
Using Bitmaps for Executing Range Queries in Encrypted Databases

Lil Marı́a Rodrı́guez-Henrı́quez and Debrup Chakraborty
Departamento de Computación, CINVESTAV-IPN

Av. Instituto Politécnico Nacional No. 2508, Col. San Pedro Zacatenco, Mexico D.F. 07300, Mexico

Keywords: Symmetric Encryption, Database Encryption, Deterministic Encryption, Bitmap Index, Provable Security.

Abstract: Privacy of data stored at un-trusted servers is an important problem of today. A solution to this problem can be
achieved by encrypting the outsourced data, but simple encryption does not allow efficient query processing.
In this paper we propose a novel scheme for encrypting relational databases so that range queries can be
efficiently executed on the encrypted data. We formally define the syntax and security of the problem and
specify a scheme calledESRQ1. ESRQ1 uses a deterministic encryption scheme along with bitmap indices to
encrypt a relational database. We provide details of the functionality ofESRQ1 and prove its security in the
specified model.

1 INTRODUCTION

Encryption, if applied to relational databases, should
be done in such a way that a large class of queries
can be executed on the encrypted tables. For exam-
ple, if we consider the relationR1 shown in Table 1
some representative queries on this relation can be:
(1) What are the names of the employees whose age
is 18 years? (2) What are the names of the employ-
ees whose age is more than 30 years? (3) What is the
average age of an employee?

If the relationR1 is encrypted normally, i.e., en-
crypting separately each cell of the relation with a
strong (say a IND-CPA secure) encryption, then none
of the above queries can be executed on the encrypted
table.

Regarding the queries that we posed above, query
(1) can be addressed if the relation is encrypted us-
ing a deterministic encryption scheme, such encryp-
tion preserves the equality relation of plaintexts. For
query (2), it is required that the ciphertexts maintains
the order of the plaintexts, this can be achieved by
order preserving encryption. Finally, for query (3) it
is required that meaningful computations can be per-
formed on the ciphertexts,homomorphic encryption
schemescan support such computations on encrypted
data. Generally to treat a large class of queries dif-
ferent encryption mechanisms on the same database
is used. Among others, this paradigm is followed in a
recent work (Popa et al., 2011). In this work we will
mainly focus on processing a class of range queries
(query (2) in the example above).

To enable range queries in an encrypted database
the ciphertext values should provide order informa-
tion of the plaintexts. This can be achieved by an or-
der preserving encryption (OPE) scheme. An OPE
schemeE is such a scheme whereE(x) ≥ E(y), iff
x≥ y. This interesting primitive has received lot of
attention in the current years. The first concepts ap-
peared in the paper (Agrawal et al., 2004), where
the main aim was to design a scheme where effi-
cient range queries can be executed on encrypted data.
This work does not delve into formal definitional and
security perspectives of OPE. The first work which
formally deals with OPE is (Boldyreva et al., 2009),
where the ideal security notion for an OPE scheme,
IND-OCPA, was introduced. The IND-OCPA defini-
tion specifies that the main goal for an OPE is to re-
veal no additional information about the plaintext val-
ues besides their order. In (Boldyreva et al., 2009) it
was shown that it is infeasible to achieve IND-OCPA
security with a stateless encryption scheme. As a re-
sult, they settled on a weaker security guarantee that
was later shown in (Boldyreva et al., 2011) to leak
at least half of the plaintext bits. Later, several other
order preserving schemes were proposed (Boldyreva
et al., 2011; Lee et al., 2009; Yum et al., 2012), but as
it is suggested in (Popa et al., 2013) none of them has
achieved the ideal IND-OCPA security.

Recently, in (Popa et al., 2013), the first ideal-
security order-preserving encoding scheme was pro-
posed, where the ciphertexts reveal nothing except the
order of the plaintext values. The insight that allow
them to avoid the infeasibility result in (Boldyreva

432 María Rodríguez-Henríquez L. and Chakraborty D..
Using Bitmaps for Executing Range Queries in Encrypted Databases.
DOI: 10.5220/0005111604320438
In Proceedings of the 11th International Conference on Security and Cryptography (SECRYPT-2014), pages 432-438
ISBN: 978-989-758-045-1
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)

Table 1: The relationR1.

