
On Datastore Support for Agile Software Development

Jie Liu
Computer Science Division, Western Oregon University, Monmouth, Oregon, 97361, U.S.A.

Keywords: Software Development, Agile Software Development Process, Databases, Database Management Systems,
MongoDB, and NoSQL.

Abstract: Most database-base applications support two main sets of features: customer facing transactional
capabilities such as purchasing books at an online bookstore and functionality required by managers and
business analysts such as identifying trends in sales data by combing through aggregated sales data. The
conventional approach of having just one main database to support both features greatly restrict developers
freedom in applying the best approach to quickly implement new features, to enhance existing features, or
to mend defects because any attempt in changing database schema means code and test cases modifications
in many places and may even require a large amount of effort in testing. Such an inherited resistance in
changing introduced by data store does not fit the evolutionary development nature of Agile software
development methodology. We argue that we should consider having at least two databases: one support
transactional capabilities and the other support reporting and possible data warehouse needs, and will show
how such an approach supports the Agile software development methodology.

1 INTRODUCTION

With increasingly sophisticated IDEs, programming
languages, knowledge, enough bad experiences in
trying other software development methodologies by
both the developers and management teams, and
strong support of success stories favour Agile
software development process, more and more
software teams are adopting Agile software
development process. In a nutshell, in our view, the
benefits of Agile methodologies are to promote short
development cycles, encourage communications and
cooperation, and accommodate changes in
requirements and scope. Each sprint is short and is
focused on the most important issues at the time so
the team can find out what work and what are the
challenges quickly. Due to short sprint, changes on
requirements are reflected promptly. Scrums or other
frequent short meetings encourage communications
and cooperation among the developers and also
between developers and key stakeholders. The use
of product backlog brings all shareholders'
requirements together at one place so everyone can
see. Finally, the end of sprint demo is an effective
way to show the progress of the development team
to the management team and other shareholders, not
to mention it is also an effective vehicle for the
product owners to interact directly with the

developers and testers and to validate whether the
implementation matches with what is expected. For
projects that require a dozen or so co-located
developers, Agile software development process has
proven to be effective and lead to successful projects
(Turk, 2002).

In just a few years, we have witnessed drastic
change in the acceptances of Agile software
development methodology. Right now, all software
teams in our organization have adopted Agile
software development methodology. The members
of our management team are accustomed to attend
our demos at the end of each sprint. Even the
support and operation teams have daily scrums so
both the team members and managers can have a
good read on the vital signs about the team’s current
state and team members' activities.

We understand and agree that Agile software
development process has its limitations such as unfit
to support large and distributed teams, unfit to
support large and complex software application, and
is claimed to be unfit for developing safety-critical
software (Turk, 2002).. However, we are not here to
discuss the limitations. Instead, we would like to
discuss our experience where the practice of using
one database, especially the use of relational
database management systems, in supporting of
Agile software development often suffers the

183Liu J..
On Datastore Support for Agile Software Development.
DOI: 10.5220/0005106701830188
In Proceedings of the 9th International Conference on Software Engineering and Applications (ICSOFT-EA-2014), pages 183-188
ISBN: 978-989-758-036-9
Copyright c
 2014 SCITEPRESS (Science and Technology Publications, Lda.)

experience of very much a mismatch. Looking
deeper, we believe that we have been doing this all
wrong in our past projects where we would have just
one database to support vastly different sets of data
processing needs. The result is the requests of
changing due to necessary software enhancement
and resistance of changing due to stability
considerations are constantly engage in this tug of
war where neither side is winning.

In this paper, we argue that (1) many reasonably
sized transactional based applications need at least
two databases: one to support the basic customer
facing business related transactional tasks, and one
to support reporting needs; and (2) to effectively
support Agile software development, the database
handling customer facing tasks does not need to be a
relational database. It is possible that the reporting
database late can be modified to support data mining
and data warehousing needs.

