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Abstract. We propose a general schema for learning rules in neural networks, 
the General Enforcing Rule Schema (GERS), from which we infer new 
simplified learning rules for in particular supervised learning of three-layered 
feed-forward networks, namely Enforcing Rule Supervised ERS and ERS2. 
These rules are comparatively simpler than the established rule of 
Backpropagation and their performance is at least equivalent. The new rules are 
compared with Backpropagation in different experiments; an additional 
comparison is performed with real data for the prediction of parcel delivering. 

1 Introduction 

Most of the established learning rules for neural networks are, as is well known, 
“Hebbian” ones, i.e. they are based on the principle of Hebb that learning is the 
changing of connections between the (artificial) neurons. Although Hebb speaks of 
the changing of “cells” rather than of connections [1] it seems safe to transfer his 
principle to the changing of connections. In this sense Hebb may be called the 
(unintentional) father of learning neural networks. 

The Hebbian learning rules and their numerous variants have been applied for a 
long time and they have frequently demonstrated their usefulness. Yet despite their 
obvious success they have a slight methodical and theoretical blemish: 

From a methodical point of view it seems a bit strange that the activation values or 
output values of the neurons respectively are used on the one hand as cause variables 
and on the other as performance variables. Consider, e.g., a standard version of the 
Backpropagation rule, which we shall use also for comparison reasons: 

 j 
f j

' net j  t j  oj           , if j is an output neuron

f j
' net j  kwik      , if j is a neuron from the hidden layer

k











(1) 

Here the activation or output value respectively of the neuron j represents as a part 
of the learning rule a cause variable or an independent variable respectively. On the 
other hand the performance of the network as a result of the application of the 
learning rule is measured by the output values and that means the activation values of 
the different output neurons. Hence the activation values are also used as performance 
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variables or dependent variables.  
To be sure, this double usage of the activation values is no logical circle. Yet it 

seems rather redundant to use the activation values twofold. Hence it would be 
desirable to construct learning rules where the activation or output values are used 
only as performance variables. Mathematically the rules would become simpler, 
which would be an advantage for teaching, programming, and application purposes.  

In addition, from a theoretical point of view it is rather unsatisfactory that the 
specific learning rules for different types of learning, particularly supervised learning 
and self-organized learning, have not much in common, besides the general aspects of 
Hebb’s principle. The Backpropagation rule as a paradigm for supervised learning for 
example has on a first and second sight not much to do with the well-known “Winner-
takes all” rule that is used in Kohonen Feature Maps for self-organized learning. 
Hence it would be desirable to construct a general learning schema that would be the 
basis for learning rules, applied to different types of learning, and that is also based on 
Hebb’s proven principle - in neuroinformatics and biology (cf. e.g. [6]). 

In a formal sense its essence certainly is the increasing or decreasing respectively 
of the weight values between sending neurons and a receiving artificial neuron, as 
many learning rules take into account. By leaving out the output values of the 
respective neurons we obtain a general learning schema in its simplest form as 

wij =  c  and  0  c   1. (2) 

The constant c has the same function as the learning rate  in different standard 
learning rules. If one uses for example the linear activation function 

A j  wij Ai ,  (3) 

then in large networks the activation values frequently become too large. In order to 
avoid such an increasing equation (2) can be extended by introducing a “dampening 
factor”. Then the schema becomes 

wij =  c * (1 – wij(t)  (4) 

if wij(t) is the according weight value at time t, i.e. before changing. The dampening 
factor is used in order to keep the weight values in the interval (-1, 1).  