EmpId Name Age

TRW Tom 18

MST Mary 17

JOH John 52

MRH Mary 33

ASY Anne 18

RZT Rosy 36

et al., 2009) is that the encryption protocol proposed
is interactive, and a small number of ciphertexts of
already-encrypted values change, as new plaintext
values are encrypted. A property which the authors
terms as “mutable”.
Our Contributions. We see the problem of execut-
ing range queries in an encrypted database from a
different direction. The main component of our so-
lution is not to use any special type of encryption
scheme, i.e., the encryption scheme we use is not an
OPE scheme. We encrypt the tables with a determin-
istic encryption scheme, additionally we maintain an-
other table which contains just the order information
of the various attribute values. Both of these tables
are kept with the server, and the server can respond
to range queries without the knowledge of the real
attribute values in the table. We propose a generic
framework for a database encryption scheme support-
ing range queries (ESRQ), and define its syntax and
security notion. We also provide a complete scheme
calledESRQ1. A novel component ofESRQ1 is that
it uses bitmap indices to encode the order information
of the attributes. Bitmap indices are gaining popular-
ity in the current days for accelerated query process-
ing, and many commercial databases now implement
them. Thus it is likely that our solution can be adopted
in an existing database easily and efficiently. To our
knowledge bitmaps have not been used previously to
ensure privacy of databases.

2 PRELIMINARIES

Relations. In what follows, by R(A) we would
denote a relation over a set of attributesA.
If A = {a1,a2, · · ·am}, we shall sometimes write
R(a1,a2, · · · ,am). Given an attributea, DomR(a)
would represent the distinct values of the attributea
in the relationR.

By cardinality of an attributea in R we shall
mean the cardinality ofDomR(a), i.e. CardR(a) =
|DomR(a)|.

A tuple t in a relation over a set of attributes is a
function that associates with each attribute a value in
its specific domain. Specifically ifA= {a1,a2, · · ·am}

and R(A) be a relation, then thejth tuple of R(A)
would be denoted bytR

j . And for ai ∈ A, by tR
j [ai]

we shall denote the value of attributeai in the jth tu-
ple inR. ForB⊆A, tR

j [B] will denote the set of values

of the attributes inB in the jth tuple. We shall some-
times omit the subscripts and superscripts fromtR

j and
denote the tuple byt if the concerned relation is clear
from the context and the tuple number is irrelevant.
Binary Strings. The set of all binary strings would
be denoted by{0,1}∗, and the set ofn bit strings
by {0,1}n. For X1,X2 ∈ {0,1}∗, by X1||X2 we shall
mean the concatenation ofX1 andX2; |X1| will denote
the length ofX1 in bits; andX1 will denote the bit-
wise complement ofX1. If |X1| = |X2|, and⊚ be a
Boolean operator then byX1⊚X2 we will mean that
the operation⊚ is applied bitwise. ForX ∈ {0,1}n

and 1≤ k≤ n, bitk(X) will denote thekth bit of X.
We shall always consider that the domains of all

attributes in the relations and attribute names are sub-
sets of{0,1}∗, this convention would allow us to ap-
ply transformations and functions on the values of the
tuples in a relation without describing explicit encod-
ing schemes.
Bitmaps. Consider a relationR(a1, . . . ,am) with
nT many rows. Consider that for each attributeai ,
DomR(ai) = {vi

1,v
i
2, . . .v

i
λi
}, thusCardR(ai) = λi for

1 ≤ i ≤ m. We define the bitmap of an attribute
ai corresponding to its valuevi

j in the relationR as
BitMapR(ai ,vi

j) = X, whereX is a binary string, such
that|X|= nT and for 1≤ k≤ nT,

bitk(X) =

{

1 if tR
k [ai] = vi

j
0 otherwise.

The encoding for the previous definition is known
as equality encoding, we shall call such bitmaps as
e-encoded bitmaps. In the literature there are other
kinds of bitmap encodings to allow different kinds of
queries. We would be interested in two types of range
bitmapsBitMap< andBitMap> which we will fur-
ther call as l-encoded and g-encoded bitmaps respec-
tively. For the relationR described above, we have
BitMap<R(ai ,vi

j) =Y, where

bitk(Y) =

{

1 if tR
k [ai]< vi

j
0 otherwise.

