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János Végh1, Ádám Kicsák2, Zsolt Bagoly2 and Péter Molnár2
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Abstract: Processes running under an operating system are independent and autonomous entities. However, they need to
share resources, communicate, use OS services, etc. The operating system’s services can be reached through
system calls, which contribute – sometimes excessive – overhead activity. In some cases the payload activity,
used in the system call, is much shorter than that needed for implementing the Exceptional Control Flow,
implementing the system call frame. In certain cases, the OS service in question can be implemented in an
alternative way, practically without overhead. The paper presents such a case, using an easy to understand
simple example, an alternative implementation of a simple binary semaphore. The semaphore has been im-
plemented and tested in a prototyping environment, using an operating system running on a soft processor
equipped with custom instruction. For implementing the semaphores, a reconfigurable device was used.

1 INTRODUCTION

Shortly after inventing the electronic computers, mak-
ing software for computers became a science on its
own right. Most of the software developers are work-
ing with a closed hardware (HW) with finished de-
velopment, and their new ideas and needs might be
included (if ever) only in the next generation of hard-
ware. This is why sometimes the goals could only
be reached through abandoning obstacles (or simply
not foreseen needs) in the architecture of the HW, so
the power of the software could not keep pace with
the development of the hardware (Ousterhout, 1990).
This unfortunate status quo seems to change with the
more and more widespread usage of reconfigurable
devices (Xilinx, 2012; Altera, 2013; Adapteva, 2014),
the end users can develop and test user-defined hard-
ware architectures and softwares running on them.

At the beginning HW accelerators were devel-
oped for some well-defined user task. In the past
few years several, reconfigurable device based de-
velopments have been published for a wide range of
tasks in connection with operating systems (OS), see
for example (Akesson, 2001; So, 2007; Ferreira and
Oliveira, 2009) and references within. Although they
reach their intended goal and prove the advantages of
acceleration, they only reach partial sucesses. The

main reason is that they simply base their approach
on the the traditional methods of computer science,
but implemented in hardware. It also means that they
are also abandoning the same (in their case virtual)
obstacles in the architecture .

In this paper we re-think the goal of the implemen-
tation of some OS services, and show that in some
cases a much more effective alternative implementa-
tion is possible. We show the advantages of using the
inherent features of reconfigurable (RC) components,
on the example of implementing semaphores which
are extensively used for synchronizing processes of
operating systems and which are of utmost impor-
tance in real-time embedded systems.

2 THE SOFTWARE SEMAPHORE

The computers with Neumann architecture were orig-
inally able to run one single process only. Conse-
quently, that single process could use all available re-
sources of the computer, without restriction.

2.1 Cooperating Processes

The first real challenge appeared with inventing the
processor interrupt, and following that, immediately
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appeared the first classic issues. The program with
interrupt handling facility can be considered in such
a way, that two processes are started at the begin-
ning. The main program (the ”core process”) works
as usual, the other process (the interrupt service rou-
tine) is blocked until the triggering signal from the
interrupting device appears. Following that the sig-
nal arrives, the interrupt servicing process takes over
(gets unblocked) and runs until it terminates. After
that, the control returns to the core process, exactly
to the place and state, where and how the interrupt
occurred.

The two processes need to solve their joint task
together, i.e. they need to communicate (to some de-
gree) with each other. This can be realized through
making changes in the state of their shared resources,
typically making changes in the memory. Since both
of these processes use the same resources, special
care must be taken to avoid changes exceeding this
intended communication. This means, that both the
hardware and the interrupt servicing process must
save and properly restore the temporary changes they
caused, in order to make unnoticeable for the core
process when the control is returned to the main pro-
cess after servicing the interrupt, that an interrupt oc-
curred.

The operating principle of the computer assures
only that the single machine instructions are com-
pleted, but in case of operations requiring more than
one machine instructions special care must be taken
to make sure that the execution of a closely related
group of instructions will not be interrupted. In case
of the interrupt service routine the hardware assures
that the control is not returned to the core process
until the servicing process terminates. This means,
that making non-atomic operations within the inter-
rupt control routine needs no special care or action.
On the opposite, in the core task one has to protect
atomic operations (for example, in an easy but not el-
egant way) through disabling/enabling interrupts. No-
tice the asymmetry of the roles of the two tasks.

