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Abstract: Epidemic data replication protocols are an interesting approach to address the scalability limitations of classic
distributed databases. However, devising a system layout that takes full advantage of epidemic replication
is a challenging task due to the high number of associated configuration parameters (e.g., replication layers,
number of replicas per layer, etc.). The purpose of this paper is to present a Java-based simulation tool that
simulates the execution of epidemic data replication protocols on user-defined configurations under different
workloads. Conducted experiments show that by using the proposed approach (1) the internal dynamics of
epidemic data replication protocols under a specific scenario are better understood, (2) the distributed database
system design process is considerably speeded up, and (3) different system configurations can be rapidly
prototyped.

1 INTRODUCTION

Epidemic data replication protocols (Eugster et al.,
2004) have emerged as an appealing alternative to ad-
dress the scalability limitations posed by current ap-
plications that (1) deal with vast amounts of data and
(2) cannot shift to the NoSQL paradigm (Stonebraker,
2010) due to their intrinsically transactional nature
(Navarro et al., 2011). These protocols organize sys-
tem replicas into a set of tiers following a tree struc-
ture in which the root tier is the first to receive client
updates and forwards them to its children, which re-
cursively propagate updates to the lower tiers until
reaching the last tier. As a result, updates are im-
plicitly sequentially ordered along the tree: the root
tier has the most recent data (also referred to as fresh
data), whereas lower levels own older data (also re-
ferred to as stale data). Consequently, clients can se-
lect the most suitable tier to retrieve data according to
the application freshness constraints.

Indeed, reducing the number of replicas on which
clients can perform update operations—the ones that
greatly limit the system scalability—and later prop-
agating changes to an arbitrarily large number of
servers, may bring important features to the data store
such as variable consistency, adaptive load balancing,

elasticity, or system reconfiguration (Arrieta-Salinas
et al., 2012).

Despite the fact that these protocols have been
widely analyzed on the literature from a theoretical
point of view, it is still a challenge for system archi-
tects and practitioners to deploy them in real-world
scenarios. Specifically, it is fairly complex to find
out the optimal system configuration (e.g., number
of replicas that accept update operations, number of
replicas on the first replication tier etc.) that takes full
advantage from the data epidemic replication protocol
to maximize system throughput. In fact, the lack of
tools that forecast the system behavior (e.g., analyti-
cal models or simulation environments) when running
this kind of protocols on different scenarios, drives
practitioners to conduct trial and error experiments to
come up with an acceptable architecture layout. How-
ever, when facing large-scale problems this methodol-
ogy becomes time consuming and, thus, unfeasible.

As statistically modeling workloads and system
resources results into too restrictive solutions, the pur-
pose of this paper is to present Chive: a custom
Java-based simulation environment specifically con-
ceived to assist system architects in the design pro-
cess of a system architecture that runs an epidemic
data replication protocol. Additionally, we present
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a set of metrics on the simulator to assess and com-
pare the performance of every simulation run. To
support our proposal, we have simulated three differ-
ent epidemic data replication strategies and analyzed
the obtained results. Conducted experiments show
the benefits of this tool and encourage practitioners to
work in this direction. Obtained results might be used
to complement machine-learning based approaches
aimed to find out the optimal system configuration for
ever-changing workloads (akadata streams) (Sancho-
Asensio et al., 2014).

The remainder of this paper is organized as fol-
lows. Section 2 elaborates on the related work. Sec-
tion 3 describes the system model used to build the
simulator and discusses its correctness criterion. Sec-
tion 4 provides the implementation details of the pro-
posed simulator. Section 5 presents the conducted ex-
periments. Finally, Section 6 summarizes the conclu-
sions of this work and outlines some future research
directions.

2 RELATED WORK

Designing scalable data replication protocols in dis-
tributed database has been a hot research topic during
the last 30 years. In the decade of the 80s two op-
posite proposals were made: shared-nothing (Stone-
braker, 1986) (or database partitioning / sharding) and
shared-data (Shoens, 1986) (aka shared-everything).
The former is able to enhance overall performance
when most transactions only need to access the data
stored in a single shard, whilst the latter is able to
manage in each node transactions that access to large
datasets, assuming that conflicts among concurrent
transactions are rare. Several recent papers have
shown that both models are functionally equivalent
(Johnson et al., 2014).