From the l-encoding and e-encoding other bitmap en-
codings can be easily derived. For example, we define

BitMap>R(ai ,v
i
j) = BitMap<R(ai ,vi

j)⊕BitMapR(ai ,v
i
j)

BitMap
≤
R(ai ,v

i
j) = BitMap

<
R(ai ,v

i
j)∨BitMapR(ai ,v

i
j)

BitMap
≥
R(ai ,v

i
j) = BitMap<R(ai ,vi

j)

Using�Bitmaps�for�Executing�Range�Queries�in�Encrypted�Databases

433

In what follows we will sometimes use two proce-
dures related to bitmaps. LetnT be a positive integer
andS⊆ {1,2. . . ,nT}. MakeBitMap(nT,S) outputs
a stringX such that|X| = nT and for 1≤ k ≤ nT,
bitk(X) = 1 if k ∈ S andbitk(X) = 0, otherwise. If
Y ∈ {0,1}nT, thenMakeSet(Y) returns the setS=
{i : 1≤ i ≤ nT andbiti(Y) = 1}.
Deterministic Encryption Schemes:A determinis-
tic encryption scheme with associated data (DEAD) is
a deterministic functionE : K ×T ×M → C , where
K , T , M andC are the key space, tweak (associated
data) space, message space and cipher space, respec-
tively. Thus,E receives as input a keyK ∈K , a tweak
T ∈ T and a messageM ∈M and produces as output
a cipherC ∈ C . We shall often writeEK(T,M) in-
stead ofE(K,T,M). E also has an inverse function
D : K ×T ×C →M , such that for everyK ∈ K , ev-
eryT ∈ T and everyM ∈M , DK(T,EK(T,M)) = M.
This implies that for everyT ∈ T and everyK ∈ K ,
EK(T, ·) : M → C is an injective function.

To define security ofE we consider an adversary
A which is given an oracleO. The oracleO can either
be EK(·, ·), i.e., the encryption scheme which is in-
stantiated with a uniform random keyK selected from
K , or it can be $(·, ·) which is an oracle which on in-
put (T,M) ∈ T ×M outputs a random string of size
|EK(T,M)|. One important restriction ofA is that it is
not allowed to repeat any query. We formally define
the advantage ofA as

Advdet-cpa
E (A) = |Pr[K

$
← K : AEK (·,·)⇒ 1]−

Pr[A$(·,·)⇒ 1]|

We define Advdet-cpa
E (q,σn, t) by

maxAAdvdet-cpa
E (A) where maximum is taken

over all adversaries which makes at mostq queries
having at mostσn many blocks (ofn bits) and runs for
time at mostt. We consider an encryption scheme to

be(ε,q, t) det-cpa secure ifAdvdet-cpa
E (q,σn, t)≤ ε.

3 ESRQ: BASIC NOTIONS

An encryption scheme supporting range queries
(ESRQ) consists of a tuple of algorithms
(K ,Enc,Φ,Ψ,Dec), which work as follows.

The key Generation Algorithm K runs at the
client side and outputs a set of keys that are ran-
domly selected from a pre-specified key space.
We will sometimes denote the key space also by
K .

GameESRQA
ϒ

1. The challenger selectsK
$
←K

2. A selects two relationsR0, R1, such that

R0 ≈ R1, and gives them to the challenger.

3. The challenger selects a bitb
$
←{0,1}

4. The challenger computesR ′← ϒ.EncK(Rb),

and gives it toA.

5. A outputs a bitb′.

6. if b= b′ output 1

7. else output0

Figure 1: Game used to define security of ESRQ.

ThePrivacy Transform Enc receives as an input
a relation calledR and the set of keys generated
by K . This transform generates a new set of en-
crypted relations calledR ′. We denote this opera-
tion asR ′← EncK(R). This transform is executed
in the client side.

The Query Translator Φ is a keyed transform
that runs at the client. It takes in the keyK and
a queryq meant for the relationR and converts it
to a queryq′ which can be executed inR ′. For
convenience, we shall sometimes refer to a query
meant forR to be aR-query and a query meant for
R ′ asR ′-query.

