
Distributed Parallel Algorithm for Numerical Solving of 3D Problem of
Fluid Dynamics in Anisotropic Elastic Porous Medium Using

MapReduce and MPI Technologies

Madina Mansurova, Darkhan Akhmed-Zaki, Matkerim Bazargul and Bolatzhan Kumalakov
Faculty of mechanics and mathematics, al-Farabi Kazakh National University, al-Farabi ave. 71, Almaty, Kazakhstan

Keywords: MapReduce, MPI, Distributed-parallel Computing.

Abstract: Paper presents an advanced iterative MapReduce solution that employs Hadoop and MPI technologies. First,
we present an overview of working implementations that make use of the same technologies. Then we de-
fine an academic example of numeric problem with an emphasis on its computational features. The named
definition is used to justify the proposed solution design.

1 INTRODUCTION

Modern software engineering solutions provide wide
range of tools for numeric modelling. They vary from
commercial data centre platforms to open source clus-
ter software, downloadable from internet. The aim of
this paper is to design a solution that would utilize
cluster resources by organizing MapReduce compu-
tation with the elements of MPI based parallel pro-
gramming.

In order to accomplish this task we first identify
key features of the existing solutions in this domain
in Section 2. Then, in Section 3 we, first, construct an
academic example of a numeric model that is used to
place the platform into the constraints of a typical iter-
ative algorithm; second, design solution framework;
and finally, discuss technological considerations and
ways to overcome them. Finally, Section 4 concludes
the paper.

2 REVIEW OF HYBRID
MAPREDUCE AND MPI
SOLUTIONS

The principles of organization of parallel and dis-
tributed computing have been known for a long time
(Chen et al., 1984), (Gropp et al., 1996), (Sunderam
et al., 1994). MPI and MapReduce can be referred
to the most used technologies. MPI technology is the
main instrument for parallel computing, when solving

a wide spectrum of problems.
However, with the increase in the volume of the

data being processed there arises a question of relia-
bility of MPI applications. In recent years the tech-
nologies of distributed computing MapReduce is be-
ing more widely recognized.

Most of the modern research in this field are di-
rected to the search for new methods of organiza-
tions of effective parallel and distributed computing
for large-scale problems and resources (Malyshkin,
2010), (Becker and Dagum, 1992), description of
their adequate discrete models with the possibility to
provide high reliability of the systems being devel-
oped. Of no less actuality are the works in the field
of research on parallel computing on heterogeneous
and hybrid systems, development of the systems for
designing parallel programs - frame solutions (skele-
ton), systems of verification of parallel programming
code and corresponding architectural solutions.

On the other hand, the problems of effective
exploitation of the existing highly performance re-
sources taking into account their heterogeneity have
neither been completely solved (see (Fougère et al.,
2005), (Dı́az et al., 2012) and (Cappello et al., 2005)).
One of the ways of solution is evidently the attraction
of technologies for virtualization of computer sys-
tems and their integration with technologies of par-
allel computing. An even more complex problem
arises, when considering the problems of organization
of reliable systems realizing the distributed (on het-
erogeneous computing resources) high performance
processing of large volume heterogeneous data (Wang

524
Mansurova M., Akhmed-Zaki D., Bazargul M. and Kumalakov B..
Distributed Parallel Algorithm for Numerical Solving of 3D Problem of Fluid Dynamics in Anisotropic Elastic Porous Medium Using MapReduce and MPI
Technologies.
DOI: 10.5220/0005110605240528
In Proceedings of the 9th International Conference on Software Engineering and Applications (ICSOFT-EA-2014), pages 524-528
ISBN: 978-989-758-036-9
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)



and Liu, 2008), (Pandey and Buyya, 2012).
It is to combination of the advantages of paral-

lel, distributed and cloud computing technologies that
the majority of works are devoted (see (Liu and Or-
ban, 2008), (Valilai and Houshmand, 2013) and (Dean
and Ghemawat, 2008)) in view of their special prac-
tical importance. That work describes a construc-
tive approach of hybrid combination of MapReduce
(Fagg and Dongarra, 2000) and MPI (Ng and Han,
1994) for organization of distributed parallel comput-
ing on heterogeneous systems. A general descrip-
tion of MapReduce technology is presented in many
works (Cohen, 2009), (Jin and Sun, 2013) where the
main accent is given to its use for distributed high
performance processing of huge volume of data. The
main problems in this field are provision of effective
load balancing to the existing resources and high reli-
ability of the carried out distributed processing of the
data. The main advantage of MapReduce technology
is a well-defined division of the roles of computing
units - to ”mapper” and ”reducer” the determination
of which does not depend on the structure and char-
acteristics of the computing units. Its significant dis-
advantage is the complexity of organization of com-
munications between units in the process of computa-
tion.

