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Abstract: We describe how to use conditional Monte Carlo (CMC) to estimate a quantile. CMC is a variance-reduction
technique that reduces variance by analytically integrating out some of the variability. We show that the
CMC quantile estimator satisfies a central limit theorem and Bahadur representation. We also develop three
asymptotically valid confidence intervals (CIs) for a quantile. One CI is based on a finite-difference estima-
tor, another uses batching, and the third applies sectioning. We present numerical results demonstrating the
effectiveness of CMC.

1 INTRODUCTION

For a continuous random variableX with a strictly
increasing cumulative distribution function (CDF)F
and fixed 0< p< 1, thep-quantile ofX is defined as
the constantξ such thatP(X ≤ ξ) = p. A well-known
example is the median, which is the 0.5-quantile. The
p-quantileξ also can equivalently be expressed asξ=
F−1(p).

Quantiles are often used in application areas to
measure risk. For example, in finance, a quantile is
known as a value-at-risk, and quantiles are widely em-
ployed to assess portfolio risk. For example, bank-
ing regulations specify capital requirements for a firm
in terms of 0.99-quantiles of the random loss (Jorion,
2007). In nuclear engineering, safety and uncertainty
analyses are often performed with a 0.95-quantile
(U.S. Nuclear Regulatory Commission, 1989).

Suppose that we have a simulation model that out-
puts a random variableX. When applying simple ran-
dom sampling (SRS), the typical approach to estimate
the p-quantileξ is to run independent and identically
distributed (i.i.d.) replications of the model, and form
an estimator of the CDF from the sample outputs. In-
verting the CDF estimator yields a quantile estimator.

Because of the noise inherent in any stochastic
simulation, the quantile estimator has some error,
which should be measured. A standard way of as-
sessing the error is by forming a confidence interval
for the true quantileξ. For example, the U.S. Nu-
clear Regulatory Commission requires nuclear plant
licensees to satisfy a so-called 95/95 criterion, which
entails establishing, with 95% confidence, that the

0.95-quantile lies below a mandated threshold; see
Section 24.9 of (U.S. Nuclear Regulatory Commis-
sion, 2011). Thus, we need not only a point estimate
of a quantile but also a confidence interval for it.

There are several approaches to construct a CI
when applying SRS. One technique, which is some-
times called the nonparametric method, exploits a bi-
nomial property of the i.i.d. sample; see Section 2.6.1
of (Serfling, 1980). Another way first shows that
the quantile estimator satisfies a central limit theorem
(CLT), and then unfolds the CLT to obtain a CI. The
key to applying this technique is consistently estimat-
ing the asymptotic variance constant appearing in the
CLT; approaches for accomplishing this include using
a finite difference (Bloch and Gastwirth, 1968; Bofin-
ger, 1975) and kernel methods (Falk, 1986). Rather
than consistently estimating the asymptotic variance,
we can instead apply batching or sectioning, the latter
of which was originally developed for SRS in Sec-
tion III.5a of (Asmussen and Glynn, 2007) and ex-
tended in (Nakayama, 2014a) to work when applying
the variance-reduction techniques control variates and
importance sampling. Batching and sectioning divide
the i.i.d. outputs into independent batches, computing
a quantile estimator from each batch, and construct-
ing a CI from the batch quantile estimators.

In this paper, we use conditional Monte Carlo to
estimate a quantile. CMC reduces variance (com-
pared to SRS) by analytically integrating out the vari-
ability that remains after conditioning on an auxiliary
random variableY; e.g., see Section 8.3 of (Ross,
2006) or Section V.4 of (Asmussen and Glynn, 2007).
We prove that the CMC quantile estimator satisfies a
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CLT and a Bahadur representation (Bahadur, 1966).
The latter shows that a quantile estimator can be ap-
proximated as the true quantile plus a linear transfor-
mation of the corresponding CDF estimator, with a
remainder term that vanishes at some rate as the sam-
ple size grows. Since the CDF estimator is typically
a sample average, it satisfies a CLT under appropri-
ate conditions. Thus, the Bahadur representation pro-
vides insight into why a quantile estimator, which is
nota sample average, satisfies a CLT. It also allows us
to construct asymptotically valid CIs forξ by using a
finite difference or sectioning, and we develop those
CIs in this paper.