Equations (2) and (4) are just schemas, namely the General Enforcing Rule 
Schemas (GERS). The application to different types of learning needs in the two 
types investigated by us, namely supervised learning and self-organized learning, 
additional components. We chose these types of learning because they are by far the 
most important ones in the usage of neural networks. By the way, when dealing with 
reinforcement learning equation (4) can be used directly as the according learning 
rule. 
     For example, an according learning rule for self-organized learning, which we 
developed for a self-organized learning network (Self Enforcing Network, SEN), is 

w(t+1) = w(t) + w and 
                                               w = c*vsm, 

(5) 

c is again a learning rate and vsm is the according value in a so-called semantical 
matrix, i.e. the data base for the learning process (cf. [2]; [3]). Obviously this is a 
direct application of GERS to this type of learning without taking into regard the 
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output values. The main emphasis in this article, however, is put on the application of 
GERS to supervised learning, in particular learning of three-layered feed-forward 
networks. 

2 ERS – Enforcing Rule Supervised 

Three-layered networks need as learning rules strictly speaking two components, 
namely the variation of the weights between the hidden and the output layer and the 
variation of the weights between the input layer and the hidden one. The first 
component of our new rule is computed by 

∆wijൌc	 ∗ 	ห൫1‐หwijሺtሻห൯ห ∗ δj	 ∗ sgnሺoiሻ (6) 

j is of course the distance between the output neuron j and the respective component 
in the target vector, i.e. j = tj – oj. Note that the factor sgn(oi) is used only as the sign 
of the whole product; the absolute numerical value of oi does not matter. For brevity’s 
sake we call this rule ERS – Enforcing Rule Supervised. The second component of 
ERS is: 

 j 
t j  o j                , if j is output neuron

w jk k
k
         , else









(7) 

For experimental and methodical purposes we also constructed a variant of ERS by 
adding the factor oi: 

∆wijൌc	 ∗ ห൫1‐หwijሺtሻห൯ห ∗ δj	 ∗ oi (8) 

This variant is more similar to the established rules because of the factor oi; for the 
sake of brevity we call this variant ERS2. The computation of the weight variation 
between the hidden and the output layer is the same as in equation (6). 

Because we wished to compare ERS with standard learning rules we performed our 
experiments also with a standard version of the Backpropagation Rule (BP), already 
shown in equation (1).1 There are numerous other versions of BP but we used the 
standard version usually introduced in textbooks on neural networks (e.g. [5]). 

Equation (7) shows that ERS and ERS2 are also “back propagating” rules as they 
propagate the error to the weight values between input and hidden layer. Recently a 
learning rule for multilayered feed forward networks has been proposed, namely a so-
called “No-Prop” algorithm, which just uses the Delta rule for the variation of the 
weight values between output and hidden layer and leaves the other weight values 
fixed [8]. As far as we know this algorithm has been analyzed just for a few 
examples. 

3 Experimental Design and Results 

We analyzed the performance of ERS and ERS2 in comparison to BP with networks 
                                                           

1 Attempts to improve standard BP can be found, e.g., in Orr and Müller[4].  
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of different size and different topologies.2 The input and target values are generated at 
random from the interval between 0.00 and 1.00. The initial weight values of the 
networks are also generated at random from the interval (-0.5, 0.5) or (-1, 1). A 
learning process is considered as successful if 0    0.01. If such a value is not 
reached after mainly 2.000 learning steps the learning run stops and is marked as 
unsuccessful. In each single experiment ERS, ERS2, and BP got the same initial 
matrix and the same input and target patterns. The learning rate c for ERS and ERS 2 
was in the first series c = 0.2 and 0.4 respectively; when enlarging the networks we 
decreased the learning rate to c = 0.04. In all experiments in the case of BP was  = 
0.9. For error computation we used the Euclidean distance.  

The activation function is tangent hyperbolicus tanh(x) for ERS and ERS2; for BP 
we used the logistic function. To simplify the experiments we chose the same size of 
the patterns as the number of patterns to be learned, i.e. if the networks had for 
example to learn 20 patterns the patterns consisted of 20 components. When we speak 
of “pattern” we mean strictly speaking a pair of patterns, namely an input pattern and 
a target pattern.  