The main objective in order to obtain high scala-
bility is to avoid any contention focus. To this end,
(Johnson et al., 2014) identifies “unscalable commu-
nication” as one that has an unbounded number of
occurrences in the life of any transaction. This un-
scalable communication is mainly generated by the
critical sections managed by the locking and logging
subsystems in a distributed DBMS. A perfect parti-
tioning criterion may avoid unscalable communica-
tion, although it is difficult to achieve it in practice
(Sancho-Asensio et al., 2014).

Systems that pretend to be scalable are usually de-
ployed in multiple datacenters. In those scenarios a
trade-off between consistency, availability and net-
work disconnection arises (also known as the CAP
theorem (Gilbert and Lynch, 2002)). Such problem
was identified in the field of distributed databases in

the 80s, as described in the introduction of (Davidson
et al., 1985). This implies that one of such three as-
pects (consistency, availability and network partition
tolerance) should be sacrificed in order to fully main-
tain the other two.

Database sharding and the support of different
isolation levels provide a good basis for guarantee-
ing network partition tolerance and availability while
still maintaining a workable degree of replica consis-
tency, as suggested in other recent papers (Gilbert and
Lynch, 2012; Bailis et al., 2013). In our case, this is
complemented with the management of different de-
grees of data freshness in each update-related layer.
Such approach providessequential consistency(Lam-
port, 1979) when no network partition exists and it is
a good basis for achievingeventual consistency(Terry
et al., 1994) while any network partition arises and is
later recovered.

Another important principle for designing scal-
able databases is the usage of epidemic propagation of
updates (Holliday et al., 2003), in order to enhance the
basis provided by asynchronous replication. It is well-
known that a scalable system should avoid all poten-
tial contention points. Asynchronous update propaga-
tion is a key factor in such elimination of contention.
It allows a fast answer to the client from the delegate
replica (i.e., the one that has directly served the trans-
action) while the updates are still being propagated to
the remaining replicas, or even before that propaga-
tion is initiated.

The first papers proposing epidemic update prop-
agation, e.g. (Agrawal et al., 1997), were based on a
lazy causal broadcast mechanism and allowed multi-
ple forwarding steps that did not break such causal
order. This causal broadcast was implemented in-
cluding all causally-preceding writesets that were not
yet acknowledged as delivered by the remaining repli-
cas. Thus, that broadcast never blocked the receiving
nodes and easily allowed them to build up the infor-
mation needed for certifying concurrent transactions.
As providing a configurable degree of data fresh-
ness without compromising the correctness of the ap-
plications that use these data is not that straightfor-
ward, epidemic replication should be combined with
database partitioning.

Actually, lazy or epidemic database replication
has been used in recent papers (Daudjee and Salem,
2006; Terry, 2008; Arrieta-Salinas et al., 2012) to
obtain good scalability and performance even when
the system is geographically dispersed. However, in
these works there is very little discussion about the
procedure to obtain the best data epidemic replica-
tion policy and system configuration that maximize
the database performance.
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Figure 1: An abstraction of a cloud storage system with transactional support.

3 SYSTEM MODEL

The proposed approach is committed to accurately
simulate epidemic data replication protocols. This
section defines the system model used to build the
simulator, and discusses the obtained correctness cri-
terion of the simulated epidemic replication strate-
gies. We assume a dynamic distributed system that
stores a database (see Figure 1) where three differ-
ent roles may be distinguished as similarly done in
Google’s GFS or ElasTraS (Das et al., 2010): (1) a
set of client applications that interact with the system;
(2) a metadata manager (MM) that holds the system
state (which is stored in the metadata repository) and
orchestrates the communication between clients and
replicas; and, (3) a set of replication clusters (RCs),
each storing one data partition.

Clients have a library that permits their interac-
tion with the system. Firstly, they connect with the
MM to locate the partitions they want to access and,
afterwards, issue transactions directly with a dele-
gate of the given RC. Respectively, the MM stores:
the mapping between each data item and its associ-
ated partition; the set of available replicas; the map-
ping between a node and its RC with its respective
level/freshness; and, the statistics of each replica.