2 THE PROBLEMS

It is inevitable that almost all transactional based
applications need some database support to make
sure persistence data can be stored for late uses by
the same or different components, or even a different
application. In addition, when the information is
needed, it can be quickly located among a large
number of similar data. This persistence data store is
generally accomplished through the use of files
systems in the beginning of computer history and
then switched to database management systems
(Kroenke, 2013). For the past several decades, these
databases have been relational databases (Kroenke,
2013). Because all important information for an
application to operate properly has to be eventually
stored in the database and then retrieved from the
database, the database becomes a vital component of
a software system. Because much of the code, both
in UI and business logic are tightly coupled with the
database schema, changing in schema often breaks
the functioning features.

Looking back to several dozen applications we
have participated in the past 20 some years, we
realized that, although most of these applications
have only one main supporting database, these
databases generally service two very distinct sets of
needs: store transactions and support reporting. We
have attempted to use views and temporary tables to
alleviate the negative effects of one part to the other
and have very limited success.

In the past, being attaching with a large
enterprise, a major milestone in our software

projects has always been to complete the database
design and declare database schema froze. The
project then must activate Change Management
process to contain negative effects on the necessary
modifications to the database schema because
modifications in other components may be absolute
necessary to reflect changes in the database schema
due to the tightly coupling nature among the
business logic and UI database. Also the self
describing characteristic of a database makes some
simple changes, such as stop allowing a column to
be null, be quite dramatic. Worse yet, once a
software system is in production and becomes more
and more popular, its database may need to provide
data for other systems and databases. This is called
the "worst-case scenario" in (Ambler, 2006).
Changing the database schema in these situations
can be a reasonable sized project by itself.

With more and more software teams adopting
the Agile software development methodology, we
are experiencing an even more frequent and urgent
needs for schema changes. For several projects we
have experienced, the schema may need to be
changed several times within a sprint to
accommodate different stories. Many tools,
frameworks, and approaches have been developed to
manage the inevitable changes, and some introduces
new problems.

Ruby on Rails handles these changes by
introducing the ActiveRecord package to
automatically support the database needs. It also
uses database migrations to move data from one
database design to another. However, these auto-
generated databases are good enough to allow an
application to be demoed quickly; however, they are
not well designed enterprise level databases and lack
many of basic database objects such as indexes for
fast data access and to support table join operations,
stored procedures for processing data on the server
vs. moving the data cross the network to be
processed in the code, and views to hide the physical
table structures. When the amount of data becomes
large and number of concurrent users increases,
these problems start to become more obvious.
Another issue with the auto generated databases is
security related. In a database centric design, which
types of users have access to what database objects
need to be well designed and carefully maintained.
In an auto generate database, authentication and
authorization related issues are, in almost all the
cases, afterthought.

The approach suggested in (Martin, 2003) is to
delay the decision of finalizing database designs.

ICSOFT-EA�2014�-�9th�International�Conference�on�Software�Engineering�and�Applications

184

When discussing the implementation of a use case,
the author stated

"Again, our predisposition to database may
tempt us into thinking about record layouts
or the field structure in a relational
database table, but we should resist these
urges."

Our field experience tells us that once we start
coding, we likely need to store the data and pass the
data to other components under development by
other team members. Not storing the data, therefore
not defining the data format or database schema, is
not really an option.

A widely accepted approach is called "Database
refactoring" (Ambler, 2003 and Ambler, 2006). It
was first introduced in 2002 by S. W. Ambler based
on the concept of refactoring for code. "Database
refactoring" is defined as a simple change to a
database schema that improves its design while
retaining both its behavioural and informational
semantics (Ambler, 2003). Code refactoring is very
effective in enabling developers to evolve their code
slowly over time and to improve their design,
making it easier to understand and to modify.
However, code refactoring and database refactoring
are very difference in the effect of refactoring. The
effect of code refactoring is mostly local. That is in
the most situations, a refactoring activity retains the
same semantics of modified code segment, at least
from a black box point of view. We all know that an
Object Oriented programming language like Java
and C# can easily contain the implementation details
of a method to the just that method. Database
refactoring, on the other hand, is not simple because
database schemas may be tightly coupled with code
in applications it is supporting, other databases
interacting with it, and code segments to support
data migration and testing, just to name a few. The
effect of some minor database refactoring can be
huge and cause many unexpected situations. So,
database refactoring should never be performed on a
production database without thorough testing. In
addition, working with experienced DBAs may be
necessary to plan and perform database refactoring
successfully.