The first experimental series was performed with 10 different patterns for each 
network, generated at random. In all 1000 different tests were performed and the 
maximal iteration number, i.e. number of learning steps, was limited to 2.000. Table 1 
shows the results for the most suited topologies respectively for all learning rules; the 
topologies are obtained from according experiments. The values given for the mean 
refer to all experiments and only to successfully learned patterns; SD (standard 
deviation) was computed for all experiments, i.e. also the unsuccessful ones. LR is the 
learning rate and AF the respective activation function. Min / Max refers to minimal 
or maximal learning steps respectively. 

Table 1. Performance for “ideal” topologies; the numbers in the first line represent the numbers 
of successful learning processes. 

Learning Rule 
Topology 
Weight intervals 

BP 
10—25—10 
(-1.0 , 1.0) 

ERS 
10—65—10 
(-1.0 , +1.0) 

ERS2 
10—40—10 
(-0.5 , 0.5) 

Performance 
LR /AF 
Min / Max 
Ø / SD 

998 
0.9 / logistic 

38 / 1015 
112 / 98 

1000 
0.1 / TanH 
110 / 1282 
241 / 85 

1000 
0.4 / TanH 
47 / 1419 
134 / 80 

 
The next step was to test the performance of the learning rules with different 
topologies and different intervals of the generated weight values. Table 2 shows the 
results. 
 

According to our experiments ERS and ERS2 need in general a larger number of 
neurons in the hidden layer to reach better results than the BP networks. It might be 
not by chance that Widrow et al. (loc. cit.) report the same result when comparing 
their algorithm to BP.  

                                                           
2 Viktor Schäfer has implemented the Tool, which enables the comparison between the rules. 
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Table 2. Learning performance with 10 patterns and the same topologies. 

Topology 
Weight intervals 

10—30—10 
(-0.5 , 0.5) 

10—40—10 
(-0.5 , 0.5) 

10—50—10 
(-0.3 , 0.3) 

BP 
LR /AF 
Min / Max 
 Ø / SD

952
0.9 / logistic 
304 / 4787 
885 / 622

939
0.9 / logistic 
290 / 6809 
866 / 639

962 
0.9 / logistic 
208 / 4769 
684 / 496 

ERS 
LR /AF 
Min / Max 
 Ø / SD

934
0.2 / TanH 
53 / 4746 
310 / 468

982
0.2 / TanH 
61 / 5857 
205 / 240

998 
0.2 / TanH 
147 / 9255 
778 / 857 

ERS2
LR /AF 
Min / Max 
 Ø / SD

998
0.4 / TanH 
36 / 2798 
140 / 160

1000
0.4 / TanH 

38 / 660 
127 / 71

989 
0.4 / TanH 
98 / 9942 
625 / 1093 

 

For the following experiments, we decided to make a compromise with respect to 
the number of neurons in the hidden layer, i.e. the acceptable according number for 
each learning rule, as a result of several samples. 

The next figure shows the results for the learning processes with 20, 30, and 50 
patterns. The two chief results are: 

a) The speed, i.e. the number of learning steps, is approximately the same with all 
learning rules. In some experiments BP was the fastest learning rule, in others ERS 
and ERS2. Yet the differences are not significant in the sense that there is a general 
trend, which rule is the best one.  

b) In all experiments ERS and ERS2 are more reliable than BP, i.e. their number of 
successfully completed learning processes is always larger than that of BP. Hence, 
although the new learning rules ERS and ERS2 are not significantly faster than BP 
they are obviously more reliable – an interesting result in particular for practical 
applications of neural networks (see below the real data experiments).  

 

Fig. 1. Learning performance with 20, 30, and 50 patterns. 
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Details can be seen in the following table: 

Table 3. Learning performance: details. 

