
Combining Aspect-orientation and UPPAAL Timed Automata

Dragos Truscan1, Jüri Vain2 and Martin Koskinen1

1Åbo Akademi University, Turku, Finland
2Tallinn University of Technology, Tallinn, Estonia

Keywords: Aspect-oriented Modeling, UPPAAL Timed Automata.

Abstract: We discuss an approach to combine aspect-oriented concepts with UPPAAL timed automata (UPTA) with the
focus on providing a systematic constructive approach and automation tool support for model weaving. Our
approach allows for decoupling the design of different aspects of the system and suggests the use of explicit
composition patterns to weave the aspects together. We exemplify with an auto-off lamp example.

1 INTRODUCTION

Aspect-oriented modeling (AOM) (Clarke and Ba-
niassad, 2005; France et al., 2004) is a paradigm
inspired from aspect-oriented programming (Filman
et al., 2005; Kiczales et al., 1997), which promotes
the idea of separation of concerns in order to build
more modular and easy to update specifications. An
aspect describes a particular concern of the system
from a particular viewpoint, allowing the developers
to focus on individual features of the system in isola-
tion.

An aspect model consists of an advice model (a
model fragment describing a new functionality), a
pointcut model (a model fragment specifying where
the aspect can be composed to a base model) and a
composition protocol (how the advice model is con-
nected via the pointcut model). An aspect model can
be woven with the base model in many places (called
join points) and in different ways. The result of com-
posing advice models and a base model is called com-
posite model. The composition process is also called
model weaving.

According to Sutton, aspect-oriented software de-
velopment (AOSD) provides improved separation of
concerns, ease of maintenance, evolution and cus-
tomization, and greater flexibility in development
(Sutton, 2006). Other researchers report in a survey of
industrial projects (Rashid et al., 2010) that AOSD’s
main benefits are the substantial reduction in model
size and the improved design stability. However, the
main body of AOSD and AOM technologies provide
a conceptual framework, leaving room for relatively
loose semantic interpretation. Still, the main research

challenge remains in hiding the complexities of the
composition mechanisms from the user and in devel-
oping the associated tool support.

In this paper, we suggest the used aspect-oriented
methods in the context of UPPAAL timed automata
(UPTA) with the focus on providing a constructive
approach accompanied by automated tool support for
model weaving. Our suggestion would allow for de-
coupling the design of different aspects of the sys-
tem and the use of explicit composition patterns to
weave the aspects together. The approach will take
advantage of the precise semantics of UPTA and
their expressiveness when specifying behavioral as-
pects: incorporate timing constraints explicitly, multi-
processes, synchronization and data structures. In ad-
dition, one can take advantage of the good tool sup-
port for model-checking in UPPAAL and of the avail-
able test generation tools using UPPAAL, which have
been used in many industrial projects.

In the following, we discuss related works in Sec-
tion 2. Section 3 will provide a short introduction to
timed automata. Our aspect-oriented modeling ap-
proach is described in Section 4. Section 5 exem-
plifies our modeling approach. We conclude with a
preliminary analysis of the approach and future work.

2 RELATED WORK

There is a large body of work applying AOM espe-
cially in the context of UML. The reader is deferred
for more details to (Wimmer et al., 2011). How-
ever, aspect operation used in the context of UML
lack clear semantics and constructive definitions. Al-

159Truscan D., Vain J. and Koskinen M..
Combining Aspect-orientation and UPPAAL Timed Automata.
DOI: 10.5220/0005105101590164
In Proceedings of the 9th International Conference on Software Paradigm Trends (ICSOFT-PT-2014), pages 159-164
ISBN: 978-989-758-037-6
Copyright c
 2014 SCITEPRESS (Science and Technology Publications, Lda.)



though UPTA is less expressive than UML, they allow
more rigourous semantic definition. In our approach,
we suggest the use of UPPAAL timed automata for
specifying aspect models and their weaving without
extending the formalism.

To our best of knowledge the only attempt to com-
bine aspect-orientation and UPPAAL timed automata
has been suggested by Sarna and Vain (Sarna and
Vain, 2012). They provide an approach for including
aspects in the construction of test models by formal
refinements of UPTA specifications. The difference
to our paper is that they used aspects for refining the
system specification in place, whereas in this paper
aspects for extending the functionality of the system
with new features. Such an approach allows one to de-
fine features aspect-wise, while aspect weaving rules
provide discipline for structural modeling.