Focusing on the RC components, a different RC
exists for each partition. The replicas that form each

RC are organized in a hierarchical way. Each tier
is associated to a freshness degree where the higher
the freshness degree, the more recent the versions of
stored data items are. The core level of each hierar-
chy comprises a small set of replicas that propagate
updates among themselves by means of a traditional
replication protocol (Wiesmann and Schiper, 2005)
(as determined by the MM) that makes use of a group
communication service (GCS) (Chockler et al., 2001)
to handle the messages among replicas and monitor
the replicas belonging to the group. Also, the repli-
cas that do not belong to the core level are distributed
into several levels forming a tree whose root is the
aforementioned core level, where a replica of a given
level acts as a backup for a replica of its immediately
upper level and may also act as a primary for repli-
cas of its lower level. To exploit the advantages of
in-memory approaches (i.e., avoiding disk stalls and
using the thread-to-data policy), we assume that every
replica keeps all its data in main memory.

When a replica (r) receives a transaction (t) from
a client, it first checks that the partition where the
client intends to execute it is the same as the one man-
aged by the RC thatr belongs to. In caset is a read-
only transaction, the freshness related to the hierarchy
level to whichr belongs must be capable of fulfilling
the freshness limit imposed byt. In case this state-
ment is satisfied,r executest and sends the result to
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the client. Read-only transactions are regularly exe-
cuted without delay, although their execution might
be delayed to meet different consistency constraints
and further elaborate the notion of freshness. For in-
stance, in caset demanded read-your-writes consis-
tency (Vogels, 2009), before executingt the replica
would have to apply all update transactions from that
client that happened beforet. On the other hand, ift
is an update transaction, it can only be processed ifr
belongs to the core level of the hierarchy and is not a
read-only replica. If affirmative,t is delegated to the
replication protocol. Oncet commits, each replica of
the core level will be able to asynchronously prop-
agate the changes (in the form of writesets, the set
of tuples that are created, modified or deleted by the
transaction) to its children through the point-to-point
connections following an epidemic propagation pro-
tocol which is the main topic of this paper.

As stated previously, this is a good approach for
managing transactions in a highly scalable environ-
ment (Gilbert and Lynch, 2012; Bailis et al., 2013;
Vogels, 2009). In general, we can achieve different
levels of consistency depending on the hierarchy level
wheret accesses the data. We can guarantee that the
replication protocol running at the core of the cor-
responding partition (Wiesmann and Schiper, 2005)
ensures data consistency and provides one copy (1C)
schedules even in the presence of failures (Bernstein
et al., 1987; Fekete and Ramamritham, 2010). With-
out generalization loss, we assumet only accesses a
single partition; therefore, ift only accesses the core
nodes of a partition, it will behave as if it were ex-
ecuted in a traditional replicated database. Hence,
the consistency criterion fulfilled will correspond to
the consistency guarantees ensured by the replication
protocol that manages that core level, normally 1C-
Serializability (1CS) (Bernstein et al., 1987) or 1C-
Snapshot-Isolation (1SI) (Lin et al., 2009) depending
on the replication protocol. In caset accesses other
levels of the hierarchy apart from the core level, the
consistency criterion fulfilled will be 1SI, as update
transactions are serially executed at the replicas of the
core level whereas read-only transactions can be for-
warded to lower hierarchy levels assuming that they
might obtain a stale (but consistent) snapshot of the
database. However, a multi-partition transactiont ′

has no notion of consistency across data partitions,
but that data versions are obtained from a valid com-
mitted snapshot in each partition and we obtain one-
copy-multi-version (1MV) schedules.

Apart from this, update transactions executed at
the core replicas must eventually get propagated to
the rest of replicas inside their associated RC no mat-
ter how many replica failures and network partitions

occur, so as to ensure global correctness. Any replica
belonging to a hierarchy layer different than the core
layer of an RC receives its updates from a replica of
the upper layer via a propagation mechanism (flood-
ing, epidemic, etc.) (Baldoni et al., 2006) which en-
sures that updates are received (and therefore exe-
cuted) in order; provided that all committed update
transactions have a unique version number which per-
mits them to be ordered at any node (this is the ver-
sion number assigned by the replication protocol on
each RC). This corresponds to the notion of eventual
consistency; i.e., there is some time point when if no
new updates arrive then all replicas will converge to
the same state.

For the sake of this paper, this model considers
different variations of propagating updates across the
hierarchy tree of an RC and check which one is the
best in terms of: number of messages exchanged, cov-
erage and load. Hence, we will start with a very sim-
ple propagation mechanism and present several varia-
tions of epidemic algorithms, more precisely the kind
of propagation, to see which one fits best in our trans-
action model scenario.

• TTL-based: This method of propagation is the
simplest one: when a node receives an update, it
spreads it to all its neighbors but the sender of the
message. The update has a number attached; the
TTL (time-to-live). With each ”hop” the TTL is
reduced by one. When the TTL is zero the update
cannot be propagated anymore.