2.2 The Problem of Communication

In multitasking operating systems there are several
”core” processes and all those processes can be inter-
rupted by the scheduling clock, so resources shared by
two (or more) such processes can be safely used only
through accepting a kind of agreement between tasks,
since (in contrast with the case in previous section)
there is no hardware support for protecting atomic
operations. Namely, the first process reaching the
state in which it wants to use a resource, for the pe-
riod of executing the so called critical section, mo-

nopolizes its usage. It does so through changing some
area, visible also for other tasks, of the memory, des-
ignating that right now it is using the corresponding
resource. After finishing the critical activity, it makes
the resource free again through resetting the changed
memory location. For the other processes needing the
same resource, the resource will only be available af-
ter the first process makes the resource free again,
even if the scheduler would run some other process
meanwhile.

Of course, this mechanism is viable only if both
processes keep the agreement (they communicate
with each other before they begin the action), i.e. be-
fore using the resource, the process checks whether
it is available, reserves the resource (changes the re-
spective memory) and uses the resource only if the re-
source is free (otherwise waits for the resource), and
after using it, releases the resource (resets the mem-
ory).

2.3 Communication in Operating
Systems

Implementing this kind of communication of pro-
cesses under an operating system is not really sim-
ple. One of the basic tasks of the operating system
is to protect the processes from each other, including
the memory they use extensively. This also means,
that the changed memory belonging to one task surely
must not even be ”seen” by any other task. If in-
dependent processes want to communicate with each
other, they need the help of a ”reliable third party”.

The obvious available solution is the OS itself,
mainly because the processes of course must be able
to communicate with OS in other businesses as well.
Those processes that need to change (in cooperation
with the OS) the memory content in a region belong-
ing to the OS, and of course in cooperation with the
OS they can also have information on the content of
that memory. Technically it means that before and
after every single usage of the semaphores the pro-
cesses must contact the OS, changing operation mode
and passing parameters there and back. This hap-
pens using software interrupts, which means complete
context switching there and back, and means execut-
ing up to hundreds of machine instructions (according
to (Bryant and O’Hallaron, 2014), the complete con-
text switching might take up to 20,000 clock cycles!).
The so called multitasking operating systems use this
kind of synchronization extensively (sometimes even
recursively (C. A. Thekkath and H. M. Levy, 1994)),
which means a considerable administrative load for
the processor, especially if the implemented payload
functionality is as simple as in case of handling a bi-
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nary semaphore.
Such a mechanism, the so called semaphores (and

their relatives) are extensively applied in OSs for
synchronizing processes. It is worth then to check
whether this mechanism could be implemented us-
ing a quicker, simpler technology, which is function-
ally equivalent with the original one. The basic prob-
lem here is, that in the traditional computer the only
place for storing information is the memory, which
in multitasking environment is under special protec-
tion. Notice that the OS has only administrative role
here: it is not checked whether the process is legi-
ble to use the resource, and similarly, freeing the re-
source is also not supervised. After noticing that,
one can attempt to invent a more simple and quick
mechanism for replacing the current one. The key is
to provide another facility for storing the information
shared between tasks: semaphore array, implemented
using non-Neumann method of operation.

3 THE ALTERNATIVE
SEMAPHORE

Note that the reconfigurable module described in this
section is strictly needed for making the prototype
only. The final solution can either be a config-
urable component (in order to provide more flexibil-
ity for the end-user, as in our prototype system) or
non-configurable HW component (in order to provide
more comfort), but anyhow something outside the ad-
dress space of the process(es).

3.1 Implementing the Semaphore

The task of the module is to handle a certain (config-
urable) number of semaphores. The implementation
of the module has a COUNT parameter, which defines
the capacity of the module, i.e. how many semaphores
can be used simultaneously. This parameter allows to
accomodate to the needs of the operating system.