The Response ProcedureΨ runs at the server
side. Ψ allows the server to answer a queryΦ(q)
onR ′ . The output ofΨ for a query is the response
of the server, calledρ. ρ contains the encrypted
answer, the server returns it to the client.

TheDecryption Procedure is a keyed transform
DecK which runs in the client. It receives as input
the server responseρ and outputs the answerans
for the queryq.

3.1 Security Notion

Definition 1. Given a relation R over a set of at-
tributes A, we classify the attributes in two different
classes: the ones where a range query is valid (range
attributes) and the ones where such queries are not
valid. Definety : A→ {0,1}, where for any a∈ A,
ty(a) = 0, if range queries on the attribute a is not
applicable andty(a) = 1, otherwise.

Definition 2. Two relations R and S are said to be
equivalent (denoted by R≈ S) if the following condi-
tions hold.

1. R and S are defined over the same set of attributes A.

2. R and S contains the same number of tuplesnT.

3. For every i, j ∈ {1,2, . . . ,nT}, and every a∈ A, tRi [a] =
tR
j [a]⇐⇒ tS

i [a] = tS
j [a].

SECRYPT�2014�-�International�Conference�on�Security�and�Cryptography

434

4. For every i, j ∈ {1,2, . . . ,nT}, and every a∈ A, such
that ty(a) = 1,

tR
i [a]≥ tR

j [a]⇐⇒ tS
i [a]≥ tS

j [a].

5. For every i∈ {1,2, . . . ,nT}, and every a∈ A, |tR
i [a]|=

|tS
i [a]|.

The basic goal of ESRQ is to transformR to R ′ in
such a way thatR ′ should not contain any information
beyond the order relation between the attribute values.
We formally define security of an ESRQϒ as a game
between an adversary and a challenger, see Figure 1.

Definition 3. The advantage of an adversaryA in
attacking anESRQϒ is defined as

Advesrq
ϒ (A) =

∣

∣

∣

∣

Pr[ESRQA ⇒ 1]−
1
2

∣

∣

∣

∣

.

The relevant resources of an adversary attacking
an ESRQ scheme is its running time and the size
of the relations that it chooses and submits to its
challenger. We measure the size of the relation in
two different ways, we denote byq the number of
cells. Letsi be the size of each cell, then we define
σn = ∑q

i=1⌈si/n⌉. We callq as the cell complexity of
A andσn as the query complexity ofA . We define
Advesrq

ϒ (q,σn, t) = maxAdvesrq
ϒ (A), where the max-

imum is taken over all adversariesA which runs for
time at mostt and has cell complexity and query com-
plexity of at mostq andσn, respectively. Moreover,
we say that an ESRQ schemeϒ is (ε,q,σn, t) secure,
if Advesrq

ϒ (q,σn, t)≤ ε.

3.2 ESRQ1

Here we discuss a specific schemeESRQ1 for en-
crypting relations such that simple select and range
queries can be executed in the encrypted relations.
Consider a relationR(A) whereA= {a1,a2, . . .a|A|},
and the functionty : A→ {0,1} defined onA. We
consider that a client wants to outsource this generic
relationR(A) to a server. To ensure privacy, the client,
encrypts the relationR(A) usingESRQ1 and delegates
this encrypted relation instead of the original one.
The client will pose queries to the server and expects
that the server to execute these queries on his/her be-
half without knowing the real contents of the relation
R(A).

In what follows, we present a generic description
of the scheme, also throughout we discuss a specific
example based on the relation shown in Table 1. The
only cryptographic object used byESRQ1 is a deter-
ministic encryption schemeE which is required to be
det-cpa secure. We assume thatE : K ×{0,1}λ×
{0,1}∗ → {0,1}∗. Other than the deterministic en-
cryption schemeE, ESRQ1 uses bitmap indices.