3 PRELIMINARIES OF UPTA

An UPTA model M is a closed network of extended
time automata A1; : : : ;An, that are called processes.
The processes are combined into a single system by
the CCS1 parallel composition A1 k : : : k An (Bengts-
son and Yi, 2004, Sec. 5.1, pp. 25). Synchronous
communication between the processes is by hand-
shake synchronization links that are called channels.
Each channel has related to input (from the channel)
and output (to the channel) actions. The action al-
phabet is assumed to consist of symbols for input ac-
tions denoted ch?, output actions denoted ch!, where
ch denotes a channel name, and internal actions Act of
A1; : : : ;An. Asynchronous communication between
processes is done by shared variables.

Each UPTA process Ai is given as a tuple
(L;E;V ;Cl; Init; Inv;T L) where L is a finite set of lo-
cations, E is the set of edges defined by E � L�
G(Cl;V )� Sync�Act�L, where G(Cl;V ) is the set
of enabling conditions - guards. Sync � S is a set of
synchronisation actions over the channels the process
Ai is linked to the network. In the graphical notation,
the locations are denoted by circles and edges by ar-
rows (see Figure 2). The set Act of internal actions
is a set of sequences of assignment actions with in-
teger and boolean expressions as well as with clock
resets r. V denotes the set of integer and boolean
variables. Cl denotes the set of real-valued clocks
(Cl \V = �). Init � Act is a set of assignments
that assigns the initial values to variables and clocks.
Inv : L! I(Cl;V ) is a function that assigns an invari-
ant I to each location, I(Cl;V ) is the set of invariants

1Calculus of Communicating Systems

over clocks Cl and variables V . TL : L! fordinary,
urgent, committedg is the function that assigns the
type to each location of the automaton.

The semantics of UPTA M =A1 k : : : kAn is given
in terms of labelled transition systems (LTS) (Bengts-
son and Yi, 2004). A state of a network is a pair hL;ui,
where L denotes a vector of current locations of the
network, one for each process A1; : : : ;An and u is a
clock assignment reflecting the current values of the
clocks in M. A network may perform two types of
transitions, delay transitions and discrete transitions.

Besides clock variables UPTA may have boolean
and integer variables, each with bounded domain and
initial value. Predicates over these variables can be
used as guards of the edges and they can be updated
using resets on the edges. The semantics of the mod-
els that include such variables is extended in natural
way, i.e. for an action transition to be enabled, the ex-
tended clock assignment must also satisfy all integer
guards on the corresponding edges and when a tran-
sition is taken the assignment is updated according to
the boolean, integer and clock resets.

To model atomic sequences of actions, e.g. atomic
broadcast or multicast, UPTA support a notion of
committed locations. A committed location is a lo-
cation where no delay is allowed. In a network, if any
process is in a committed location then only action
transitions starting from such a committed location
are allowed. Thus, processes in committed locations
may be interleaved only with processes in a commit-
ted location.

4 INTRODUCING ASPECTS IN
UPTA

As discussed in the introduction, the concerns of a
system are developed in weakly related parts (mod-
els) called aspects. An aspect model is composed of
a pointcut and an advice. Pointcuts identify points in
the execution model referred to as join points.

With respect to UPTA, a pointcut can be a guard
or set of guards applied to any combination of UPTA
elements (model fragments) that are accessible via
edges to which the pointcut guards are attached. Con-
sequently, a join point is a place in the base UPTA
model where the advice model is superimposed and
the pointcut defines under what conditions the advice
can be entered in the base model.

Both the base model and advice model are as-
sumed to be UPTA and this model class is conser-
vative under weaving operations described below. We
suggest four types of advice weaving: before, after,
around, and conditional. The first three follow the

ICSOFT-PT�2014�-�9th�International�Conference�on�Software�Paradigm�Trends

160



same semantics as in AspectJ, while the fourth has a
different one, as it will be discussed later on.

A composed model or woven model is a network
of automata interacting via join points. The composi-
tion protocol is given by an adapter that implements
the composition protocol. During the composition
the same aspect can be woven in several places (join
points) in the base model.

4.1 Generic Process

The generic weaving process is shown in Figure 1.
In this figure, two independent UPTA models, Base
Model and Advice Model implement two cross-
cutting concerns, Concern1 and Concern2, respec-
tively. When the two models are composed a woven
model is created.