• Epidemic: It has recently gained popularity be-
cause it provides a scalable way of propagating
information in a system. It is based on a model
that emulates the propagation of an epidemic dis-
ease on a population. Its execution model is rather
simple but presents several variations. A node be-
comes “infected” with an update, and spreads it
to the neighbors. The original node may “die”
in the process, prohibiting it from spreading the
disease. This mechanism allows the “disease” to
stop spreading without the need of consensus and
makes it fast to propagate. Additionally, it does
not generate a lot of traffic. The variations are the
following: push, a node selects one neighbor and
sends to it the updates; pull, a node selects one
neighbor, and retrieves its updates; and, push &
pull, a node selects one neighbor, and they inter-
change updates.

• Rollback: Both previous propagation models have
a small chance of not reaching all the nodes. This
does not happen in a traditional model of a tree
where nodes know the topology (unless there is
a failure). In our model, when a node receives
newer information and notices a gap between its
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information and the new update, such receiver
may ask the node that gave the information for
more.

To compare the different algorithms it is neces-
sary to use one or more metrics. In this case we have
selected three metrics which, in our opinion, are the
most determinant in developing a scalable database
with transactional guarantees.

• Traffic: Measures the amount of messages sent
between nodes in a given round. A protocol that
sends too many messages ends up being expen-
sive in hardware cost so it is important to keep
this metric low. We need to see the average traffic
between rounds and the standard deviation (which
tells us if the traffic is stable or has strong peaks).

• Coverage per round: Indicates how fast an update
transaction reaches all the nodes of its associated
RC. Hence, we will normalize coverage using the
partitions and set its threshold to the first round
in which a given coverage percentage appears. To
this end we will analyze how fast (in simulation
rounds) transaction propagations reach 50% and
90% coverage.

• Load per node: Number of messages that reach
a node. Although related with the traffic, it pro-
vides different information. For example, a con-
sistent low load per node, even in a high traffic
scenario, signals a stable distribution. In contrast,
a low average traffic distribution with a high load
in a group of nodes means instability and will be
an important issue to be fixed. We will evaluate
load in write and read nodes.

4 SOFTWARE

All experiments were performed using a discrete
event simulator (see Figure 2) coined as Chive. The
simulator is written in Java using JUNG (JUNG,
2014) to support graph operations and visualization,
plus JChart2D (JChart2D, 2014) to plot the different
graphs. We have developed a software that simulates
this system model through time, adding a dynamic vi-
sualization of the state of the network. We mainly fo-
cused on the layered structure of nodes inside an RC
to evaluate different epidemic propagation protocols
according to the aforementioned metrics using differ-
ent scenarios. Up to our knowledge, there have been
also attempts to develop epidemic simulation models
like in (Baldoni et al., 2006; Bakhshi, 2011). The first
one (Baldoni et al., 2006) uses its own replication pro-
tocol to maintain eventual consistency based on epi-
demic models and uses a random graph but lacks of

transactional support. Whereas the latter (Bakhshi,
2011) uses probabilistic models and does not consider
transactions. This approach can be useful when the
model behavior is known in advance; e.g., consider a
full graph with no partitions or tiers.

Figure 2: A screenshot of Chive.

We need to define a model that can simulate the
reality of our distributed database model while ab-
stracting the remaining features that are not of interest
in our discussion (like RAM usage, number of disk
writes). We are going to use an undirected graph,
where each vertex represents a node. A node is a pro-
cess or machine that holds a partition of the database
that belong to a given RC. Each of these nodes has to
apply a sequence of update transactions coming from
the core layer (or tier) of each RC and forward these
updates to the rest of nodes.

To simulate the timelines flow we are going to use
a cycle system, which allows us to control the events
(like failures or new updates) and simplify the un-
derlying network stack. A cycle is an arbitrary time
amount where a node can send and receive messages.
Recall that each committed update transaction has a
unique version so each node can infer the order of the
updates to be applied with no coordination with other
nodes.

Bearing all these features in mind, we have to gen-
erate the initial graph. Each edge in the graph repre-
sents a communication link between two nodes. We
are going to consider several approaches:

• Complete: This is the simplest scenario where all
nodes are connected to each other. The updates
can come from anywhere, but the system needs
to synchronize the amount of messages received.
Hence, we do not distinguish among core layer
and outer layers, as well as dividing into partitions
since it does not statistically make any difference.