Every single semaphore must be created, be ac-
quired (P operation), released (V operation), and de-
stroyed. Also, the module must be able to give in-
formation on possible error situations. Creating and
destroying the semaphore are the equivalents of allo-
cating and freeing up memory in the traditional soft-
ware implementation. In our hardware solution these
operations are implemented through setting/resetting
a single flag bit within the new HW module. All
four operations are executed in one clock cycle, and
in this period the eventuell error information is also
displayed. The operations (state transitions) and the
states of the semaphore are the well-known ones. For

the terminology, many different notations and nam-
ing conventions exist. The present paper uses the one
found in (Li and Yao, 2003), see Fig. 1.

Not in usestart Available Unavailable

Create Acquire (P)

Release (V)Destroy

Figure 1: State diagram of a simple binary semaphore.

The state of the reconfigurable semaphores, simi-
larly to the software semaphores, cannot be accessed
imediately. Outside of the module only the module
interface (see Fig 2) is visible, and only the four men-
tioned semaphore operations can be used to step from
one state to another one. That is, the semaphore rep-
resents a completely closed system for other modules.

Figure 2: Interface of the semaphore module.

3.2 The Interface of the Module

For operating the module, a clock signal (clk) and
a reset input line (rst) are surely needed. Four con-
trol lines (create, destroy, pend and post) are used
to implement the four operations. For data input and
output the 32-bit data buses data in and data out
are used. The eventuell errors are displayed in the sta-
tus line error, which shows the status of the last op-
eration. When this line is active, the operation could
not be carried out. In such a case the value on the data
lines provide information on the nature of the error.

3.3 Testing and Simulation

The correct operation of the module is proved by a
carefully assembled series of test cases. In this series
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all semaphore operations are executed, and all error
conditions produced. The test simulates the operation
of the module, checks the output signals of the mod-
ule as well as the correctness of the internal states.
The following test cases are included, in the order of
the listing:

1. Resetting the module

2. Initializing all semaphores

3. Initializing one more semaphore

4. Putting an arbitrarily selected semaphore out of
use

5. Allocating, freeing up and putting out of use the
semaphore above

6. Initializing a semaphore

7. Allocating the initialized semaphore

8. Allocating the semaphore again

9. Freeing up the allocated semaphore

10. Freeing up the semaphore again

11. Setting control lines to invalid state

12. Using invalid semaphore ID

13. Resetting the module

4 USING THE MODULE

The module described above is a closed hardware
unit, with functionally equivalent with the traditional
software-implemented semaphores.

4.1 Linking the Module to the CPU

After having implemented the module, we had to de-
cide how to link it to the CPU. It could be linked using
a kind of ”HW/SW API” (So, 2007) , a kind of ”co-
processor” (Ferreira and Oliveira, 2009), etc. Those
solutions (as well as practically all kinds of hardware
accelerators) use their modules as a kind of I/O pe-
ripheral. This would provide a simple and easy so-
lution, but handling I/O devices under OSs is only
possible through using OS system calls (i.e. adding
considerable overhead due to the mandatory use of
the context switching). This way of implementation
is only worth if the functionality implemented in HW
is complex and lengthy, so the overhead needed for
using the module from OS can be neglected. For our
simple bit testing and setting it is not the case.

Because of its simplicity, the another reason that
the overwhelming majority uses that way of linking
is, that for a closed CPU unit it would be the only
reasonable way for implementing some CPU-related

functionality. Fortunately, when using so called ”soft
processors”, some other ways are also available for
adding extra functionality to the CPU.

4.2 The ”Soft Processor”

The soft processors are CPUs implemented in a re-
configurable device by the end users. When using re-
configurable technology for prototyping, a high de-
gree of customization is available for the end-user.
For this implementation, the Nios II soft processor
(Altera, 2011) was used. From our point of view,
its very advantageous feature is that it has so called
”custom instruction”s. These are ”empty” CPU in-
structions, the implementation of the functionality
of which is left for the user. The implemented
semaphore module – using a proper interface – can
be linked to the CPU, and so the semaphore function-
ality can be reached through using a CPU instruction
(apparently, as a C language function). (Recall here,
that the semaphore handling does not need any func-
tionality from the OS, just the safe storage place; so
in this way the handling can be carried out directly
from the user space, without the overhead of chang-
ing context to and from the kernel.)