Let Base Model be the base model to which the
functionality of Advice Model is composed, result-
ing in a UPTA network. We define an Adapter as a
model fragment which introduces weaving informa-
tion in both models. Basically, the adapter introduces
a JoinPoint in the base model, and the correspond-
ing entry and exit points of the advice that matches
to the join point. JoinPoint encodes one of the fol-
lowing composition rules: before, after, around, and
conditional. These rules specify when the behavior
introduced by the advice should be executed with re-
spect to a join point and how the control should be
returned to the base model. In our approach, we make
several assumptions:
� Although the same advice model template can be
shared between several join points of a base model,
we assume that unique instances of that advice model
are woven to each join point, i.e., no waiting or race
for an advice.
� The execution of an advice is atomic w.r.t. its base
model. That is, once an aspect advice model is en-
tered from a join point, the base model waits for the
aspect to complete before exiting the join point.
�An aspect model has one entry point and one or sev-
eral exit points which return to the same join point.
� The base model and the advice model can be wo-
ven using UPTA-specific communication and syn-
chronization assumptions, e.g. synchronizing the en-
try and exit of advice model with wait in the base
model, sharing or refining data between base and ad-
vice model, etc.

4.2 Join Point Adapters

For the purpose of making weaving operators con-
structive, we suggest several join point adapters pro-
viding support for weaving before, after, around, and

Figure 1: Generic weaving architecture for UPTA.

conditional advices, respectively. These adapters al-
low one to decide, based on the pointcut condition,
whether the aspect should be invoked at a given join
point. Our approach allows systematic and mecha-
nized weaving of aspects into the base models.

The adapters we define can be applied for refin-
ing a channel synchronization, generically shown as
the model fragment in Figure 2. The channel rep-
resents a synchronization between edges of parallel
automata, whereas the direction of the synchroniza-
tion is specified by suffixes of the channel name, e.g.
channel! denotes the sending and channel? the re-
ceiving side of the channel. The synchronization can
take place whenever both edges linked with a channel
are enabled by their guards. During the synchroniza-
tion, the variable updates specified on the synchro-
nized edges are performed. In the following, in order
to save space, we only present the adapters that can
be applied to a receiving model fragment.

Figure 2: Model fragment with channel synchronization.

The after adapter (Figure 3) allows the execution
of an advice after a channel synchronization. It re-
fines the End location with two new locations As-
pectStart and Call, as well as with two new channels
enterAdvice! and exitAdvice?. Whenever the point-
cut expression is true, the advice is executed, other-
wise the base behavior is executed.

Figure 3: Generic after adapter.

The corresponding adapter introduced to the ad-
vice model during the weaving is shown in Figure 4.
As one may notice, the execution of the advice model
is triggered from the base model via the join point by
receiving the enterAdvice? synchronization and, after

Combining�Aspect-orientation�and�UPPAAL�Timed�Automata

161



executing the advice functionality, it returns the con-
trol via the exitAdvice! synchronization.

Figure 4: Generic advice.

The before adapter (Figure 5) allows the exe-
cution of the advice model before the base model
reaches its fragment. The same generic advice model
as in Figure 4 can be used.

Figure 5: Generic before adapter.

The third adapter, the around adapter (Figure 6),
allows the weaving of around advices by starting the
execution of the advice model before the one of the
base model fragment and returning from the advice
model afterwards. The same generic advice model as
in Figure 4 can be used. This is the most complex
adapter type, and it can be used to both overload and
override the functionality of the base model fragment.

Figure 6: Generic around adapter.

Finally, the conditional adapter (Figure 7) intro-
duces new functionality to the same base model frag-
ment in Figure 2. The new functionality decides
whether the execution of the base model continues af-
ter executing the advice or returns to a previous loca-
tion. Compared to the previous adapters, the condi-
tional adapter will allow the base model to consume
the channel? synchronization, but the advice will de-
cide if the same synchronization should be executed
again via exitAdviceRepeat or the base model should
proceed to the next location via exitAdviceContinue.

The corresponding generic aspect model for this
advice is shown in Figure 8. As one may notice, this
model can return to the join point via two different
channels. If needed the adapter may be extended with

Figure 7: Generic conditional adapter.

more complex behavior, for instance with multiple
exit points, which we defer for future work.

Figure 8: Generic conditional aspect.

