
Preliminary Description of NACK-based Ad-hoc On-demand Distance
Vector Routing Protocol for MANETs

Alessandro Bianchi, Sebastiano Pizzutilo and Gennaro Vessio
Department of Informatics, University of Bari, Bari, Italy

Keywords: MANET, AODV Variant, Abstract State Machines.

Abstract: The present paper proposes a variant of the Ad-hoc On-demand Distance Vector (AODV) routing protocol
for Mobile Ad-hoc NETworks (MANETs) by means of an Abstract State Machine (ASM)-based model. The
variant introduces a new unicast message, which makes each host aware about the network topology more
quickly than in the original AODV.

1 INTRODUCTION

A Mobile Ad-hoc NETwork (MANET, for short)
is a network designed for wireless communications
among nomadic hosts (Agrawal and Zeng, 2003). It
does not need any fixed infrastructure, and commu-
nication sessions between source and destination are
established and maintained by the cooperation of the
hosts in the network. Since each host can directly
communicate only within the area established by its
transmission range, communications with external ar-
eas need the contribution of intermediate hosts ac-
cording to a specific routing protocol. So, each host
can act both as message producer and consumer in a
communication session and as router supporting com-
munications among other hosts. Moreover, during
their lifetime, hosts can enter or leave the network at
will and continuously change their relative position.
So, the twofold role played by hosts in the network,
as well as the continuous change of the network topol-
ogy due to movement, requires the definition of spe-
cific routing protocols for properly managing the lack
of a fixed infrastructure.

In this paper, we advance the proposal of a slight
variant of the the Ad-hoc On-demand Distance Vector
(AODV) routing protocol (Perkins et al., 2003): the
NACK-based AODV (N-AODV). N-AODV makes
each host aware about the network topology more
quickly than AODV. The new algorithm is formally
specified by means of the Abstract State Machine
(ASM) formalism (Gurevich, 2000), and its correct-
ness is proved.

The rest of this paper is structured as follows: Sec-
tion 2 is about related work; Section 3 provides a

background knowledge on both AODV and ASMs;
Section 4 deals with N-AODV and its ASM-based
model; finally, Section 5 concludes this paper and de-
picts the future development of our research.

2 RELATED WORK

AODV is one of the most popular routing protocol
for MANETs, and many variants have been proposed
aimed at its improvement. In most cases, modifica-
tions deal with security and performance. For exam-
ple, an improvement for ensuring protection against
blackhole attacks is proposed in (Lakshmi et al.,
2010); and an optimization aimed at reducing cost,
delay and packet loss is presented in (Lanjewar and
Gupta, 2013). In both cases, the improvement is pro-
posed according to non-formal approaches.

The usefulness of the formal approach in this do-
main is emphasized in (Nakhaee et al., 2011), where
a method for route selection in AODV is provided
thanks to Coloured Petri nets; and in (Höfner et al.,
2012), where an analysis of AODV and two variants is
conducted through AWN (Algebra for Wireless Net-
work), a process algebra specifically tailored for this
scope. These two variants concern the non-optimal
route selection and the failure in discovering routes.

More in general, formal validation and verifica-
tion of MANETs’ behavior guarantees reliable re-
sults. For example, in (Singh et al., 2010) a process
calculus for reasoning about MANETs is proposed.
Similar approaches are followed in (Delzanno et al.,
2010), where processes are represented by finite state
machines; and in (Bianchi and Pizzutilo, 2010) and

500 Bianchi A., Pizzutilo S. and Vessio G..
Preliminary Description of NACK-based Ad-hoc On-demand Distance Vector Routing Protocol for MANETs.
DOI: 10.5220/0005105305000505
In Proceedings of the 9th International Conference on Software Engineering and Applications (ICSOFT-EA-2014), pages 500-505
ISBN: 978-989-758-036-9
Copyright c
 2014 SCITEPRESS (Science and Technology Publications, Lda.)



(Bianchi and Pizzutilo, 2013), where authors use Petri
nets-based models for investigating some properties.