There are other tools such as Liquibase that
helps a project to manage database changes,
especially for projects using Agile software
development methodology. Still, it re-enforce the
idea that changes are the necessary evil and need to
be managed.

Generally an enterprise level customer facing
application, such as Amazon.Com, needs to support

three group of users: administrators and supporting
staff, customers and CRM staff, and business
analysts and management team. The operations
performed by these three groups of users are very
different and have very little overlap.

The administrators and supporting staff mainly
need to monitor the status of an application and its
environment such as CPU utilization, memory
usage, storage performance, and network traffic. A
subgroup of supporting staff may need to update the
contents of a database such as adding new products
or changing the quantities or prices of a number of
products. Customers and CRM staff, on each access,
need to be able to access and possible update a
relatively small number of records quickly.
Customers' actions may trigger changing of the state
of the database. For example, a customer may
purchase an item, which triggers the shipment
process to start the steps of sending the item.
Business analysts and management team perform
very different sets of tasks that request very different
support from the DBMS and data store. For
example, business analysts may need to generate
quarterly reports on sales figure on certain products.
Such a report may need to access a large number of
records from a number of tables, but business
analysts generally do not need to change the state of
a database.

Despite the fact where users of different group
need very different support of data store needs, our
past projects and many project across the world tend
to use a single database, therefore a single database
management system (DBMS) to fulfil all the
database needs. This one-size-fit-all approach
greatly restricts the software development progress
of the project by disallowing or making it every
expensive to change database schema because any
change over database schema may results in rework
in many parts of the application. Such changes are
among main reasons software projects are late and
over budget (Liu, 2009). Even with Agile software
development, changing on database schema may
have the domino effect of triggering re-work on
many features and test cases that are considered as
already completed.

Here is our dilemma, on one hand, to support
rapid changes in requirements of software
development, using or not using the Agile
methodology, we have to allow frequent changes on
the database schema; on the other hand, changes on
database schema, such as a simple one as
disallowing of nulls on a column may introduce
many new defects when using a RDBMS such as
MySQL or SQL Server 2012. We believe one

On�Datastore�Support�for�Agile�Software�Development

185

possible solution is to have two or more databases
and with the one that supports transactional
operations being not necessary relational.

3 THE SOLUTION

The truth is that for many enterprise level
applications, the database supports are needed for
two types of users: customers and business analysis
and managers. Customers mostly utilize the
transactional features of a DBMS at single ore a very
selected few records level and hardly ever need to
view aggregated results, while analysis and
managers almost do the opposite -- they almost
always view the database contents in aggregated
views and hardly ever need to change the state of the
database. After recognizing this, we cannot help but
to ask why do we need to have one database rather
than two or more? One explanation of this one-size-
fit-all approach was historical. In the past, resources
(hardware, software, and staffing) for a database
were expensive. The situation is very different now.
The workstations developers use to write code are
sufficient to support most DBMS for development.

Figure 1: Applications have two supporting databases.

With open source, functioning DBMSs are
readily available and affordable. With abundant
tools, many with intuitive GUI, we may not need a
DBA to create and maintain a database for us. We
do not see any reason not to use two or more
databases to support distinct sets of functionalities as

shown in Figure 1. We call the database supporting
customer facing activities the Transactional
Database, while the other database the Reporting
Database.

Considering the case of Amazon.com, a
customer generally will view information in her
account, search for items, complete an order, and to
view comments from other customers regarding an
item. Comparing to the amount of date Amazon.com
stores, none of the activities require more than tiny
amount of data. On the other, a business analysis
many want to generate a report, say, to find out the
top 10 most popular items in the last 10 days. That
query may need to pull a lot of records and can be
resource intensive. In the case of having one
database, generating such a report may even slow
down customer facing activities. On the other hand,
a business analyst does not have much of needs to
inspect individual records.

In the case the reporting database is used to
perform Business Intelligence (BI) related activities,
such as finding items that are associated with each
other, the results of BI may need to be sent back to
the transactional database. Otherwise, most of the
time, the direction of data is to flow from the
transactional database to the reporting database.