The various algorithms involved inESRQ1 are
discussed next in order.
ESRQ1.K : This procedure selects a keyK uniformly
at random fromK . WhereK is the key space of the
deterministic encryption schemeE involved.
ESRQ1.Enc: Given R(A) and the keyK as input,
ESRQ1.Enc outputs two relationsRα and Rβ. We
assume thatR(A) containsnT many tuples andA =
{a1,a2, . . . ,a|A|}. To each attributeai ∈ A we asso-

ciate an unique identifieridi ∈ {0,1}λ. Among other
possibilities, this identifier can be the (appropriately
encoded) name of the attribute or a counter.

Rα containsnT tuples and is defined over the at-
tributesB = {Row} ∪ {b1,b2, . . . ,b|A|}. Wherebi =

EK(id
∗,ai) for some id∗ ∈ {0,1}λ such thatid∗ /∈

{id1, id2, . . . , id|A|}. Hence,Rα has one attribute more
than inR, the extra attribute isRowNo, the other at-
tributes ofRα are the encryption of the attribute names
in A. The specific way in whichRα is created fromR
is shown in Figure 2, which shows thatRα contains
the encryption of the values present inR.

The relation Rβ contains the attributes
{Name,SearchKey,BitMap}, irrespective of the
attributes in relationR. The way the relationRβ is
populated is shown in Figure 2.Rβ stores information
regarding each range attribute inA. For a range
attributeai all its values occurring inRare encrypted.
These encrypted values along with the corresponding
attribute name and the l-encoded bitmap are stored in
Rβ.

For a concrete example, consider thatESRQ1.Enc
has as input the relationR1 as shown in Table 1. The
only attribute inR1, where range queries are mean-
ingful is the attributeAge. Then ESRQ1.Enc(R1)
would produce as output the relationsR1α and R1β
as shown in Table 2. While applying encryption, the
unique identifier of each column is used as the associ-
ated data. The attribute names of the original relation
R1 occur inR1α in the encrypted form.

The relationR1β is created as described in Figure
2. The basic idea is to store the order information
of all the values corresponding to the range attributes
in a suitable manner. The table stores the encrypted
values along with the encrypted attribute names. The
order information is stored in the form of l-encoded
bitmaps. Note that, for encrypting a specific value the
identifier of the attribute is used as the associated data.
ESRQ1.Φ: The transformΦ receives as input a query
meant forR and converts it to a query which can be
executed in(Rα,Rβ). The allowed set of queries are
simple select queries and range queries. The generic
format of an allowed query is

Q: SELECT * FROM R WHERE (a1⊳1v1) ⊚1
(a1⊳2v2) ⊚2 ⊚ℓ−1 (aℓ⊳1vℓ),

Using�Bitmaps�for�Executing�Range�Queries�in�Encrypted�Databases

435

Table 2: RelationsR1α andR1β.

RelationR1α

RowNo EK(id
∗,EmpId) EK(id

∗,Name) EK(id
∗,Age)

1 EK(id1,TRW) EK(id2,Tom) EK(id3,18)

2 EK(id1,MST) EK(id2,Mary) EK(id3,17)

3 EK(id1,JOH) EK(id2,John) EK(id3,52)

4 EK(id1,MRH) EK(id2,Mary) EK(id3,33)

5 EK(id1,ASY) EK(id2,Anne) EK(id3,18)

6 EK(id1,RZT) EK(id2,Rosy) EK(id3,36)

RelationR1β

Name SearchKey BitMap

EK(id
∗,Age) EK(id3,17) 000000

EK(id
∗,Age) EK(id3,18) 010000

EK(id
∗,Age) EK(id3,33) 110010

EK(id
∗,Age) EK(id3,36) 110110

EK(id
∗,Age) EK(id3,52) 110111

Creating Rα

1. for j = 1 to |A|,

2. bj ← EK(id
∗,aj);

3. end for
4. for j = 1 to nT,

5. tRα
j [RowNo]← j;

6. for i = 1 to |A|,

7. tRα
j [bi]← EK(idi , tR

j [ai]);

8. end for

9. end for

Creating Rβ

1. j→ 1

2. for i = 1 to |A|

3. if ty(ai) = 1,

4. for all v∈Dom(ai),

5. t
Rβ
j [Name]← EK(id

∗,a);

6. t
Rβ
j [SearchKey]← EK(idi ,v);

7. t
Rβ
j [BitMap]← BitMap<R(ai ,v);

8. j← j +1

9. end for
10. end if
11.end for

Figure 2: CreatingRα andRβ.

whereai represent an attribute name andvi a value
of the attribute.⊳i ∈ {>,<,≤,≥}, and⊚i can be an
arbitrary Boolean connective, say∨, ∧ etc.