4.3 The ”Soft OS”

For testing the operation of the semaphore module,
implemented as a CPU instruction, an operating sys-
tem running on that CPU is needed. Fortunately, the
highly configurable µC OSII (Micrium, 2012) operat-
ing system is available for Nios II. Since it is available
also in form of modifiable source, it makes easy to
implement the semaphore wrap functions in different
forms. Actually, three versions of the wrap functions
has been prepared. In addition to the one delivered
with µC OSII, wrappers for the HW semaphore mod-
ule linked to the CPU as I /O device as well as with
custom instruction has been implemented.

5 BENCHMARKING THE
MODULE

5.1 Principles

The different semaphore wrappers can be built into
different versions of the ”soft OS”. Bechmarking OS
functionality is a sensitive area, so maximum care
must be excercised. When running a SW in an OS,
resource sharing (including CPU time) takes place,
so the normal benchmarking makes sense only, if
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the possible non-payload activity (including running
other tasks and system activity) is negligible. When
measuring small (below the msec range) time, the
usual (OS based) timing methods cannot be used.
Even when counting the processor clock cycles, a cor-
rection must be made for the possible exception han-
dling, interleaving the payload activity.

In the case of applications, one can start the cy-
cle counter before starting the application, or within
the application code. When making measurements on
the OS itself, there is no such an obvious possibil-
ity. One needs a special measuring framework, which
is able to build into the OS and carry out the mea-
suring functionality there. The effect of scheduling
can be accounted for, switched off or even the inter-
rupts disabled for the time of measuring. The sub-
tleties of measuring time in a computer system are
excellently discussed in the former edition of (Bryant
and O’Hallaron, 2014). In our case an extra difficulty
is that both Neumann-style architecture elements and
simple combinational circuits are included in the test.

5.2 The Setup

The benchmarking setup consists of a NIOS-II soft
processor (equipped with custom instructions imple-
menting the semaphore operations) built with Altera
SoPC builder, running a µC OSII operating system, so
actually a benchmarking SoPC configuration is used.
(In all cases the pre-configured reference project set-
tings were used.) The available OS profiling facilities
can be used to measure execution times for both the
unmodified semaphore, implemented in traditional
SW, and – using alternative function names – the
semaphore implemented in HW. A further test is to
measure the semaphore implemented in HW through
I/O interface.

The timing facilities of the operating systems are
prepared for measuring ”macroscopic” times (typi-
cally several milliseconds). The µC OSII platform
is equipped with excellent benchmarking functional-
ity, but they are prepared for system and process level
timing. On platform µC OSII, depending on the set-
ting of the base time, the timer interrupt will occur
at every 10-200 ms; this period will also be used for
scheduling. As we learned from the measurements
made by (Bryant and O’Hallaron, 2014), this allows
for untolerable precision and accuracy when making
measurements in the range of just a couple of clock
periods. Even in case of measuring the execution time
of complete processes, special care must be exercised.
This timing facility could be (and will be) used in a
latter phase, when testing the accelerating effect of
the different semaphore implementations on the exe-

cution time of complete, synchronizing applications.
So, we had to look for another timing facilities,

closer to the HW. Fortunately, our Altera HW plat-
form supports this kind of activity with two standard
modules, the Altera Performance Counter and Altera
Interval Timer. The Altera Performance Counter IP
(Intellectual Property) core allows to support bench-
marking/profiling at HW level. The Performance
Counter counts – according to its documentation – the
clock periods in a 64-bit counter. The C macro con-
trolled counter uses just a few instructions for operat-
ing the counter, much less than the other micro-scale
timing codes. In this way one can measure the time
through counting clock periods. The Altera Interval
Timer – according to its documentation – counts 10 µs
intervals, so it looks like better suited for measuring
single, system-level activities.