CMC has previously been employed to derive an
estimator of a sensitivity of a quantile with respect to
a model parameter (Fu et al., 2009). For example,
suppose a financial investor has a portfolio of loans,
each of which may default. The investor may want to
estimate the sensitivity of the 0.99-quantile of the loss
of the portfolio, where the sensitivity is taken with
respect to a parameter of the loss distribution of an
individual obligor. While (Fu et al., 2009) apply CMC
to estimate quantile sensitivities, the method has not
been used (to the best of our knowledge) to estimate
the quantile itself.

The rest of the paper develops as follows. Sec-
tion 2 reviews how to apply SRS to estimate and con-
struct CIs for a quantileξ. Section 3 develops our
CMC estimator of a quantile, shows that it satisfies a
CLT and Bahadur representation, and uses these re-
sults to construct CIs forξ. Section 4 presents nu-
merical results from a simple model, and we provide
concluding remarks in Section 5. Proofs of the results
are given in (Nakayama, 2014b).

2 SIMPLE RANDOM SAMPLING

Let X be a random variable with CDFF. We first re-
view how to estimate and construct confidence inter-
vals for thep-quantileξ = F−1(p) ≡ inf{x : F(x) ≥
p} of F (or equivalently ofX) for a fixed 0< p < 1
when applying simple random sampling (SRS).

Let Xi , i = 1,2, . . . ,n, be a sample ofn i.i.d. ob-
servations fromF . The SRS estimator ofF(x) =
E[I(X ≤ x)] is the empirical distribution function
Fn(x) = (1/n)∑n

i=1 I(Xi ≤ x). The SRSp-quantile es-
timator isξn = F−1

n (p). We can alternatively compute
ξn by first sorting the sampleX1,X2, . . . ,Xn into the or-
der statisticsX(1) ≤ X(2) ≤ ·· · ≤ X(n), and then setting
ξn = X(⌈np⌉), where⌈ ·⌉ denotes the ceiling function.

Section 2.3 of (Serfling, 1980) provides an
overview of ξn and its properties. For example, let
f denote the derivative (when it exists) ofF . If

f (ξ)> 0, thenξn satisfies the following CLT:
√

n(ξn− ξ)⇒ N(0, p(1− p)/ f 2(ξ)) (1)

as n → ∞, where⇒ denotes convergence in distri-
bution (e.g., see Chapter 5 of (Billingsley, 1995)),
andN(a,b2) is a normal random variable with mean
a and varianceb2. Moreover, ξn also satisfies a
so-called (weak) Bahadur representation (Bahadur,
1966; Ghosh, 1971):

ξn = ξ− Fn(ξ)− p
f (ξ)

+R′
n, with

√
nR′

n ⇒ 0 (2)

as n → ∞. By (2), the left side of (1) equals
−√

n(Fn(ξ)− p)/ f (ξ) +
√

nR′
n, where the first term

converges weakly to the right side of (1), and the sec-
ond weakly vanishes by (2). Thus, the Bahadur repre-
sentation provides insight into whyξn, which isnot a
sample average, satisfies a CLT, as it can be approxi-
mated in terms of the empirical distribution, which is
a sample mean.

(Ghosh, 1971) also establishes a version of (2) for
the pn-quantile with perturbedpn that converges to
p, rather than thep-quantile for fixedp. This vari-
ation can be useful for constructing a consistent es-
timator of λ ≡ 1/ f (ξ), which appears in the asymp-
totic variance in (1) and can be used to construct a
confidence interval forξ. If f (ξ) > 0, then for any
pn = p+O(n−1/2), the SRS estimatorF−1

n (pn) of the
pn-quantileF−1(pn) satisfies

F−1
n (pn) = ξ′pn

− Fn(ξ)− p
f (ξ)

+R′
n, with

√
nRn ⇒ 0

(3)
asn→ ∞, where

ξ′pn
= ξ+(pn− p)/ f (ξ). (4)

To see how to use these results to consis-
tently estimateλ, first note thatλ = d

dpF−1(p) =

limh→0[F−1(p+h)−F−1(p−h)]/2h. This suggests
estimatingλ with thefinite difference

λn =
F−1

n (p+hn)−F−1
n (p−hn)

2hn
, (5)

wherehn > 0 is known as thebandwidth. The terms in
the numerator of the finite difference are precisely in
the form of (3) withpn = p±hn, which allows prov-
ing λn ⇒ λ asn→ ∞ whenhn = cn−1/2 for any con-
stantc> 0; see Section 2.6.3 of (Serfling, 1980). Us-
ing a different proof technique, (Bloch and Gastwirth,
1968) and (Bofinger, 1975) also showλn ⇒ λ when
f is continuous in a neighborhood ofξ, andhn → 0
and nhn → ∞ as n → ∞. Thus, unfolding the CLT
in (1) leads to the following two-sided(1−α)-level
(0< α < 1) confidence interval forξ:

In = [ξn± zα
√

p(1− p)λn/
√

n], (6)
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wherezα =Φ−1(1−α/2) andΦ is the CDF of a stan-
dard (mean 0 and unit variance) normal. The CIIn
is asymptotically valid in the sense thatP(ξ ∈ In) →
1−α asn→ ∞.