Creation of hybrid solutions allows using of the
advantages of separate technologies. There exist a
great variety of such solutions. The authors of the
paper (Lu et al., 2011) compare MPI and MapReduce
technologies from the point of view of the system fail-
ure. A numerical analysis is made to study the effect
of different parameters on failure resistance. The au-
thors believe that their research will be useful in an-
swering the question: at what volumes of data it is
necessary to decline MPI and use MapReduce in case
of possible failures of the system. The study of prim-
itives of MPI and MapReduce communications al-
lowed the authors (Mohamed and Marchand-Maillet,
2012) to assert the fact that MPI can give the rise in
performance of MapReduce applications.

The work (Slawinski and Sunderam, 2012) con-
siderable differs from the above presented works in
which MPI technology is built in the environment of
MapReduce. The authors describe the reverse task
- the start of MapReduce applications in MPI en-
vironment. It is pointed out that several additional
MPI functions should be written for full support of
MapReduce.

Nevertheless, many of these functions are, as a
rule, recognized to be important and are developed in
MPI to support other modern paradigms of program-
ming and parallelization. In (Srirama et al., 2011) the
essence of the approach is considered to be division

of implementation of MPI applications to sequence
of computation stages each of which is completed by
the stage of communication. This approach is based
on the conception of adapters distributed in conven-
tional utilities for coordination of the requirements to
applications and platform hardware.

Other applications for adaptation of MapReduce
model to organization of parallel computing are given
in (Matsunaga et al., 2008), (Biardzki and Ludwig,
2009), (Ekanayake et al., 2010) and (Bu et al., 2012).
As a whole, the problems of effective organization
of iterative computing on MapReduce model remain,
especially, the problems of scalability of such algo-
rithms and their adaptation for a wide range of scien-
tific problems, there are neither rigorous approaches
to provide reliability of such systems.

3 SOLUTION DESIGN AND
IMPLEMENTATION

3.1 Mathematical Model and Solution
Algorithm

Let us consider a hypercube in anisotropic elastic
porous medium W = [0;T ]�Kf0 � x � 1;0 � y �
1;0 � z � 1g. Let equation (1) describe the fluid dy-
namics in hypercube W under initial conditions (2)
and boundary conditions (3).

¶P
¶t

=
¶

¶x
(f(x;y;z)

¶P
¶x

)+
¶

¶y
(f(x;y;z)

¶P
¶y

)+

+
¶

¶z
(f(x;y;z)

¶P
¶z

)+ f (t;x;y;z) (1)

P(0;x;y;z) = f(0;x;y;z) (2)

¶P
¶n

����
G

= 0 (3)

In equation (1) the solution function P(t;x;y;z)
is the seam pressure in point (x;y;z) at moment t;
f(x;y;z) is the diffusion coefficient; and f (x;y;z) is
density of sources. To solve the defined problem we
employed Jacobs numerical method and domain de-
composition method from (Malyshkin, 2010).

As a result, we have following solution algorithm:
First, original domain is divided into sub-domains.
Every sub-domain consists of three main parts: ghost
slab, boundary slab and interior slab (see fig. 1).

Data transformations defined by (1)-(3) proceed
independently only in the interior slab. Further com-
putation requires boundary slab values that are stored

Distributed�Parallel�Algorithm�for�Numerical�Solving�of�3D�Problem�of�Fluid�Dynamics�in�Anisotropic�Elastic�Porous
Medium�Using�MapReduce�and�MPI�Technologies

525



Figure 2: Figure visualizes stages of MapReduce job execution: initialization and computation. At initialization stage mappers
divide data into sub-domains and distribute them between reducer nodes, then reducers compute initial values. Computation
stage makes use of mappers to collect and re-distribute boundary values of each sub-domain at every iteration step. Reducers
restructure the data received from mappers and launch MPI-code to process it.

Figure 1: Figure visulizes how general compuing domain is
divided into several sub-domains to be distributed between
nodes for parallel execution.

in ghost slabs of neighbor sub-domains (i.e.ghost
slabs store copies of neighbors boundary slab values
). As a result, at each iteration sub-domains exchange
their boundary slab values and recalculate their inte-
rior values. The iteration is carried out until user set
termination conditions are met.

3.2 Technological Considerations and
Algorithm Implementation

Review presented in 2 shows that use of MPI technol-
ogy in MapReduce applications can give significant
increase in performance. Nonethless, Jacobs algo-
rithm (being used to solve the problem defined in 3.1)
has to be modified to make the best use of proposed
technological solution. It consists of several stages.