Since the transactional database hardly ever
needs to support pulling of a large number of
records, we believe the DBMS supporting such a
database should be a light weight one that supports
basic database operations (Select, Update, and
Insert) well and does not even have to be a relational
database.

4 WHY THE SOLUTION WORKS

Using multiple databases is not a new idea. Most
data mining and data warehouse applications
routinely load data from transactional databases
through ETL, which is a mature technology and
enjoy many effective tools. What we are proposing
here is to start thinking of separating database needs
between transactional activities and reporting
activities at the very beginning of the system design
and architectural stage so the changes in one
database do not drastically affect the existing
features supported by the other database. Such a
separation can provide a very supportive platform
for Agile software development because the
developers can be much more freely in changing the
database schema, especially the customer facing
related database that generally require the support of
transactional activities. Due to this separation, the

Authentication and
Authorization +

Switchboard

Reporting and
Analysis

Customer
facing features

Relational
DB for

reporting

Light Weight
Data store

ICSOFT-EA�2014�-�9th�International�Conference�on�Software�Engineering�and�Applications

186

developers can change the schema of the
transactional database with very little worry about
affecting the reporting database. This freedom is not
possible at all without the introduction of the second
database.

Another benefit of developing systems with two
databases is that since the transactions require fast
date retrieval, data insertion, and record update for
small amount of data, it may not be necessary to
employ a fully featured database from a commercial
management system (DBMS). We have participated
in successful projects that use XML documents,
MongoDB or other similar products.

MongoDB is an excellent example of an open
source document-oriented NoSQL database
management system. It provides a very different
platform than the traditional RDBMS in terms of
storing and retrieving information. For developers
familiar with the RDBMS, MongoDB provides for
indexes, dynamic queries, replication, and auto
sharding as well as the retrieving, inserting, deleting,
and updating of records. MongoDB is easy to learn
and use because it supports, comparing with a fully
functioning RDBMS such as Oregon 11g or SQL
Server 2012, a very limit set of features--not a
weakness considering its purposes.

Beside differences in terminology, one of the
main differences between a database of MongoDB
(called an instance) and a database supported by a
RDBMS is that a MongoDB collection, similar to a
table in a relational database, can hold any type of
object, basically every record can be different in
terms of format, data types of fields, and even the
number of fields (we call columns in relational
database terms). In addition, a record can contain
arrays as a field's data type. This is MongoDB's
approach of handling the traditional one-to-many
relationship between two entities; as a result, it does
not support the relational algebra's join operation
and is certainly not relational.

It is out of the scope of this paper to discuss
whether MongoDB's approach of handling one-to-
many relationship is viable or not. Still, we'd like to
mention that we do not appreciate the suggested
handling of one-to-many relationship because
MongoDB's approach, in our opinion, introduce
complexity in searching on the "many" side. We also
believe that MongoDB should consider adding
support in joining two collections because join
operations are used in retrieving data from databases
all the time. After all, we cannot put the entire
relational database into just one collection.

The benefits come from MongoDB's small set of
features is obvious. Comparing for inserting 50,000

rows, MongoDB is 100 times faster than SQL Server
2008, a popular relational database management
system produced by Microsoft (Kennedy, 2008).
Even after considering that, during the test, SQL
Server 2008 was accessed through LINQ to SQL as
reported in (Kennedy, 2008), a 100 times difference
is significant.

Retrieving data from a MongoDB is also faster
than that of SQL Server 2008. The same article
reported a SQL Server 2008 took 28 seconds to read
out 50,000 records while MongoDB used only 10.4
seconds retrieving the same 50,000 records. For
complex queries, MongoDB can complete 100,000
not so simple queries in 398 seconds. Doing the
same takes SQL Server 2008 960 seconds. All tests
described in (Kennedy, 2008) were conducted on a
Lenovo T61 64-bit with a dual-core 2.8 GHz
processor. The OS is on Windows 7, and all DBMS
are 64-bit ones. We are in the process of conducting
our own performance test and expect to provide our
findings in our final version of the paper. After
reading the detailed experiments given in (Kennedy,
2008), we believe SQL Server 2008's performance
can be improved if proper indexes were added.