Topology 
Weight intervals 

20—60—20 
(-0.5 , 0.5) 

30—80—30 
(-1.0 , 1.0) 

50—100—50 
(-1.0 , 1.0) 

BP 
LR /AF 
Min / Max 
 Ø / SD 

980
0.9 / logistic 
344 / 4527 

849.5 / 578.5

992
0.9 / logistic 
337 / 3222 
614 / 339

992 
0.9 / logistic 
467 / 3529 
802 / 321 

ERS
LR /AF 
Min / Max 
 Ø / SD 

1000
0.2 / TanH 
251 / 6068 
780 / 494.5

995
0.1 / TanH 
230 / 3878 
556.5 / 201

1000 
0.03 / TanH 
351 / 4114 
978 / 492.5 

ERS2
LR /AF 
Min / Max 
 Ø / SD 

998
0.3 / TanH 
254 / 9970 

1969.5 / 1414

998
0.2 / TanH 
460/ 4468 

1296.5 / 935

1000 
0.04 / TanH 
361 / 3274 
666 / 287 

 
For comparison purposes we repeated all experiments with an error rate of 0.000 

for each pattern number and each topology. ERS and ERS2 were successful but only 
with approximately twice iterations than in the previous experiments. The used 
standard version of BP did not succeed at all, i.e. it only seldom reached the learning 
goal. Additional parameters like momentum or decay would probably have been 
necessary; it will be interesting if such parameters can also improve the performance 
of ERS and ERS2.  

4 A Case Study: Predictions of Parcel Delivering Times 

A severe problem for all delivery services is to inform their customers about the 
probable time the parcels and other products will be delivered to the customers. In 
cooperation with DHL, the delivery service of the Deutsche Post, one of the biggest 
logistic firms worldwide, we obtained real delivery data for several districts of Essen, 
a large city in the West of Germany. The districts consist altogether of 20 streets. As 
far as we know we were the first to attempt predictions with neural networks for the 
problem of prognosticating different time intervals or time windows. 

Our research question was two-fold, namely on the one hand to analyze if 
successful predictions for delivery times in different streets are possible at all and on 
the other hand which one of the three learning rules, compared in the experiments 
above, reached the best prediction results. 

In all three cases we used the same network topology, namely 34—45—34. The 
number of input and output neurons is due to the number of time intervals each day 
was divided into. Hence each input and output neuron represents a certain time 
interval. The training phase was 20 weeks; each day in a week was mapped to the 
according day in in the next week. Hence we obtained for each day in a week a time 
series of twenty components. For BP we used again the logistic function and a 
learning rate of 0.9; for ERS we used a so-called logarithmic-linear function that was 
newly developed by us (cf. [2]): 
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A୨ ൌ 	ቊ
lgଷሺA୧  1ሻ ∗ w୧୨ 			 , A୧  0
lgଷሺ|A୧ െ 1|ሻ ∗ െw୧୨, A୧ ൏ 0

୬

୧ୀଵ

 (9) 

The learning rate was 0.04; ERS2 had the tanh-function and a learning rate of 0.08. 
The following figure shows the performance of BP for Tuesday in week 31 (KW); 

the numbers below the figure show how many predictions are characterized by a 
specific time difference with respect to the factual delivery. For example, 2 
predictions differed just  15 minutes from the factual time (top row), 4 predictions 
differed  45 minutes (second row) and so on. The number of predictions is the 
according mean of the 20 streets. 

The next 2 figures show the performances of ERS and ERS2 for the same day: 

 
Fig. 2. Prediction performance of BP for Tuesday. 

 
Fig. 3. Prediction performance of ERS. 

An additional remark is necessary: The figures show just the results for 16 time 
intervals. This due to the fact that frequently no parcels were delivered at all; hence it 
would be quite useless to compute a difference for such days between the predicted 
time and the factually non-existent time. Therefore the prediction list is an adjusted 
one, which is certainly not the fault of the different networks.  

The results for the other days are nearly the same as those for Tuesday; the shown 
results are in this way representative. 
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Fig. 4. Prediction performance of ERS2. 

With respect to the first questions if such predictions are possible at all, the answer 
is “to a certain degree”. The delivery experts at DHL commented on our results that 
indeed delivery times permanently vary because of the changing of drivers, choosing 
different routes by the drivers, possibility of traffic jams and road works, differences 
between customers who frequently and those who only seldom receive parcels, and 
other factors. The opinion of the experts in general was that our results could probably 
still be improved but that these results are significantly better than their own 
estimates. Hence further cooperation will be arranged. 