Finally, to our best knowledge, the ASM-based
approach has been used in the MANET domain only
for specifying location services and position-based
routings among known locations (Benczúr et al.,
2003). However, we choose ASMs mainly because of
three different reasons. When the model expressivity
is considered, literature agrees that ASMs show versa-
tility in capturing both sequential and parallel compu-
tations, e.g. (Németh, 2002). Secondly, considering
methodological issues, the ASM formalism has been
successfully applied in both academia and industry
for the design and the analysis of complex systems in
several domains, and a specific development method
got prominence in the last years (Börger and Stärk,
2003). Thirdly, considering the implementation point
of view, the capability of translating formal models
into executable code is provided by several tools, for
example CoreASM (Farahbod et al., 2007).

3 BACKGROUND

3.1 AODV Routing Protocol

AODV is a reactive protocol that discovers and main-
tains routes on-demand, i.e. routes are built only as
desired by source nodes using a route request/route
reply cycle, which allows updating routing tables
stored in each node (Perkins et al., 2003). When an
initiator host needs to start a communication session
to a destination node, and it does not know a proper
route, it broadcasts a route request (RREQ) packet to
all its neighbors. An RREQ packet includes, among
the others: initiator address and broadcast id (this
pair uniquely identifies the packet); destination ad-
dress; destination sequence number, which expresses
the freshness of the information about destination;
and hop count, which expresses the distance. Because
of broadcast transmissions, each intermediate node
can receive several instances of the same RREQ: for
avoiding the packet duplication, yet received RREQs
with the same identifying pair are discarded.

Knowledge of routes is stored into routing tables,
recorded into a cache memory of each node. More
precisely, a routing table in a node lists all other nodes
in the network, and the best (known) route to reach
each of them. To this end, each entry of the routing
table includes the address of the node, its sequence
number, the hop count to reach it, and the next hop
field identifying the next node in the route to reach it.

When a node n receives an RREQ, it updates in-
formation about initiator and about the host that di-

rectly sent that RREQ to n. Then, n checks if one of
the following holds: it is the destination, or the des-
tination is one of its neighbors, or it knows a route
to the destination with corresponding sequence num-
ber greater than or equal to the one contained in the
RREQ (this means that its knowledge about the route
is recent). If so, n unicasts a route reply (RREP)
packet back to initiator; otherwise, it updates the hop
count field, and rebroadcasts the RREQ.

The process is so reiterated until a route to des-
tination is found, or until the route discovery pro-
cess times out. An RREP packet contains: initiator
and destination address; destination sequence num-
ber; and hop count. While RREP travels towards ini-
tiator, routes are set up inside the routing tables of
the traversed hosts. Once initiator receives the RREP,
communication simply starts.

The protocol also includes a mechanism for
recording the up-to-date information about the broken
physical links, but this issue is outside our purposes.

3.2 Abstract State Machines

Informally speaking, ASMs are finite sets of so-called
rules of the form if condition then updates (possi-
bly with the else clause) which transform abstract
states (Börger and Stärk, 2003). The concept of ab-
stract state extends the usual notion of state occur-
ring in finite state machines: it is an arbitrary com-
plex structure, i.e. a domain of objects with functions
and relations defined on them. On the other hand,
the concept of rule reflects the notion of transition
occurring in traditional transition systems: condition
is a first-order formula whose interpretation can be
true or false; while updates is a finite set of assign-
ments of the form f (t1; : : : tn) := t, whose execution
consists in changing in parallel the value of the spec-
ified functions to the indicated value. In each state,
all conditions are checked, so that all updates in rules
whose conditions evaluate to true are simultaneously
executed, and the result is the transition of the ma-
chine from one state to another.

The framework also includes constructs aimed
at directly supporting refinements to parallel or dis-
tributed implementations; among them, of particular
interest for us, is the forall construct, which allows
executing all rules satisfying a given condition. Also,
there are constructs aimed at supporting the mecha-
nism of procedure calls; this is achieved by the defi-
nition of ASM submachines, i.e. parameterized rules,
which allow the declaration of local functions, so that
each call of a submachine works with its own instan-
tiation of its local functions.

A generalization of basic ASMs is represented

Preliminary�Description�of�NACK-based�Ad-hoc�On-demand�Distance�Vector�Routing�Protocol�for�MANETs

501



by Distributed ASMs (DASMs) (Börger and Stärk,
2003), capable to capture the formalization of multi-
agent systems. Essentially, a DASM is intended as
an arbitrary but finite number of independent agents,
each executing its own underlying ASM. In a DASM,
the keyword self is used for supporting the relation
between local and global states and for denoting the
specific agent which is executing a rule.