Tool Support for Weaving. Since the composition
mechanisms are specified explicitly via the generic
adapters the weaving of aspects is completely auto-
mated via a Python-based tool. The tool has a graph-
ical user interface in which the user can select from
UPPAAL model files the template for the base model,
the advice model template, the channel used as join
point and the type of the advice. A new model file is
created containing the woven aspect.

Verification of the Woven Model. Extending the
base models with new functionality may imply the
changing of timing behavior of the woven models.
Since the weaving rules proposed do not pose re-
strictions on the advice models, there are no verifi-
cation rules that could be specified generically, ex-
cept the deadlock condition and the advice atomicity
w.r.t. base model described in Section 4.1. Specific
verification rules, including time-related ones, could
be specified in TCTL (timed computation tree logic)
(Alur et al., 1990) on a case-by-case basis.

5 CASE STUDY: AUTO-OFF
LAMP

We exemplify our approach with an example origi-
nally found as a demo model in the documentation of
the UPPAAL TRON tool (Hessel et al., 2008), under
the name auto-off lamp controller.

5.1 Base Model-revisited

The purpose of the lamp controller is, that once it is
tuned on, it will wait for a given time period before
turning off, unless there are user inputs (“touches”)

ICSOFT-PT�2014�-�9th�International�Conference�on�Software�Paradigm�Trends

162



which reset its auto-off function. The demo is com-
posed of two models: a lamp and a user model. The
lamp model (Figure 9-left) reacts to events, on the
touch channel, and synchronizes to the user via the
done channel. When the lamp is in the OFF loca-
tion and the touch synchronization arrives, the inter-
nal clock x of the lamp is set to zero at the same time
as the lamp transitions to the switchON location. The
lamp is allowed to stay in this location for tolerance
time units, during which it has to change the lamp-
state modeling variable n to value 10 and synchronize
its location to the environment on the done channel.
After that, the lamp is in ON location, where it can
accept new touch events.

Figure 9: Original lamp (left) and user (right) models.

The lamp will stay in the ON location for
switchtime time units, unless a touch event is received
during its allowed stay and the clock is reset. When
switchtime time units have elapsed the lamp transi-
tions to switchOFF location and the n variable is set
to zero. In this location the lamp will continue to ac-
cept touch events, even though these have no effect. A
location change synchronization on done channel will
take place from the switchOFF location to the OFF
location within switchtime + tolerance time units.
This implies that the lamp is allowed to stay in the
switchOFF location for tolerance time units.

The model of the environment is presented in Fig-
ure 9-right. Its functionality is to emit touch events
when the lamp is in a receiving state or to accept con-
firmation that the lamp level has changed.

5.2 Introducing New Functionality

We introduce two new orthogonal concerns to the
lamp specification:
�Authentication: the user has to authenticate success-
fully before being allowed to change the lamp state
from ON to OFF or reset the auto-off timer;
� Logging: log failed authentication attempts.

Each concern will be implemented separately as
a stand-alone advice and woven in the base model of
the lamp using the adapters described in Section 4.

5.2.1 Authentication Aspect

The first step is to create an advice model which im-

plements the authentication. Since the authentication
can result either in a successful or in a failed attempt,
the advice model will have two exit points and thus
should be compatible with a conditional adapter. The
authentication advice (Figure 10) is entered via the
enAuth? synchronization, after which, depending on
the result of the authentication, it will exit via either
exAuthCon! or exAuthRep!. For simplicity, the au-
thentication is discriminated by a pass variable shared
with the user model.

Figure 10: Advice handling authentication.

Intuitively, we would like to extend the behavior
of our lamp model, to accept only touch events from
authenticated users. If the user is not authenticated,
the touch event is received but it has no effect on
the lamp. In order to weave the authentication ad-
vice with the base model, the conditional adapter has
to be applied to the base model in all possible loca-
tions. The target locations are all those edges hav-
ing a touch? channel synchronization. The result of
weaving authentication using the conditional adapter
is shown in Figure 11.

Figure 11: Lamp woven with authentication advice.

The behavior of the lamp model is the same with
the base model whenever the authentication is suc-
cessful. When the authentication fails, the control is
returned to the location preceding touch, ignoring the
user touch.

5.2.2 Logging Aspect

The logging aspect is introduced in a similar manner.
Figure 12 shows and advice model for logging which
has been already refined with an adapter. The advice
is entered via the enLog? synchronization and it exits

Combining�Aspect-orientation�and�UPPAAL�Timed�Automata

163



Figure 12: Logging advice.

via the exLog! synchronization after incrementing the
number of failed authentications.