The answer to the second question generally confirms the results of the 
experiments described above. All three learning rules perform with a comparable 
success. BP and ERS2 are rather similar in their prediction successes; ERS is more 
successful, i.e. it generated slightly more very good predictions. Hence this case study 
is another indicator that at least ERS is a bit more reliable than BP. 

Finally we show in addition the mean of the performance values for all streets and 
all days of the week that should be predicted. Fig. 5 contains the results of ERS: 

 
Fig. 5. Mean values of ERS in detail. 

The next table shows the results for all learning rules: 
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Table 4. Comparison of the mean values of the different rules. 

Time 
difference: ±15 ±45 ±75 ±105 ±135 ±165 >±165

No 
delivery

No 
input 

AVG SD 

BP 16 16 25 11 9 6 16 16 5 ± 94 60 
ERS 18 19 20 10 8 4 20 16 5 ± 94 64 
ERS2 20 17 19 9 9 5 20 16 5 ± 95 65 

 
These results show that the trend demonstrated for Tuesday is indeed 

representative. The DHL experts again assured us that they were not able to produce 
comparable results. 

5 CONCLUSION 

To sum up, both ERS versions performed at least as well as BP. The general trend in 
all experiments and in the case study is unambiguous: ERS and ERS2 seem to be 
quite suited to solve complex learning problems at least as well as the established 
learning rule, namely BP. The main differences between the rules are on the one hand 
that ERS and ERS2 operate well with a small learning rate, which should be even 
decreased if the networks become larger. BP in contrast always needs a rather large 
learning rate. One has to take into account, though, that frequently the size of the 
learning rate depends on the selection of the activation function (e.g. [7]). In our 
experiments ERS and ERS2 performed best with tanh and BP with the logistic 
function; in the case study we chose the new logarithmic-linear function for ERS, 
which performed rather well, and which we already had successfully applied in our 
new self-organized learning network [2, 3].  

On the other hand both ERS versions perform best with rather large hidden layers; 
BP in contrast usually needs only smaller ones. It is probably not by chance that 
Widrow [8] (loc. cit.), as remarked, report a similar result from their experiments with 
the No-Prop algorithm and BP; further investigations will possibly explain this 
remarkable concordance. 

Of course several methodical caveats must be taken into consideration. These 
results confirm that ERS and ERS2 are able to solve different learning tasks as far as 
we have them analyzed. Yet the results are from samples with certain topologies and 
from a specific real data case study and they cannot claim to be representative in the 
sense that, e.g., ERS and ERS2 are always as fast as BP or for each problem more 
reliable than BP. After all, BP has been tested in its different versions for more than 
two decades and with the two versions of ERS we are just in the beginning. Other 
parameters like other activation functions, different topologies, e.g. short cuts, more 
levels, introduction of momentum and decay, or other versions of BP should be 
investigated too, which we shall undertake in the near future. In addition, the 
influence of parameters like momentum on the two ERS rules should and will be 
analyzed too. 

It might well be, by the way, that there are classes of learning problems where BP 
is significantly better than ERS or ERS2, but it might also be that there are other 
problem classes where ERS or ERS2 should be preferred. Without doubt ERS and 
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ERS2 are comparatively simpler than BP and hence also simpler to program; in 
particular ERS and ERS2 do not need any external parameters like, e.g., momentum. 
According to our didactical experiences BP is usually rather difficult for students of 
computer science to understand. Teaching ERS and ERS2 as an alternative to BP will 
be an interesting didactical experience; Widrow [8] stress for the same reasons the 
comparative simplicity of the No-Prop algorithm as an advantage with respect to BP. 

To emphasize it again, we do not mean that BP or the Delta rule become obsolete 
because of our new learning rules. These established learning rules have been 
analyzed and applied for many years and they will be always useful and necessary 
algorithms. ERS and ERS2 for three-layered or more-layered feed forward networks 
might be additional useful tools for users of neural networks – not more but also not 
less.  
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