Determining an appropriate value for the band-
width hn in the finite difference can be difficult in
practice. Alternatively, we can avoid trying to con-
sistently estimateλ by instead applying batching or
sectioning. In batching, we divide then outputs
X1,X2, . . . ,Xn into b ≥ 2 equal-sized batches, where
the jth batch, j = 1,2, . . . ,b, consists of them =
n/b outputsX( j−1)m+i, i = 1,2, . . . ,m. A reasonable
choice for the number of batches isb = 10. For
each batchj, we define the CDF estimatorFj ,m(x) =
(1/m)∑m

i=1 I(X( j−1)m+i ≤ x) and correspondingp-

quantile estimatorξ j ,m = F−1
j ,m(p). Since then out-

puts are i.i.d., theb batches are i.i.d., soξ j ,m, j =
1,2, . . . ,b, are i.i.d. We compute their sample aver-
ageξ̄b,m = (1/b)∑b

j=1ξ j ,m and their sample variance

S2
b,m = (1/(b−1))∑b

j=1(ξ j ,m− ξ̄b,m)
2. An asymptot-

ically valid (asm→ ∞ with b≥ 2 fixed)(1−α)-level
CI for ξ using batching is then

Jn = [ξ̄b,m± tαSb,m/
√

b],

wheretα = T−1
b−1(1−α/2) andTb−1 is the CDF of a

Studentt distribution withb−1 degrees of freedom.
Similar to batching, sectioning was originally de-

veloped in Section III.5a of (Asmussen and Glynn,
2007) for SRS, and it replaces the batching point es-
timator ξ̄b,m with the overall quantile estimatorξn.
Specifically, letS′2b,m = (1/(b−1))∑b

j=1(ξ j ,m− ξn)
2,

and the sectioning two-sided(1−α)-level CI for ξ
when applying SRS is

J′n = [ξn± tαS′b,m/
√

b].

The asymptotic validity ofJ′n can be established by
exploiting the Bahadur representation in (2) for fixed
pn = p. An advantage of sectioning over batching
arises from the fact that quantile estimators are gen-
erally biased. While the bias decreases (nonmono-
tonically) to zero as the sample sizen increases, it
can be significant for small sample sizes. The bias
of the batching point estimator̄ξb,m is determined by
the batch sizem= n/b < n, so ξ̄b,m can be consid-
erably more biased than the overall quantile estima-
tor ξn, which has bias governed by the overall sample
sizen. Since the sectioning CI is centered at a less-
biased pointξn, whereas the batching CI is centered
at ξ̄b,m, the sectioning CI typically has better cover-
age than the batching CI for a fixed overall sample
sizen= bm; see the numerical results in Section 4.

3 CONDITIONAL MONTE
CARLO

Now suppose that(X,Y) is a random vector with
joint distributionH. As before, we want to estimate
ξ = F−1(p), whereF again denotes the (marginal)
distribution ofX. Let (Xi ,Yi), i = 1,2, . . . ,n, be a sam-
ple ofn i.i.d. pairs fromH.

Since F(x) = E[E[I(X ≤ x) |Y ]] = E[P(X ≤
x|Y)], a conditional Monte Carlo estimator ofF(x)
is

F̂n(x) =
1
n

n

∑
i=1

E[I(Xi ≤ x) |Yi ] =
1
n

n

∑
i=1

G(Yi ,x), (7)

whereG(Y,x) = P(X ≤ x|Y). The CMC p-quantile
estimator iŝξn = F̂−1

n (p). Applying CMC relies crit-
ically on being able to computeG and invertF̂n.

ComputingF̂−1
n (p) for CMC appears to be more

involved than for SRS or the other variance-reduction
techniques examined in (Chu and Nakayama, 2012).
For example, consider the simple case when(X,Y)
has a bivariate normal distribution with zero marginal
means, unit marginal variances, and correlationρ.
The conditional distribution ofX given Y = y is
N(ρy,1−ρ2) (e.g., see pp. 167–168 of (Mood et al.,
1974)), so

G(Y,x) = P(X ≤ x|Y) = Φ

(

x−ρY
√

1−ρ2

)

, (8)

and

F̂n(x) =
1
n

n

∑
i=1

Φ

(

x−ρYi
√

1−ρ2

)

.