Note that, our experience shows that, for projects
following the Agile software development
methodology, schema changes on the transactional
database can be frequent during the development
phase, especially during the early stage of the
development phase. Once a large number of features
have been implemented, the scheme becomes stable.
Once it is determined that the reporting related
features is supported by a second database, the
actual design of the reporting database can be
pushed until the transactional database is relatively
stable. As the result of separated databases, the
reporting database not only is designed with a
mutual understanding of its source database, but also
is built on a more stable schema.

With proper design and architecting and
adopting of the Layers of Data Abstraction concept,
the reporting systems see the databases through
external views, which enjoy immunity of changes in
conceptual schema such as adding columns, tables,
indexes, and views. It is this conceptual model
generally needs to reflect changes in the schema
changes in transactional database.

With increase in popularity on deploying
customer facing application on the Cloud, separating
the transactional database with the reporting
database may become necessary for security reasons.
The transactional databases are generally deployed
with the application on the Cloud, which generally
means it is not on the Intranet. For most enterprise

On�Datastore�Support�for�Agile�Software�Development

187

level security measures, authenticating users and
authorizing accessing of resources on the Cloud
using enterprise maintained user credential is
unlikely due to security concerns. If we have only
one database, we have to implement additional
security measures to make sure the reporting
database can only be accessed by business analysts
and managers. Another sticky issue is that certain
information, such as product costs and suppliers
details, is considered as business secret and often is
against company policy to be stored outside of the
intranet. In that situation, we will be forced to bring
data in the transactional database into the intranet to
have a separate database. If we design our systems
with two databases, meeting the security
requirements becomes relative easy. Once the
database is inside the firewall, we can use the
existing authentication and authorization mechanism
to control the access of the reports.

5 CONCLUSIONS

This one-size-fit-all approach of having just one
database to support users of very different needs
greatly restricts the software development progress
by disallowing or making it every expensive to
change database schema. With Agile software
development methodology, we have to let
developers change the database schema with certain
level of freedom. To solve this mismatch between
the database support and software development
methodology, we propose to consider having at least
two databases: one to support transactional
capabilities and the other to support reporting needs.
The database supporting the transactional operations
does not even have to be relational, such as
MongoDB.

We showed that due to the simplicity nature, the
non-relational database can be faster than their
relational counterpart. The separation of the
transactional database and reporting database
provide easy support of data mining and data
warehousing extensions on the reporting side,
provide much great freedom for the developers to
use the best database support to implement customer
facing features without worry about affecting the
reporting side functionalities. Last but not least,
because the reporting database is independent, it can
be hosted inside the firewall while the transactional
database is deployed on the Cloud.

ACKNOWLEDGEMENTS

We would to thank Western Oregon University for
their support in our research and writing of this
paper with their research grant JL2014.

REFERENCES

Turk, D., France R., and Rumpe, B., 2002. Agile Software
Processes: Principles, Assumptions and Limitations,
Technical Report, Colorado State University

Kennedy, M., 2008. http://blog.michaelckennedy.net
/2010/04/29/mongodb-vs-sql-server-2008-
performance-showdown/

Sommerville, I., 2006. Software Engineering”, 8 Ed,
Addison-Wesley

Liu, J., Liu, F., 2009. Factors contribute to high costs of
software projects, the 2009 International Conference
on Software Engineering Research and Practice, July
13-16, 2009, Las Vegas, USA

Martin, R., 2003. Agile Software Development, Pearson
Education, Inc., Upper Saddle River, NJ

Ambler, S., 2003. Agile Database Techniques, John Wiley
& Sons

Burns, L., 2011 Building the Agile Database, Technics
Publications

Ambler, S., Sadalage P., 2006. Refactoring Databases:
Evolutionary Database Design, Addison-Wesley
Professional

Kroenke, D. and Auer, D., 2013. Database Processing:
Fundamentals, Design, and Implementation, 13th ed,
Pearson Prentice Hall, Upper Saddle River, NJ

.

ICSOFT-EA�2014�-�9th�International�Conference�on�Software�Engineering�and�Applications

188