Initialization Stage. First, we call a MapRe-
duce job that computes initial values for a
three-dimensional field. The job, first, applies
pre-determine method of field decomposition (set by
software designer), then assigns every new sub-field a
unique key, and passes them to reducer nodes for par-
allel execution. When reducers are finished they form
an output file that stores string values in the following
format: (D;R;Xcoord ;Ycoord ;Zcoord). D here is the
datum, R is the reducer id, and Xcoord ;Ycoord ;Zcoord
represent coordinates on appropriate axes. It may
be noted that there is no sub-field id, this is because
every reducer is assigned its own sub-field during
the first run and it does not change until the end of
computation.

ICSOFT-EA�2014�-�9th�International�Conference�on�Software�Engineering�and�Applications

526



Iteration Stage. At this stage, the main iteration
loop of problem solution takes place. Unlike at ini-
tiation step, mapper here is responsible for bound-
ary values exchange between sub-domains. In par-
ticular after each iteration reducers pass mappers
their boundary values for re-distribution while keep-
ing their internal slab in memory. In this way we over-
come network overloading and reduce the ammount
of data transfered.

At the reducer level data obtained from mappers
are written in different files depending on x coordi-
nates. Then every MPI-process computes its own sub-
set. Depending on the rank an MPI-process treates the
data from the file entitled out + the rank of the pro-
cess. In other words, data exchange between Hadoop
and MPI involves following steps: data are stored lo-
cally on each of the nodes; then Hadoop reads from
files in which data are stored, and writes into files ded-
icated for MPI-processes.

When input data for MPI-processes is distributed,
platform starts the MPI-program itself. In our case it
is developed using MPI-library for Java programming
language. Mainly this decision is driven by the fact
that Hadoop is written in Java and, moreover, it has a
rich set of development and debugging tools.

Unfortunately, it is impossible to directly match
the work of MPI library and Hadoop within one
project medium. As a result, we call the MPI-program
from reducer and it is started as a separated flow.
First, MPI-program reads the data from the assigned
file and then writes them in a three-dimensional file
which will be needed to scale the values in the points
form the subfield assigned for this process. The val-
ues in a three-dimensional file are converted accord-
ing to the algorithm, and the new converted values are
written in the corresponding file for the given MPI-
process for the possibility of the their further process-
ing on the side of reducer.

If the rank of the process is equal to 0 or the num-
ber of process -1, the top layer and the bottom ad-
ditional layer which were distributed for processing
remain unchanged. After this, the process of com-
puting is transferred again to Reducer. Then, at stage
Reduce, the data on all points computed, at stage MPI
are grouped so that statical data are written (recorded)
into local file system of the given node on which
Reducer is fulfilled, and the boundary values sub-
jected to exchange are reduced for further distribution
of these values for the rest nodes which need these
boundary values. Both stages of execution are vizual-
ized in fig. 2.

4 CONCLUSIONS

In conclusion, main novelty of the designed solution
is the organization of its iterative scheme with the el-
ements of MPI programming. However, presented re-
sults lack testing data and, as a result, may raise ques-
tions that can not be answered at this stage. Thus,
further actions primarily include testing the platform
prototype implementation and adjusting further action
in accordance with the actual results.

ACKNOWLEDGEMENTS

Research is funded under Kazakhstan government
scientific grant “Developing models and applications
of MapReduce-Hadoop based high-performance dis-
tributed data processing for oil extraction problems”.

REFERENCES

Becker, J. C. and Dagum, L. (1992). Particle simulation on
heterogeneous distributed supercomputers. In HPDC,
pages 133–140.

Biardzki, C. and Ludwig, T. (2009). Analyzing metadata
performance in distributed file systems. In Malyshkin,
V., editor, Parallel Computing Technologies (10th
PaCT’09), volume 5698 of Lecture Notes in Computer
Science (LNCS), pages 8–18. Springer-Verlag (New
York), Novosibirsk, Russia.

Bu, Y., Howe, B., Balazinska, M., and Ernst, M. D. (2012).
The haloop approach to large-scale iterative data anal-
ysis. VLDB J, 21(2):169–190.

Cappello, F., Djilali, S., Fedak, G., Hérault, T., Magniette,
F., Néri, V., and Lodygensky, O. (2005). Computing
on large-scale distributed systems: Xtremweb archi-
tecture, programming models, security, tests and con-
vergence with grid. Future Generation Comp. Syst,
21(3):417–437.

Chen, S. S., Dongarra, J. J., and Hsiung, C. C. (1984). Mul-
tiprocessing linear algebra algorithms on the Cray X-
MP-2: Experiences with small granularity. Journal of
Parallel and Distributed Computing, 1(1):22–31.

Cohen, J. (2009). Graph twiddling in a mapreduce world.
Computing in Science and Engineering, 11(4):29–41.