Identifyingξ̂n such thatF̂n(ξ̂n) = p, i.e.,ξ̂n = F̂−1
n (p),

can be accomplished using a root-finding algorithm,
e.g., Newton’s method, the secant method or the false-
position method; e.g., see Sections 7.1 and 7.2 of
(Ortega and Rheinboldt, 1987). In contrast to the
secant and false-position methods, Newton’s method
requires computing the derivative of̂Fn. Given
Y1,Y2, . . . ,Yn, note thatF̂n(x) is strictly increasing and
differentiable inx, with sample-path derivative

d
dx

F̂n(x) =
1
n

n

∑
i=1

(1−ρ2)−1/2φ

(

x−ρYi
√

1−ρ2

)

,

whereφ is the density of a standard normal.
The following shows that the CMCpn-quantile es-

timatorF̂−1
n (pn) satisfies a Bahadur representation.

Theorem 1. If f (ξ) > 0, then for any pn = p+

O(n−1/2), the CMC pn-quantile estimatorF̂−1
n (pn)

satisfies

F̂−1
n (pn) = ξ′pn

− F̂n(ξ)− p
f (ξ)

+Rn, with
√

nRn ⇒ 0

(9)
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as n→ ∞, whereξ′pn
is given in(4).

In particular, the results of Theorem 1 hold for
pn = p fixed, in which caseξ′pn

= ξ. It then fol-

lows from (9) that the CMCp-quantile estimator̂ξn =
F̂−1

n (p) satisfies the following CLT:

√
n(ξ̂n− ξ) =−

√
n

f (ξ)
(F̂n(ξ)− p)+

√
nRn

⇒ N(0,τ2) (10)

asn→ ∞, where

τ2 =
Var[G(Y,ξ)]

f 2(ξ)
. (11)

The numerator in the right side of (11) arises
since F̂n(ξ) is the sample average of the i.i.d.
G(Yi ,ξ), i = 1,2, . . . ,n. By the well-known variance-
decomposition formula (e.g., see Section 2.10 of
(Ross, 2006)), we have that

p(1− p) = Var[I(X ≤ ξ)]
= E[Var[I(X ≤ ξ)|Y]]+Var[E[I(X ≤ ξ)|Y]]
≥ Var[E[I(X ≤ ξ)|Y]] = Var[G(Y,ξ)],

(12)

where the inequality follows from the nonnegativity
of (conditional) variance. Thus, comparing (1) with
(10) and (11), we see that the CMCp-quantile estima-
tor ξ̂n has smaller asymptotic variance than the SRS
p-quantile estimatorξn.

The CLT in (10) can be unfolded to construct an
asymptotically valid confidence interval forξ if we
can consistently estimateτ2 in (11). Theorem 1 can
be used to prove that the finite difference

λ̂n =
F̂−1

n (p+hn)− F̂−1
n (p−hn)

2hn
(13)

satisfieŝλn ⇒ λ = 1/ f (ξ) asn→ ∞ when the band-
width hn = c/

√
n for any constantc> 0. We can con-

sistently estimate the numeratorψ2 ≡ Var[G(Y,ξ)] in
(11) via

ψ̂2
n =

1
n−1

n

∑
i=1

[

G(Yi , ξ̂n)− Ḡn

]2
,

whereḠn =(1/n)∑n
i=1G(Yi , ξ̂n). If G(y,x) is continu-

ous inx for eachy, thenḠn = p sinceF̂n(ξ̂n) = p. The
proof of the consistency of̂ψ2

n is complicated by the
fact thatG(Yi , ξ̂n), i = 1,2, . . . ,n, are not i.i.d. because
they all depend on̂ξn, which in turn is a function of all
Yi , i = 1,2, . . . ,n. But this can be handled employing
arguments developed in (Chu and Nakayama, 2012).
Now we can consistently estimateτ usingτ̂n = ψ̂nλ̂n,
so an asymptotically valid two-sided CI forξ is

În = [ξ̂n± zατ̂n/
√

n]. (14)