Given as input a valid queryQ, Φ(Q) is the trans-
lation of the original query which just hides the at-
tribute names and the values assigned to the attributes
by encryption. As the input query has a specific struc-
ture, hence the translated queryΦ(Q) is just

Q′: (c1⊳1c′1)⊚1(c2⊳2c′2)⊚2......⊚ℓ−1(cℓ⊳1c′ℓ),

whereci = EK(id
∗,ai) andc′i = EK(idi ,vi).

Going back to the concrete example, consider the
following queryQ1 for the relationR1

Q1: SELECT * FROM R WHERE Age ≥ 18 AND Age
≤ 36

The transformationΦ(Q1), will output

Q1′: (Ek(id
∗,Age) ≥ EK(id3,18))

∧
(Ek(id

∗,Age) ≤
EK(id3,36))

This transformed query is sent to the server.
ESRQ1.Ψ: As discussed,Ψ is the transform that runs
in the server to execute the client’s instructions. The
instruction from the client comes to the server en-
coded asQ′, and it executes the procedureΨ(Q′) as
described in Figure 3.Ψ treats the equality/inequality
conditions inQ′ separately, and constructs a bitmap
for each of these conditions. Once the bitmaps for the
individual conditions are constructed, it aggregates
the bitmaps using the given Boolean connectives. The

final bitmapB constructed in line 13 contains the in-
formation regarding the tuples inRα, which satisfies
the client’s query.

Going back to our example, the queryQ1′

consists of two inequality conditions. The first
one is (EK(id

∗,Age) ≥ EK(id3,18)), the bitmap
for this condition is constructed by checking the
relation Rβ, the bitmap corresponding toName =
EK(id

∗,Age) AND SearchKey = EK(id3,18) is
010000. But recall that the bitmap stored in
Rβ is the l-encoded bitmap. Hence, the bitmap
for the condition (EK(id

∗,Age) ≥ EK(id3,18))
would be the complement of the stored bitmap,
i.e., 101111. The bitmap for the second con-
dition (Ek(id

∗,Age) ≤ EK(id3,36)) is computed
by retrieving the l-encoded bitmap forName =
EK(id

∗,Age) AND SearchKey = EK(id3,36) that
is equal to 110110. Then the e-encoded bitmap is
computed fromRα, i.e., 000001. Finally these two
bitmaps are operated by an OR bitwise, giving as
result 110111. As in the query the two conditions
are connected by anAND, hence the bitmap for the
query is 101111∧ 110111= 100111. This bitmap
corresponds to the rows 1, 4, 5 and 6 of the tableRα.
Hence the server sends the tuples inRα corresponding
to these row numbers.
ESRQ1.Dec: The decryption procedure receives as
input the responseS from the server and the keys.
This procedure uses the inverse of the encryptionE−1

K
to decrypt the server response.

SECRYPT�2014�-�International�Conference�on�Security�and�Cryptography

436

Response ProcedureΨ(Q′)

(AssumeQ′ ≡ (c1⊳1c′1)⊚1(c2⊳2c′2)⊚2......⊚ℓ−1(cℓ⊳1c′ℓ))

1. for i← 1 to ℓ

2. if ⊳i is ’=’,

3. Bi ← Equal(ci ,c′i)

4. if ⊳i is ’<’,

5. Bi ← Lesser(ci ,c′i)

6. if ⊳i is ’>’,

7. Bi ←Greater(ci ,c′i)

8. if ⊳i is ’≥’,

9. Bi ← Lesser(ci ,c′i)

10. if ⊳i is ’≤’,

11. Bi ← Lesser(ci ,c′i)∨Equal(ci ,c′i)

12.end for

13.B← B1⊚1B2⊚2 · · ·⊚ℓ−1Bℓ

14.Σ←MakeSet(B,nT)