• Random: Using the Barabási-Albert (Barabási
and Albert, 1999) method. Such method is able
to adequately manage growth (i.e., the fact that
the number of nodes in the network increases
over time) and is based on preferential attach-

ICSOFT-EA�2014�-�9th�International�Conference�on�Software�Engineering�and�Applications

432



ment. Preferential attachment means that nodes
with higher degree have stronger ability to obtain
new links when these are added to the network.
Under this graph we assume a two tier graph. The
first one corresponds to the core layer whilst the
remainder constitute satellites. Connections be-
tween the two layers are randomly generated, al-
though this approach is valid in terms of the met-
rics considered here.

• Proposedx/y: Partition-tiered graph withx parti-
tions andy tiers.

5 RESULTS

To demonstrate the versatility of the proposed simu-
lator, in this section we present the results of different
simulation runs of the aforesaid epidemic replication
strategies over 1000 rounds. If we assume one round
is one second (like Cassandra(Apache Software Foun-
dation, 2014)), this simulation will last 16.6 minutes.
We have considered three different metrics to mea-
sure: traffic; coverage; and, load. Each one is run
under two different workload scenarios (update inten-
sive and read intensive) which will derive two new
tables, read and update intensive, respectively. The
update intensive is modeled with a probabilityp of ar-
riving a new update transaction in each round. Thus,
we havep = 0.2 for read-intensive scenarios; and,
p= 0.9 for update-intensive scenarios.

Each table contains the following information.
The first column indicates the algorithm used for
graph generation: Complete, Random and Proposed
x/y). The second column states the type of propaga-
tion protocol with these parameters:

• Simple,k: it is a simple spread protocol with a
TTL of k. Each node will receive an update trans-
action and spread it to all its neighbors with a TTL
decremented in one unit.

• Epidemic,type, feedback, countor coin, k: It is
an epidemic protocol. Thetypemay be push, pull
and push&pull. The latter is represented as p&p
in the table. If it usesfeedback(represented as
’fbk’) the node responds with its state when it re-
ceives an already applied update transaction. Oth-
erwise, a ’nof’ (for “no feedback”) is used in that
second parameter. Thecoinandcountparameters
determine if the propagation finishes (dies) with a
probability 1/k or afterk spreads, respectively.

The last two columns are the actual measure-
ments, the average and standard deviation, whose
magnitude depends on the metric. In the case of traf-

fic and load, they represent the number of messages
whereas the coverage is measured in terms of rounds.

5.1 Traffic

In Tables 1 and 2, we present the average traffic in the
system in each round and its standard deviation.

Table 1: Traffic - Read Intensive Workload.

GRAPH PROPAGATION MEAN STD.
TYPE PROTOCOL DEV.
Complete simple, k=3 446.082 927.310
Random simple, k=3 65.742 99.819
Complete push,fbk,count,k=3 78.873 55.468
Complete pull,fbk,count,k=3 119.985 58.229
Complete p&p,fbk,count,k=3 124.277 75.958
Complete p&p,fbk,coin,k=3 142.462 83.949
Complete p&p,nof,coin,k=3 81.324 28.583
Random p&p,fbk,count,k=3 126.644 78.330
Prop.4/3 push,fbk,count,k=3 58.103 38.476
Prop.4/3 pull,fbk,count,k=3 113.313 40.288
Prop.4/3 p&p,fbk,count,k=3 108.247 52.138
Prop.4/3 p&p,fbk,count,k=5 108.291 52.790
Prop.4/3 p&p,nof,count,k=3 64.204 14.596
Prop.4/5 p&p,fbk,count,k=3 105.017 46.264
Prop.5/3 p&p,fbk,count,k=3 57.464 35.268

Table 2: Traffic - Update Intensive Workload.

GRAPH PROPAGATION MEAN STD.
TYPE PROTOCOL DEV.
Complete simple, k=3 2181.441 751.772
Random simple, k=3 241.171 93.061
Complete p&p,fbk,count,k=3 433.721 87.494
Random p&p,fbk,count,k=3 409.395 99.107
Prop.4/3 p&p,fbk,count,k=3 357.160 72.299

These results show that a simple (i.e., TTL-based)
propagation strategy needing a fully connected net-
work is unable to scale. The average amount of prop-
agated messages is too high and its standard deviation
also shows that the system is unable to absorb and
process such amount of messages. However, when
read intensive loads are considered (Table 1) a TTL-
based propagation strategy combined with a randomly
generated propagation graph following the Barabási-
Albert method needs an acceptable amount of propa-
gated messages. Unfortunately, its standard deviation
is still high. This random topology does not main-
tain these good results when it is combined with a
push-and-pull propagation, since it almost doubles the
amount of propagated messages.