Dean, J. and Ghemawat, S. (2008). MapReduce: simplified
data processing on large clusters. CACM, 51(1):107–
113.

Dı́az, J., Muñoz-Caro, C., and Niño, A. (2012). A survey
of parallel programming models and tools in the multi
and many-core era. IEEE Trans. Parallel Distrib. Syst,
23(8):1369–1386.

Ekanayake, J., Li, H., Zhang, B., Gunarathne, T., Bae, S.-
H., Qiu, J., and Fox, G. (2010). Twister: a runtime
for iterative mapreduce. In Hariri, S. and Keahey, K.,
editors, HPDC, pages 810–818. ACM.

Distributed�Parallel�Algorithm�for�Numerical�Solving�of�3D�Problem�of�Fluid�Dynamics�in�Anisotropic�Elastic�Porous
Medium�Using�MapReduce�and�MPI�Technologies

527



Fagg, G. E. and Dongarra, J. (2000). FT-MPI: Fault tolerant
MPI, supporting dynamic applications in a dynamic
world. In Dongarra, J., Kacsuk, P., and Podhorszki,
N., editors, PVM/MPI, volume 1908 of Lecture Notes
in Computer Science, pages 346–353. Springer.

Fougère, D., Gorodnichev, M., Malyshkin, N., Malyshkin,
V. E., Merkulov, A. I., and Roux, B. (2005). Numgrid
middleware: MPI support for computational grids.
In Malyshkin, V. E., editor, PaCT, volume 3606 of
Lecture Notes in Computer Science, pages 313–320.
Springer.

Gropp, W., Lusk, E. L., Doss, N. E., and Skjellum, A.
(1996). A high-performance, portable implementa-
tion of the MPI message passing interface standard.
Parallel Computing, 22(6):789–828.

Jin, H. and Sun, X.-H. (2013). Performance comparison un-
der failures of MPI and mapreduce: An analytical ap-
proach. Future Generation Comp. Syst, 29(7):1808–
1815.

Liu, H. and Orban, D. (2008). Gridbatch: Cloud computing
for large-scale data-intensive batch applications. In
CCGRID, pages 295–305. IEEE Computer Society.

Lu, X., Wang, B., Zha, L., and Xu, Z. (2011). Can MPI ben-
efit hadoop and mapreduce applications? In Sheu, J.-
P. and Wang, C.-L., editors, ICCP Workshops, pages
371–379. IEEE.

Malyshkin, V. (2010). Assembling of Parallel Programs
for Large Scale Numerical Modelling. IGI Global,
Chicago, USA.

Matsunaga, A. M., Tsugawa, M. O., and Fortes, J. A. B.
(2008). CloudBLAST: Combining mapreduce and
virtualization on distributed resources for bioinfor-
matics applications. In eScience, pages 222–229.
IEEE Computer Society.

Mohamed, H. and Marchand-Maillet, S. (2012). Enhancing
mapreduce using MPI and an optimized data exchange
policy. In ICPP Workshops, pages 11–18. IEEE Com-
puter Society.

Ng, R. T. and Han, J. (1994). Efficient and effective cluster-
ing methods for spatial data mining. Technical Report
TR-94-13, Department of Computer Science, Univer-
sity of British Columbia. Tue, 22 Jul 1997 22:21:44
GMT.

Pandey, S. and Buyya, R. (2012). Scheduling workflow
applications based on multi-source parallel data re-
trieval in distributed computing networks. Comput.
J, 55(11):1288–1308.

Slawinski, J. and Sunderam, V. S. (2012). Adapting MPI
to mapreduce paaS clouds: An experiment in cross-
paradigm execution. In UCC, pages 199–203. IEEE.

Srirama, S. N., Batrashev, O., Jakovits, P., and Vainikko, E.
(2011). Scalability of parallel scientific applications
on the cloud. Scientific Programming, 19(2-3):91–
105.

Sunderam, V. S., Geist, G., and Dongarra, J. (1994). The
PVM concurrent computing system: evolution, expe-
riences, and trends. Parallel Computing, 20(4):531–
545.

Valilai, O. and Houshmand, M. (2013). A collaborative and
integrated platform to support distributed manufactur-
ing system using a service-oriented approach based on

cloud computing paradigm. Robotics and computer-
integrated manufacturing, 1(29):110–127.

Wang, J. and Liu, Z. (2008). Parallel data mining optimal
algorithm of virtual cluster. In Ma, J., Yin, Y., Yu,
J., and Zhou, S., editors, FSKD (5), pages 358–362.
IEEE Computer Society.

ICSOFT-EA�2014�-�9th�International�Conference�on�Software�Engineering�and�Applications

528