As with SRS, choosing an appropriate value for
the bandwidth in the finite-differencêλn can be dif-
ficult when applying CMC, and we may instead ap-
ply batching or sectioning to construct a CI forξ
with CMC. For batching, we divide theG(Yi , ·), i =
1,2, . . . ,n, into b ≥ 2 nonoverlapping batches, each
of sizem= n/b. As with SRS, a reasonable choice
for the number of batches isb = 10. For eachj =
1,2, . . . ,b, the jth batch consists ofG(Y( j−1)m+i , ·),
i = 1,2, . . . ,m, which we use to compute a CDF es-
timatorF̂j ,m, with

F̂j ,m(x) =
1
m

m

∑
i=1

G(Y( j−1)m+i ,x),

and p-quantile estimatorξ̂ j ,m = F̂−1
j ,m(p). The b

batch quantile estimatorŝξ j ,m, j = 1,2, . . . ,b, are
i.i.d., and we compute their sample averageξ̃b,m =

(1/b)∑b
j=1 ξ̂ j ,m and sample variancẽS2

b,m = (1/(b−
1))∑b

j=1(ξ̂ j ,m− ξ̃b,m)
2. The batching CI forξ when

applying CMC is then

J̃b,m = [ξ̃b,m± tαS̃b,m/
√

b].

Because of the bias of quantile estimators, it is
often better to apply sectioning instead of batching
whenn is small, where we again replace the batching
point estimator̃ξb,m with the overall quantile estima-
tor ξ̂n. Define Ŝ2

b,m = (1/(b− 1))∑b
j=1(ξ̂ j ,m− ξ̂n)

2,
and the sectioning CI forξ when applying CMC is
then

Ĵb,m = [ξ̂n± tαŜb,m/
√

b].

As with SRS, when applying CMC, the sectioning CI
Ĵb,m should have better coverage than the batching CI
J̃b,m for fixed overall sample sizen= bm.

The following result establishes the asymptotic
validity of the CMC CIs.

Theorem 2. Suppose f(ξ) > 0. Then the following
hold:

(i) P(ξ ∈ J̃b,m)→ 1−α and P(ξ ∈ Ĵb,m)→ 1−α as
m→ ∞ with b≥ 2 fixed.

(ii) If the bandwidth hn = cn−1/2 in (13) for any con-
stant c> 0, then P(ξ ∈ În)→ 1−α as n→ ∞.

4 NUMERICAL RESULTS

We next present numerical results from simulation
experiments on the bivariate normal discussed in
Section 3. Recall(X,Y) is bivariate normal, with
marginal means 0, unit marginal variances, and cor-
relationρ = 0.5. Our goal is to estimate and construct
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CIs for thep-quantileξ of X for different values of
p and different sample sizesn. Tables 1 and 2 con-
tain the results when applying simple random sam-
pling and conditional Monte Carlo, respectively, giv-
ing the estimated coverage of nominal 90% CIs forξ
and the average half widths (AHWs) of the CIs from
104 independent replications, where we use different
methods to construct the CIs.

Table 1: Coverage (and average half width) of nominal 90%
confidence intervals for thep-quantile of a standard nor-
mal X when applying simple random sampling (SRS) with
bandwidthhn = 0.2n−1/2 andb= 10 batches.

p= 0.8
n Exact FD Batch Section

100 0.900 0.808 0.620 0.903
(0.235) (0.230) (0.235) (0.260)

400 0.897 0.851 0.821 0.909
(0.118) (0.117) (0.125) (0.129)

1600 0.898 0.875 0.876 0.901
(0.059) (0.059) (0.063) (0.064)

6400 0.902 0.877 0.898 0.905
(0.029) (0.028) (0.032) (0.032)

p= 0.95
n Exact FD Batch Section

100 0.902 0.799 0.825 0.861
(0.348) (0.330) (0.330) (0.340)

400 0.902 0.848 0.646 0.900
(0.174) (0.172) (0.171) (0.188)

1600 0.900 0.878 0.830 0.900
(0.087) (0.087) (0.092) (0.095)

6400 0.901 0.891 0.883 0.902
(0.043) (0.044) (0.047) (0.047)

p= 0.99
n Exact FD Batch Section

100 0.926 0.497 0.024 0.762
(0.614) (0.325) (0.330) (0.502)

400 0.905 0.913 0.696 0.841
(0.307) (0.405) (0.267) (0.284)

1600 0.907 0.891 0.907 0.907
(0.154) (0.160) (0.164) (0.168)

6400 0.902 0.893 0.887 0.902
(0.077) (0.077) (0.082) (0.083)

In each table, the column labeled “Exact” con-
tains the results for the CIs in (6) and (14) but where
we replace the finite difference estimator ofλ with
its exact value. This method is typically not imple-
mentable in practice sinceλ is usually unknown, but
we include results for it as a benchmark to which we
compare the others. For the finite difference (FD),
we use the bandwidthhn = 0.2/

√
n in (5) and (13).