4 NACK-BASED AODV

4.1 Description

In the original formulation of AODV, when an inter-
mediate node n receives an instance of an RREQ and
does not know a proper route to the specific destina-
tion, it simply rebroadcasts the RREQ. A bit more
refined mechanism is the NACK-based AODV (N-
AODV): in addition to rebroadcasting the RREQ, n
unicasts a NACK (Not ACKnowledgement) packet
back to initiator. The NACK is so used to inform
all nodes beetwen n and initiator that, roughly speak-
ing, n “does not know anything” about the destination.
Each NACK packet includes the IP addresses and the
sequence numbers of n and of initiator.

In N-AODV each host updates its own routing
table when it receives an RREQ or an RREP, ac-
cording to AODV, and when it receives a NACK. In
this case, N-AODV updates the entries concering all
nodes sending the NACK. So, the usage of NACKs
allows improving the network topology awareness of
each host. Moreover, if in a finite amount of time ini-
tiator receives only NACKs, then it knows that desti-
nation is currently outside the MANET space; if ini-
tiator does not receive any packet (neither NACKs or
RREPs), then it can realize it is isolated.

4.2 ASM-based Model

A MANET that adopts N-AODV can be modeled by a
DASM including a set of agents = fa1; : : : ;ang, where
each agent models the behavior of each node. In
general, a host is characterized by several features,
e.g. the amplitude of its transmission range, the di-
rection and the speed of its movement, and so on.
However, for our purposes, these features can be ab-
stracted away, and we only consider the IP address,
which univocally identifies each ai in the MANET.

Since all agents implement the same protocol,
each agent behaves according to the same ASM, so
only one ASM is discussed in the following. Each
ASM can be in one of the following states:

idle: the agent is inactive. Its configura-
tion, 8 dest 2 agents, is given by: wish-
ToInitiate(self, dest) = false; receivedRREQ(self,
dest) = false; isEmpty(replies(self)) = true; and
isEmpty(nacks(self)) = true;

initiator: the agent has to start a new communication
session. It is characterized by wishToInitiate(self,
dest) = true;

router: the agent has received an RREQ. It is char-
acterized by receivedRREQ(self, dest) = true;

forwarding: the agent is forwarding an RREP or
a NACK to another destination. It is char-
acterized by isEmpty(replies(self)) = false or
isEmpty(nacks(self)) = false.

It is worth noting that a destination state is not
necessary: a host knows to be the destination when,
in router state, it receives an RREQ directed to it.

The functions dealing with the initiator and router
states are:

wishToInitiate: agents� agents! boolean, indicat-
ing whether a new communication session to dest
is required by the environment;

receivedRREQ: agents� agents! boolean, indicat-
ing whether an RREQ packet has been received.

Moreover, for the sake of simplicity, each agent
is associated with three types of queues of messages:
requests, replies, and nacks, which include RREQ,
RREP, and NACK packets, respectively. This allows
us working with abstract messages, simply inserting
or deleting them into the corresponding queue. Each
RREQ, RREP, or record (i.e. an entry of the routing
table) is built by concatenation of the information de-
scribed in Section 3.1 (in the pseudo-code the dot no-
tation helps in identifying the value of a specific field
of a packet). The functions dealing with the queues
are defined as follows:

requests: agents! frequestFrom(n) j n 2 neighbg,
represents the queue storing the RREQs received
from the other nodes;

replies: agents ! freplyFrom(n) j n 2 agentsg,
represents the queue storing the RREPs received
from the other nodes;

nacks: agents! fnackFrom(n) j n 2 agentsg, repre-
sents the queue storing the NACKs received from
the other nodes;

isEmpty: frequests, replies, nacksg ! boolean,
evaluates to true if the corresponding queue is
empty; false otherwise;

top: frequests, replies, nacksg ! frequestFrom(n),
replyFrom(n), nackFrom(n)g, is used for referring
the first element of the corresponding queue.

ICSOFT-EA�2014�-�9th�International�Conference�on�Software�Engineering�and�Applications

502



Note that when the MANET starts operating, each
agent is idle, i.e. for each agent both wishToIniti-
ate(self, dest) and receivedRREQ(self dest) evaluate
to false for each dest; and both isEmpty(replies(self))
and isEmpty(nacks(self)) evaluate to true.