5.3 Calibration and Validation

For our initial goals, only the Altera Performance
Counter looks to be suitable. At the beginning, we
wanted to find out the time needed to handle the 64-bit
counter in the Altera Performance Counter. In princi-
ple, the difference of two consecutive readings to that
64-bit counter, with no instruction between, should
result the ”cost” of reading the counter; a correction
factor needed to measure a period with precision of
clock periods. Those measurements results that read-
ing the counter needs� 200 clock periods, with a few
periods variation. For the first look, it seems pretty
expensive for a simple counter reading, and also the
variation of the length of that period also implies the
presence of some unknown factors.

Anyhow, at the moment this is the best facil-
ity for measuring the execution time related to the
semaphore. The method provides consistent results,
but with unsatifying precision. This is why not yet
engineering-style results are presented. Development
work to carry out our own timing solution is in course.

5.4 Preliminary Results

The alternative implementation of semaphores pro-
vides a timing task for testing the implementation
itself, as well as measuring the effect of using the
alternative implementation versus the traditional im-
plementation. This exactly corresponds to the mi-
croscopic and macroscopic time scales, mentioned
in (Bryant and O’Hallaron, 2014). These two time
scales require different methods and different timing
facilities.

On microscopic scale, we wanted to measure the
time needed to execute simple semaphore operations.
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We used a single run method, and a loop run method.
When measuring the semaphore operation in a single
run, we measured about � 150 clock cycles. To make
a reasonable measurement, in a loop acquiring and
releasing a semaphore (10,000 times) was run, and the
measured total time was divided by the number of the
loop cycles. The result was about� 100 clock cycles.
The two results are consistent, considering the results
of calibration and validation. (Of course, one has to
take care of the number of interrupts, the number of
context switches, etc. )

When evaluating these results, one must recall that
a simple counter reading takes � 200 clock cycles.
Although the module itself needs 1 clock cycle only,
the offset of implementing it as custom instruction
should have some offset, in the order of magnitude of
reading a counter. In order to make more detailed and
accurate measurements, further studies and more in-
formation on the timing facilities needed. (We guess
that the Performance Counter was designed for much
more complex functionality, and is implemented in a
form too complex for our goals.)

The same measurements have been carried out
also on semaphores implemented using the traditional
SW method. The measurements consequently show
that the HW implementation is � 30 times quicker
than the traditional one. We guess that using a better
support from the processor, this ratio can be reason-
ably higher.

Note that there are several attempts (like (Li
et al., 2011; Akesson, 2001; So, 2007; Ferreira and
Oliveira, 2009) ) to implement more or less function-
ality of the (mainly real-time) operating systems in
HW. Their functionality is either more complex or
connected with some other functionality, or use a dif-
ferent method of linking to the CPU, or do not provide
timing data, so a direct comparison with them is not
possible.

6 CONCLUSIONS

Processes running under operating systems are us-
ing a lot of operations, which are needed for the safe
and/or comfortable operation rather than for the pay-
load work. The extensive use of such operations in
multitasking operating systems reduces the payload
computing power. In case of using an external hard-
ware module properly linked to the CPU and running
parallel with it provides the possibility to implement
such operations on different principle, in a consider-
ably more effective, but functionally equivalent way.
The article presents how communication of processes
in one clock period only can be implemented, possi-

bly replacing hundreds of machine instructions. The
semaphore implemented on this principle has been
built (in reconfigurable device) and tested. Initial
benchmarking results are also presented.

The present prototyping implementation – as a
proof of concept – shows that it is possible to
considerably increase some OS-related functionality
through implementing it as a HW module, running
parallel with the CPU. Based on this, more complex
OS-related functionality could and should also be im-
plemented. Following the same idea – considering the
original intention rather than simply re-implementing
the traditional SW solution in HW – the speed of the
execution of other tasks in OSs can be considerably
enhanced.
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