Whenp≈ 1 andn is small, we can havep+hn > 1,

Table 2: Coverage (and average half width) of nominal
90% confidence intervals for thep-quantile ofX of a bi-
variate normal(X,Y) with ρ = 0.5 when applying condi-
tional Monte Carlo (CMC) with bandwidthhn = 0.2n−1/2

andb= 10 batches.

p= 0.8
n Exact FD Batch Section

100 0.896 0.895 0.892 0.898
(0.087) (0.087) (0.093) (0.093)

400 0.899 0.899 0.899 0.898
(0.043) (0.043) (0.047) (0.047)

1600 0.900 0.899 0.897 0.897
(0.021) (0.021) (0.023) (0.023)

6400 0.896 0.896 0.896 0.896
(0.011) (0.011) (0.012) (0.012)

p= 0.95
n Exact FD Batch Section

100 0.889 0.898 0.873 0.895
(0.105) (0.109) (0.102) (0.103)

400 0.897 0.898 0.893 0.898
(0.049) (0.050) (0.052) (0.052)

1600 0.892 0.893 0.895 0.897
(0.024) (0.024) (0.026) (0.026)

6400 0.895 0.895 0.896 0.897
(0.012) (0.012) (0.013) (0.013)

p= 0.99
n Exact FD Batch Section

100 0.888 0.944 0.822 0.886
(0.172) (0.259) (0.114) (0.116)

400 0.893 0.967 0.882 0.894
(0.065) (0.097) (0.060) (0.061)

1600 0.889 0.913 0.893 0.896
(0.029) (0.032) (0.031) (0.031)

6400 0.893 0.898 0.897 0.897
(0.014) (0.015) (0.015) (0.015)

so the finite differences (5) and (13) become unde-
fined since the inverse of the estimated CDF is eval-
uated outside of its domain. In these cases, we re-
placep+hn andp−hn with q1 ≡ 1− (1− p)/10 and
q2 ≡ 2p− 1+(1− p)/10, respectively, whereq2 is
chosen so thatq1 andq2 are symmetric aroundp; the
denominator in the finite difference is thenq1 − q2.
The columns labeled “Batch” and “Section” are for
batching and sectioning, respectively, withb = 10
batches. Numerical results in (Nakayama, 2014a)
with b= 10 andb= 20 reveal thatb= 20 often leads
to poorer coverage thanb= 10 for smalln.

In general, we see that in both tables, the cover-
ages converge to the nominal level asn gets large,
demonstrating the CIs’ asymptotic validity. When
p≈ 1 andn is small, sectioning generally gives better
coverage than batching because the former centers its
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CI at a less-biased point. Sectioning also outperforms
FD in terms of coverage. Comparing FD and Exact
for p = 0.99 and smalln, we see that the AHW of
FD typically is quite different from AHW for Exact,
which indicates that in these cases, FD does a poor
job estimatingλ, resulting in FD’s poor coverage.

Relative to SRS, CMC reduces the AHW about
60% (resp., 70% and 80%) forp = 0.8 (resp.,p =
0.95 andp= 0.99). Thus, the variance reduction from
CMC improves as we consider more extreme quan-
tiles. For each of the smaller values ofn, the cov-
erage for each SRS CI (except Exact) worsens asp
increases. While CMC coverage also degrades some-
what asp approaches 1, the impact is much less pro-
nounced. Also, for largen, the slightly wider AHW
for batching and sectioning compared to Exact and
FD arises because the former two methods are based
on a Studentt limit, whereas the latter two rely on a
normal limit, which has lighter tails.

5 CONCLUSIONS

We developed an estimator of a quantileξ using con-
ditional Monte Carlo, which is guaranteed to reduce
asymptotic variance compared to simple random sam-
pling. We established that the CMC quantile estima-
tor satisfies a weak Bahadur representation, which im-
plies a CLT holds. We used these results to produce
three asymptotically valid confidence intervals forξ
as the sample sizen→∞. The CIs are based on batch-
ing, sectioning and a finite difference. Our numerical
results seem to indicate that compared to SRS, CMC
not only reduces variance, but it also leads to CIs with
better coverage. For both SRS and CMC, the sec-
tioning CI has better coverage than the batching and
finite-difference intervals for smalln, especially when
p≈ 1. Thus, of the three CIs we proposed, we recom-
mend using sectioning.
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