In addition, each ASM includes the following:

neighb: agents ! PowerSet(agents), specifies the
nodes in the neighborhood of each agent;

routingTable: agents ! PowerSet(records), repre-
sents the information about the nodes recorded
into the agent’s routing table. Whenever a node
checks its routing table, it considers only the most
recent information.

The values of the neighb and routingTable func-
tions, as well as the set agents, depend on the partic-
ular scenario: they are dynamically set according to
the MANET evolution, with respect to both the host
mobility and the computational history.

The ASM pseudo-code of the i-th agent is:

AGENTPROGRAM(ai) =
if wishToInitiate(self, dest) = true then
Initiator(dest)

if :isEmpty(requests(self)) then f
let dest = top(requests(self)).dest
let nextHop = sender of top(requests(self))
update routingTable(self)
receivedRREQ(self, dest) := true
Router(dest, nextHop)
g
if :isEmpty(replies(self)) f
let dest = top(replies(self)).dest
let nextHop = select c.nextHop

from routingTable(self)
with dest = c.dest

update routingTable(self)
UnicastRREP(nextHop)
dequeue top(replies(self))
g
if :isEmpty(nacks(self)) f
let dest = top(nacks(self)).dest
let nextHop = select c.nextHop

from routingTable(self)
with dest = c.dest

update routingTable(self)
UnicastNACK(nextHop)
dequeue top(nacks(self))
g

UnicastRREP(n) =
enqueue replyFrom(self) into replies(n)

UnicastNACK(n) =
enqueue nackFrom(self) into nacks(n)

In the pseudo-code above, the instruction “update
routingTable(self)” is not specified: it simply indi-
cates that the agent’s routing table is updated accord-
ing to the received packet, RREQ or RREP or NACK.

Informally speaking, each agent is inactive until
a new communication session is required by the en-
vironment; or until its computation is solicited by the
receipt of an RREQ; or until it has to forward a unicast
packet (either RREP or NACK) to the next hop in the
route to reach the receiver of that packet. Activation
of an agent unfolds different computational branches:
two of them lead to the execution of a new instance of
the Initiator or Router submachine, respectively; in
the other two cases, forwarding activities of RREPs
and NACKs, respectively, are executed. It is worth
noting that all these activities evolve concurrently.

4.2.1 Initiator

The ASM pseudo-code of the Initiator submachine is:

Initiator(dest) =
if dest =2 neighb(self) ^ dest =2 routingTable(self)
then f

BroadcastRREQ
sentRREQ(self) := true
g
else f

StartCommunicationSession(dest)
stopInitiator
g
if sentRREQ(self) ^ :isEmpty(replies(self))
then f

select r from replies(self)
with maximum destSeqNum

StartCommunicationSession(dest)
empty replies(self)
stopInitiator
g
if sentRREQ(self) ^ isEmpty(replies(self)) ^
:(timeout(self) = 0) then

timeout(self) := timeout(self)�1
if sentRREQ(self) ^ :isEmpty(nacks(self))
then f

update routingTable(self)
empty nacks(self)
g
if sentRREQ(self) ^ timeout(self) = 0 then f

stopInitiator
g

BroadcastRREQ =
forall n 2 neighb(self) do f

forall r 2 requests(n) do f
if requestFrom(self).dest = r.dest ^

Preliminary�Description�of�NACK-based�Ad-hoc�On-demand�Distance�Vector�Routing�Protocol�for�MANETs

503



requestFrom(self).id = r.id then
discard requestFrom(self)

g
enqueue requestFrom(self) into requests(n)
g

stopInitiator =
wishToInitiate(self, dest) := false
sentRREQ(self) := false

In the pseudo-code above StartCommunicationS-
ession(dest) is not described because it is not strictly
part of the protocol.

The Initiator submachine is characterized by four
local functions: sentRREQ: agents ! boolean, act-
ing as a flag indicating whether an RREQ has been
sent; timeout: agents ! integer, which models the
maximum waiting time for RREPs; and the afore-
mentioned replies and nacks queues. A new queue of
RREPs and NACKs is instantiated for each specific
communication session. This submachine includes
two additional states:

waiting: it indicates that the agent is waiting for re-
sponses concerning that dest from the other agents
in the DASM. Its configuration is given by: wish-
ToInitiate(self, dest) = true; sentRREQ(self) =
true; timeout(self) > 0;

endInitiating: it indicates that the computational ac-
tivities executed by initiator, concerning the route
discovery for that dest, are completed. Its config-
uration is: wishToInitiate(self, dest) = false; sen-
tRREQ(self) = false.