(Let Σ = {σ1,σ2, . . . ,σm})

15.Run the query:

SELECT * FROM Rα WHERE

RowNo IN (σ1,σ2, . . . ,σm)

16.LetSbe the response to the above query;

17.return S;

Equal(a,b)
1. Run the query:

SELECT RowNo from Rα where a =b

2. LetSbe the response of the above query

3. B←MakeBitMap(nt,S)

4. return B

Lesser(a,b)
1. Run the query:

SELECT BitMap FROM Rβ where

Name = a AND SearchKey = b

2. LetSbe the response of the above query

andB∈ S,

3. return B

Greater(a,b)
1. Run the query:

SELECT BitMap FROM Rβ where

Name = a AND SearchKey = b

2. LetSbe the response of the above query

andB∈ S,

3. return B̄⊕Equal(a,b)

Figure 3: The response procedureΨ.

Security of ESRQ1: Let ESRQ1[E] denote a ESRQ
scheme where the deterministic encryption used isE.

Theorem 1. Fix natural numbers q,σn, t, and a de-
terministic encryption schemeE : K ×T ×M → C ,
such that the smallest ciphertext inC has size s. Let
ϒ = ESRQ1[E]. Then

Advesrq
ϒ (q,σn, t)≤ Advdet-cpa

E (q′,σ′n, t
′)+

q2

2s+1 ,

where q′ ≤ q, σ′n ≤ σn and t′ = O(t).

The above Theorem relates the esrq security of
ESRQ1[E], with the det-cpa security ofE, and it
implies that theESRQ1 scheme provides almost the
same security as that ofE with a small degradation.

4 CONCLUSION

In this paper we described a generic framework for
database encryptions which enables range queries.
We also specified a novel scheme calledESRQ1
which uses deterministic encryption and bitmap in-
dices. This initial proposal is being extended in sev-
eral ways: management for dynamic databases, a new
scheme which would provide just det-cpa security,
and an efficient implementation of this scheme on a
postgres SQL database. These results would be soon
appear in an extended version of this paper.

ACKNOWLEDGEMENTS

The authors acknowledge the support from CONA-
CyT project 166763.

REFERENCES

Agrawal, R., Kiernan, J., Srikant, R., and Xu, Y. (2004).
Order-preserving encryption for numeric data. In
Weikum, G., König, A. C., and Deßloch, S., editors,
SIGMOD Conference, pages 563–574. ACM.

Boldyreva, A., Chenette, N., Lee, Y., and O’Neill, A.
(2009). Order-preserving symmetric encryption. In
Joux, A., editor,EUROCRYPT, volume 5479 ofLec-
ture Notes in Computer Science, pages 224–241.
Springer.

Boldyreva, A., Chenette, N., and O’Neill, A. (2011). Order-
preserving encryption revisited: Improved security
analysis and alternative solutions. In Rogaway, P., ed-
itor, CRYPTO, volume 6841 ofLecture Notes in Com-
puter Science, pages 578–595. Springer.

Lee, S., Park, T.-J., Lee, D., Nam, T., and Kim, S. (2009).
Chaotic order preserving encryption for efficient and
secure queries on databases.IEICE Transactions, 92-
D(11):2207–2217.

Popa, R. A., Li, F. H., and Zeldovich, N. (2013). An ideal-
security protocol for order-preserving encoding. In
IEEE Symposium on Security and Privacy, pages 463–
477. IEEE Computer Society.

Popa, R. A., Redfield, C. M. S., Zeldovich, N., and Balakr-
ishnan, H. (2011). Cryptdb: protecting confidentiality

Using�Bitmaps�for�Executing�Range�Queries�in�Encrypted�Databases

437

with encrypted query processing. InSOSP, pages 85–
100.

Yum, D., Kim, D., Kim, J., Lee, P., and Hong, S. (2012).
Order-preserving encryption for non-uniformly dis-
tributed plaintexts. In Jung, S. and Yung, M., edi-
tors, Information Security Applications, volume 7115
of Lecture Notes in Computer Science, pages 84–97.
Springer Berlin Heidelberg.

SECRYPT�2014�-�International�Conference�on�Security�and�Cryptography

438