In order to weave this aspect with its base model,
in this case the Authentication advice model, we re-
fine exAuthRep! edge in Figure 10 using the be-
fore adapter defined in Figure 5, obtaining the model
shown in Figure 13.

Figure 13: Weaving the Logging advice into Authentica-
tion.

Based on the new advice, whenever the authenti-
cation fails, the event is logged by invoking the Log-
ging advice via the enLog! synchronization and after
receiving exLog?, the original exAuthRep! is synchro-
nized to the lamp model.

5.2.3 Environment With Authentication

The original user model in Figure 9 is updated to
provide simple, both valid and invalid, authentica-
tion credentials via the global integer variable pass, as
shown in Figure 14. Instead of having a complete set
of correct and incorrect authentication credentials, we
used only two values, one to represent all the success-
ful cases and one to represent the unsuccessful cases.
We also consider the authentication to take place at
the same time as the touch event. Therefore the touch
channel has not changed name. The new functionality
could have been also introduced via a new aspect, but
we decided to keep the example simple.

Figure 14: Environment model with authentication.

6 CONCLUSIONS AND FUTURE
WORK

We suggested the introduction of aspects-oriented
concepts in the context of UPTA models with the pur-

pose of creating more modular, manageable and easy
to update specifications. More specifically, we have
proposed a set of generic adapters that can be used
for systematic and tool-supported weaving of UPTA-
based aspect models. Our approach allows to employ
aspect-oriented concepts without modifying the un-
derlying UPTA formalism. In addition, it allows one
to take advantage of the verification engine of UP-
PAAL to ensure the validity of the resulting models.

Preliminary evaluation shows that creating and
updating aspect models becomes easier following our
approach and that weaving of models does not have
a dramatic effect on the state space of the resulting
models. However a more thorough evaluation is sub-
ject to future work.

REFERENCES
Alur, R. et al. (1990). Model-checking for real-time sys-

tems. In Logic in Computer Science, 1990. LICS’90,
Proceedings., Fifth Annual IEEE Symposium on e,
pages 414–425. IEEE.

Bengtsson, J. and Yi, W. (2004). Timed automata: Seman-
tics, algorithms and tools. In Desel, J., Reisig, W., and
Rozenberg, G., editors, Lectures on Concurrency and
Petri Nets, volume 3098 of Lecture Notes in Computer
Science, pages 87–124. Springer Berlin Heidelberg.

Clarke, S. and Baniassad, E. (2005). Aspect-Oriented Anal-
ysis and Design. The Theme Approach. Addison-
Wesley.

Filman, R. E. et al. (2005). Aspect-Oriented Software De-
velopment. Addison-Wesley, Boston.

France, R. B. et al. (2004). An aspect-oriented approach
to design modeling. IEE Proceedings - Software, Spe-
cial Issue on Early Aspects: Aspect-Oriented Require-
ments Engineering and Architecture Design, 151(4).

Hessel, A. et al. (2008). Testing Real-Time systems using
UPPAAL. In Formal Methods and Testing, pages 77–
117. Springer-Verlag.

Kiczales et al. (1997). Aspect-Oriented Programming. In
ECOOP ’97 - Object-Oriented Programming, volume
1241 of LNCS, pages 140–9. Springer-Verlag.

Rashid, A. et al. (2010). Aspect-Oriented Software Devel-
opment in Practice: Tales from AOSD-Europe. Com-
puter, 43(2):19–26.

Sarna, K. and Vain, J. (2012). Exploiting aspects in model-
based testing. In Proceedings of the Eeleventh work-
shop on Foundations of Aspect-Oriented Languages,
FOAL ’12, pages 45–48, New York, NY, USA. ACM.

Sutton, StanleyM., J. (2006). Aspect-Oriented Software De-
velopment and Software Process. In Li, M., Boehm,
B., and Osterweil, L., editors, Unifying the Software
Process Spectrum, volume 3840 of Lecture Notes in
Computer Science, pages 177–191. Springer Berlin
Heidelberg.

Wimmer, M. et al. (2011). A Survey on UML-based
Aspect-oriented Design Modeling. ACM Comput.
Surv., 43(4):28:1–28:33.

ICSOFT-PT�2014�-�9th�International�Conference�on�Software�Paradigm�Trends

164