If a route to dest is known, then the communi-
cation session simply starts; otherwise, BroadcastR-
REQ is executed. Its result consists in inserting a
new RREQ into the requests queue of all the agent’s
neighbors and in evolving the current state to waiting.
When an RREP is received (i.e. isEmpty(replies(self))
evaluates to false), then the computation continues;
otherwise, when the timeout expires, the route discov-
ery process ends. If a NACK is received, the routing
table is updated. The stopInitiator rule simply resets
the configuration to the endInitiating state.

4.2.2 Router

The ASM pseudo-code of the Router submachine is:

Router(dest, nextHop) =
if dest = self _ dest 2 neighb(self) _
dest 2 routingTable(self) then f
UnicastRREP(nextHop)
dequeue top(requests(self))
receivedRREQ(self, dest) := false
g

else f
BroadcastRREQ
UnicastNACK(nextHop)
dequeue top(requests(self))
receivedRREQ(self, dest) := false
g

Note that BroadcastRREQ behaves as well as in
the Initiator submachine; instead, UnicastRREP and
UnicastNACK behave as well as in the main program.

The Router submachine includes the state en-
dRouting, which specifies that the execution of the
routing activities due to the route discovery process
is completed. This state is only characterized by the
value false for the receivedRREQ(self, dest) function.

If router is the destination of the RREQ (dest eval-
uates to self) or if it knows a route to dest (dest 2
neighb(self) _ dest 2 routingTable(self)), then it uni-
casts an RREP packet back to initiator. Otherwise, it
rebroadcasts the RREQ to all its neighbors and uni-
casts a NACK packet back to initiator. In both cases,
the computation evolves to the endRouting state for
that value of dest.

4.3 Correctness

The proof of the correctness of N-AODV is quite sim-
ple, so, for the sake of brevity, it is only sketched.

First of all, it is worth noting that the execution of
each ASM does not starve: both the program of each
agent ai, and Initiator and Router submachines allow
their execution always evolve: even when they must
wait for external events, the waiting time is finite.
For what concerns the overall machine, both branches
dealing with the unicast forwarding of packets restore
the state, so that the computation can continue after
their activities. The Router submachine surely returns
back an RREP or a NACK packet, depending on the
values of the guard conditions, and then evolves to the
endRouting state. The Initiator submachine starts the
communication session or enables neighbors to exe-
cute the protocol. If the latter happens, then, if initia-
tor receives back an RREP, it appropriately continues
the execution by starting the communication session;
otherwise, it stops waiting for the timeout expiration.
Depending on the receiving of NACKs, initiator pos-
sibly manages them.

Secondly, the pseudo-code shows that the correct
packet is received back by initiator. In fact:

a. initiator receives back one or more RREPs if and
only if a route to destination exists;

b. initiator receives back only NACKs but no RREPs
if and only if no route to destination exists;

ICSOFT-EA�2014�-�9th�International�Conference�on�Software�Engineering�and�Applications

504



c. initiator does not receive back any packet if and
only if it is isolated.

In order to prove issue (a) above, note that receiv-
ing RREPs means that the replies queue in the Initia-
tor submachine is not empty, and this occurs if and
only if the UnicastRREP rule has been executed, be-
cause only this rule enqueues an RREP into replies.
In turn, the UnicastRREP rule is executed if and only
if that router or one of its neighbors is the destination,
or a route to destination is recorded into its routing
table. Analogous proofs for issues (b) and (c).

Finally, it is easy to show that the execution of
the protocol goes only through the described states:
the execution of the rules transform the values of the
functions only to the desired states. So, no unexpected
behavior can occur.

5 CONCLUSION

In this paper, we have formally presented N-AODV: a
variant of the AODV routing protocol for MANETs.
The main advantage of the variant is that the hosts in
the MANET can indirectly obtain information about
the network topology more quickly than in AODV
thanks to NACKs. In fact, in AODV the routing tables
are updated on RREQ or RREP receiving, and more
precisely, when the node ni receives a packet sent by
n0 that traversed the chain (n0, n1, . . . , ni�1, ni), ni
updates its routing table only in entries concerning n0
and ni�1. Instead, N-AODV updates all entries n0, n1,
. . . , ni�1.

