input (feedback) for experts 
and causal models on which software 
characteristics lead to most reliable 
performance. 

 The current evaluation of performance of code 
& change metrics SDP models is based on 
their performance compared to defects found 
during development and testing. Using in-
operations performance data and using code & 
change metrics data from their source code 
will help identify “best practices” for the 
software designers and developers to avoid 
actions that may lead to sub-optimal 
performance during operations.  

 Insights from the in-operation phase are 
already used by certain OEMs for effective 
optimization/calibration. For example 
functional units such as powertrain use in-
operations data to calibrate engines for 
achieving optimal balance between power and 
efficiency. 

 Active monitoring and analysis of in-
operations performance (of software based 
systems) will help isolate any potential 
performance related issues and offer quick 
updates whenever needed. This will further 
enhance the overall dependability of 
automotive products. 

 Further in future where in-operation 
monitoring and feedback cycle is shortened 
would also enable OEMs to identify user 
satisfaction and usefulness of different 
features within their cars. This will allow for 
design and development of more user friendly 
features that will benefits the end customers. 
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5 CONCLUSIONS 

The role and importance of software in automotive 
domain is rapidly increasing. The size, complexity 
and value software provides in modern automotive 
products is ever increasing and expected to grow 
further. With trends moving towards more software 
enabled functions, autonomous vehicles and active 
safety systems – ensuring dependability of software 
based systems is highest priority. 

Software development in automotive domain is a 
long and complex process, various software defect 
predictions models offer possibilities to predict 
expected defects thus providing early estimations 
that are useful for resource planning and allocations, 
release planning and enabling close monitoring of 
progress of given project. 

In the paper we reviewed that different methods 
for SDP need different forms of input data, they also 
have different capabilities and limitations when it 
comes to their ability to make accurate and stable 
forecasts. Thus given at what phase of software 
development life cycle we are in and what kind of 
data is available, certain defect prediction models 
may be more appropriate than others and thus should 
be preferred.  

We also show that unlike past, the present 
technology enables close monitoring, collection and 
analysis of detailed performance data of software 
based system during in-operations phase. This data 
now and in future will be much easy to collect, store, 
retrieve and analyse. We contend that analysis of 
such data will lead to development of more robust 
software based systems that will further help to 
enhance the reliability of automotive products and 
aid in development of features that provide superior 
overall user experience. 
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