The best strategy in a load with a low percent-
age of update transactions consists in using our pro-
posed topology with 5 partitions and 3 tiers, combined
with a propagation based on a push-and-pull strategy
with feedback and three forwarding steps. It achieves
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a minimal mean (57.5 msgs/round) and quite a low
standard deviation (35.27).

With write intensive loads (see Table 2) a TTL-
based propagation strategy (with 3 forwarding steps)
combined with a randomly generated topology pro-
vides a minimal mean amount of propagated mes-
sages with a moderate standard deviation.

5.2 Coverage

Tables 3 and 4 contain information about how many
rounds the algorithm needs on average to reach a cer-
tain coverage threshold. Such threshold is given as
the percentage of nodes that have received the new
values being propagated, in our case 50% and 90% of
the total nodes.

Table 3: Coverage - Read Intensive Workload.

GRAPH PROPAGATION ROUNDS
TYPE PROTOCOL 50% 90%
Complete simple, k=3 1 1
Random simple, k=3 2 3
Complete push,fbk,count,k=3 5 8
Complete pull,fbk,count,k=3 6 8
Complete p&p,fbk,count,k=3 4 5
Complete p&p,fbk,coin,k=3 4 5
Complete p&p,nof,coin,k=3, 4 7
Random p&p,fbk,count,k=3 3 5
Proposed 4/3 push,fbk,count,k=3 5 8
Proposed 4/3 pull,fbk,count,k=3 6 11
Proposed 4/3 p&p,fbk,count,k=3 3 5
Proposed 4/3 p&p,fbk,count,k=5 3 5
Proposed 4/3 p&p,nof,count,k=3 4 8
Proposed 4/5 p&p,fbk,count,k=3 3 5
Proposed 5/3 p&p,fbk,count,k=3 5 11

Table 3 shows that the TTL-based propagation
strategy with a randomly (Berabási-Albert) generated
topology is, among the best combinations obtained
in the traffic analysis of the previous section, the one
needing a minimal number of rounds to reach an ac-
ceptable coverage. It only needs 2 rounds to reach
50% of the nodes and 3 rounds to reach 90% of the
nodes. In order to reach these minimal values we
are assuming that the node that initially served each
update transaction was that with the maximal degree
(i.e., with the maximum number of connected neigh-
bor nodes). If an application chooses another node as
its delegate replica the number of propagation rounds
will be slightly higher.

Our best proposed configuration considering traf-
fic (5 partitions with 3 tiers, push-and-pull propaga-
tion with feedback and 3-round forwarding) needs a
high amount of communication rounds to achieve this
analyzed coverage (5 and 11 rounds, respectively).
This is not a serious drawback since our replication

strategy still provides a consistent view of the updated
nodes, even they do not maintain the latest version.

Table 4: Coverage - Update Intensive Workload.

GRAPH PROPAGATION ROUNDS
TYPE PROTOCOL 50% 90%
Full simple, k=3 1 1
Random simple, k=3 2 3
Full p&p,fbk,count,k=3 4 5
Random p&p,fbk,count,k=3 3 5
Proposed 4/3 p&p,fbk,count,k=3 3 5

The usage of write intensive loads (as shown in
Table 4) does not introduce any modification to the
values presented in Table 3 since the coverage does
not depend on the workload being considered but only
on the topology and propagation strategy.

5.3 Load

Tables 5 and 6 contain the number of messages re-
ceived by certain nodes in each turn. We check the
average of nodes that are in the core tier and nodes
that are in the read tiers.