The research will continue with the aim to investi-
gate how properly managing the knowledge carried
on by NACKs and recording it into routing tables.
Secondly, we are interested into formally analyze
some computationally interesting properties, such as
starvation-freedom, reversibility of the execution, and
so on. Finally, if protocol performance issues are con-
sidered, it is worth noting that the use of NACKs in-
jects overhead in the computation activities carried
out by hosts, so, this overhead will be investigated
through simulations, for evaluating if it is adequately
balanced by the information gain obtained.

ACKNOWLEDGEMENT

This work has been partially funded by the Ital-
ian Ministry of Education, University and Research
(MIUR), within the Piano Operativo Nazionale –
PON02 00563 3489339.

REFERENCES

Agrawal, D. and Zeng, Q. (2003). Introduction to Wireless
and Mobile Systems. Thomson Brooks/Cole.

Benczúr, A., Glässer, U., and Lukovszki, T. (2003). Formal
Description of a Distributed Location Service for Mo-
bile Ad Hoc Networks. In Börger, E., Gargantini, A.,
and Riccobene, E., editors, Abstract State Machines,
volume 2589, pages 204–217. Springer.

Bianchi, A. and Pizzutilo, S. (2010). Studying MANET
through a Petri Net-Based Model. In 2th International
Conference of Evolving Internet, pages 220–225.

Bianchi, A. and Pizzutilo, S. (2013). A Coloured Nested
Petri Nets Model for Discussing MANET Proper-
ties. International Journal of Multimedia Technology,
3(2):38–44.

Börger, E. and Stärk, R. (2003). Abstract State Machines:
A Method for High-Level System Design and Analysis.
Springer-Verlag.

Delzanno, G., Sangnier, A., and Zavattaro, G. (2010). Pa-
rameterized Verification of Ad Hoc Networks. In
21th International Conference of Concurrency The-
ory, pages 313–327.

Farahbod, R., Gervasi, V., and Glässer, U. (2007). Core-
ASM: An Extensible ASM Execution Engine. Fun-
damenta Informaticae, 77(1–2):71–103.

Gurevich, Y. (2000). Sequential Abstract State Machines
Capture Sequential Algorithms. ACM Transactions on
Computational Logic, 1(1):77–111.

Höfner, P., van Glabbeek, R., Tan, W., Portmann, M.,
McIver, A., and Fehnker, A. (2012). A Rigorous Anal-
ysis of AODV and its Variants. In 15th ACM Interna-
tional Conference on Modeling, Analysis and Simula-
tion of Wireless and Mobile Systems, pages 203–212.

Lakshmi, K., Priya, S. M., Jeevarathinam, A., Rama, K.,
and Thilagam, K. (2010). Modified AODV Protocol
against Blackhole Attacks in MANET. International
Journal of Engineering and Technology, 6(2):444–
449.

Lanjewar, A. and Gupta, N. (2013). Optimizing Cost, De-
lay, Packet Loss and Network Load in AODV Routing
Protocol. International Journal of Computer Science
and Information Security, 4(11).

Nakhaee, A., Harounabadi, A., and Mirabedini, J. (2011). A
Novel Communication Model to Improve AODV Pro-
tocol Routing Reliability. In 5th International Confer-
ence on Application of Information and Communica-
tion Technologies, pages 1–7.

Németh, Z. (2002). Definition of a Parallel Execution
Model with Abstract State Machines. Acta Cybernet-
ica, 15(3):417–455.

Perkins, C., Belding-Royer, E., and Das, S. (2003). Ad-hoc
On-Demand Distance Vector (AODV) Routing. RFC
3561, http://tools.ietf.org/html/rfc3561.

Singh, A., Ramakrishnan, C., and Smolka, S. (2010). A
Process Calculus for Mobile Ad Hoc Networks. In
10th International Conference on Coordination Mod-
els and Languages, pages 440–469.

Preliminary�Description�of�NACK-based�Ad-hoc�On-demand�Distance�Vector�Routing�Protocol�for�MANETs

505