Table 5: Load in the Nodes - Read Intensive Workload.
GRAPH PROPAGATION WRITE LOAD READ LOAD
TYPE PROTOCOL MEAN DEV. MEAN DEV.
Complete simple, k=3 18.546 8.918 18.546 8.918
Random simple, k=3 1.191 1.815 1.191 1.815
Complete push,fbk,count,k=3 1.573 1.109 1.573 1.109
Complete pull,fbk,count,k=3 1.799 0.675 1.799 0.675
Complete p&p,fbk,count,k=3 2.097 1.137 2.097 1.137
Complete p&p,fbk,coin,k=3 2.355 1.256 2.355 1.256
Complete p&p,nof,coin,k=3 1.622 0.571 1.622 0.571
Random p&p,fbk,count,k=3 2.015 1.105 2.015 1.105
Prop.4/3 push,fbk,count,k=3 1.006 0.728 1.257 0.882
Prop.4/3 pull,fbk,count,k=3 1.337 0.786 1.813 0.610
Prop.4/3 p&p,fbk,count,k=3 1.762 1.086 1.981 0.888
Prop.4/3 p&p,fbk,count,k=5 1.682 1.062 1.956 0.915
Prop.4/3 p&p,nof,count,k=3 1.021 0.620 1.344 0.481
Prop.4/5 p&p,fbk,count,k=3 1.524 0.792 1.933 0.819
Prop.5/3 p&p,fbk,count,k=3 0.788 0.607 1.147 0.827

As already shown in the traffic analysis, a com-
plete graph with a TTL-based propagation is unable
to scale. This fact is also clearly shown here, in both
tables. Thus, with a read intensive load each node
manages around 19 messages per round (with a stan-
dard deviation of 9), while this value grows up to 44
with a write intensive load.

With a read intensive load, a randomly generated
graph with TTL-based propagation provides excel-
lent values for both reading and writing operations on
nodes with a low standard deviation (1.8). However,
the best values are provided by our 5/3 topology pro-
posal (i.e., using 5 partitions and 3 tiers) that only re-
quires on average 0.8 messages on updated nodes and
1.1 messages on read nodes with a standard deviation
lower than in the random topology.

Considering write intensive loads, the random
topology with TTL-based propagation provides the
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Table 6: Load in the Nodes - Update Intensive Workload.
GRAPH PROPAGATION WRITE LOAD READ LOAD
TYPE PROTOCOL MEAN DEV. MEAN DEV.
Full simple, k=3 43.611 15.036 43.611 15.036
Random simple, k=3 4.620 1.790 4.620 1.790
Full p&p,fbk,count,k=3 6.930 1.385 6.930 1.385
Random p&p,fbk,count,k=3 6.545 1.510 6.545 1.510
Prop.4/3 p&p,fbk,count,k=3 5.678 1.710 5.993 1.472

minimal average workload per node. However, ran-
dom topologies with a push-and-pull propagation
strategy still introduce a higher workload than our
best 4/3 topology proposal. As a result, this shows
that our proposed strategy is a good approach for scal-
able data replication with easily selectable degrees of
freshness.

6 CONCLUSIONS

This paper presents Chive, a simulation tool aimed
at guiding the design process of replicated systems
based on epidemic protocols. Chive takes into ac-
count a set of metrics that allow to compare the per-
formance and scalability capabilities of a variety of
replication protocols and system settings under dif-
ferent workload scenarios.

Performed experiments show that complete
graphs with a simple spreading protocol suffer from a
serious scalability limitation in update intensive sce-
narios due to the elevated number of messages in-
volved. Using a Barabási-Albert graph alleviates this
problem, as it reduces traffic while maintaining fast
updates, although it still requires a write consensus.
In contrast, our proposed configuration has shown to
be the most stable. In particular, push&pull is the
most effective method, although it generates more
traffic than the push strategy. Removing feedback
also reduces traffic significantly, although it requires
more time to reach an acceptable coverage thresh-
old. Furthermore, it is necessary to establish a proper
trade-off between the number of nodes and the num-
ber of tiers, since increasing the number of tiers re-
duces both overall traffic and individual load (since
traffic spreads more evenly among nodes and there is
less need for rollbacks), at the expense of degrading
the coverage metric.

Chive provides a solid foundation for future ex-
tensions that will allow to model the features of a dis-
tributed system more accurately. For example, Chive
could take into account other external factors such as
the read load coming from clients and their freshness
requirements. Moreover, other variables regarding the
behavior of system nodes could be incorporated, such
as the maximum capacity of each node or the prob-
ability of a node failure. Apart from this, providing
Chive with the ability to dynamically tune the simula-

tion settings to different workload patterns (by adding
or removing system nodes or changing the graph con-
figuration) and modeling the data transfer operations
involved when a node joins the system would provide
a sound basis for adapting replicated systems to un-
predictable workload scenarios, by determining the
optimal configuration depending on the current work-
load characteristics.
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