
Localization of Visual Codes in the DCT Domain Using
Deep Rectifier Neural Networks

Péter Bodnár1, Tamás Grósz2, László Tóth2 and László G. Nyúl1

1University of Szeged, Department of Image Processing and Computer Graphics,
Szeged, Hungary

2MTA-SZTE Research Group on Artificial Intelligence,
Hungarian Academy of Sciences and University of Szeged, Szeged, Hungary

Abstract. The reading process of visual codes consists of two steps, localization
and data decoding. This paper presents a novel method for QR code localization
using deep rectifier neural networks, trained directly in the JPEG DCT domain,
thus making image decompression unnecessary. This approach is efficient with
respect to both storage and computation cost, being convenient, since camera
hardware can provide JPEG stream as their output in many cases. The structure
of the neural networks, regularization, and training data parameters, like input
vector length and compression level, are evaluated and discussed. The proposed
approach is not exclusively for QR codes, but can be adapted to Data Matrix
codes or other two-dimensional code types as well.

1 Introduction

Two-dimensional visual codes are widely used at industrial setups and private projects
as well. QR codes had a decent increase of usage in the last couple of years, more
than other patented code types, like Aztec codes or Maxicodes. This is due to its well-
constructed error correction scheme that allows recovery of damaged codes up to cca.
30 % of damage. Image acquisition techniques and computer hardware have also im-
proved significantly, that made automatic reading of QR codes available. State of the
art algorithms [8, ?] do not require human presence and assumptions on code orienta-
tion, position and coverage rate in the image any longer. However, image quality and
acquisition techniques vary considerably and each application has its own requirements
for detection speed and accuracy, making the task more complex.

Speed is a general challenge in image processing, and in many cases, on-line execu-
tion of the algorithms is required. Usage of mathematical morphology or convolutions
for edge or corner detection can greatly decrease performance. Machine learning tech-
niques can overcome this issue and produce efficient solutions with respect to speed
and accuracy.

In the last few years, there has been a renewed interest in applying neural networks,
especially deep neural networks to various tasks. As the name suggests, deep neural
networks (DNN) differ from conventional ones in that they consist of several hidden
layers. However, to properly train these deep networks, the training method requires
modifications, as the conventional backpropagation algorithm encounters difficulties

Bodnár P., Grósz T., Tóth L. and G. Nyúl L..
Localization of Visual Codes in the DCT Domain Using Deep Rectifier Neural Networks.
DOI: 10.5220/0005125700370044
In Proceedings of the International Workshop on Artificial Neural Networks and Intelligent Information Processing (ANNIIP-2014), pages 37-44
ISBN: 978-989-758-041-3
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)

(“vanishing gradient” and “explaining away” effects). In this case the “vanishing gra-
dient” effect means that the error might vanish as it gets propagated back through the
hidden layers [1]. In this way some hidden layers, in particular those that are close to the
input layer, may fail to learn during training. At the same time, in fully connected deep
networks, the “explaining away” effects make inference extremely difficult in practice
[3]. Several solutions have been proposed to counter these problems. These solutions
modify either the training algorithm by extending it with a pre-training phase [3, 7], or
the architecture of the neural networks [2].

JPEG [11] is one of the most common still image formats, and provides efficient
data storage and transfer. Most cameras can acquire images directly to JPEG format,
some devices even can output a stream of JPEG images, which motivates research of
image processing methods using this format. In this paper, we propose a neural network
that works directly with the DCT coefficients of the JPEG image. Using this approach,
only the first steps of the decoding have to be performed, while the most complex step,
inverse DCT can be skipped.

2 The Proposed Method

The JPEG decoding process can be stopped at the point where quantized DCT coef-
ficients are restored from the file, right after the execution of the inverse of RLE and
Huffman-coding. The matrix of coefficients that represent a 8� 8 px block in the image,
serves as the input vector of the DNN. For the order of the coefficients, the zigzag pat-
tern is appropriate as it is defined by the JPEG standard, since learning efficiency does
not differ when using differently ordered vectors of the same training set, but this order
represent the “importance level” of the coefficients, and therefore it is recommended
for evaluation of DNN performance using only the first n elements.

Each vector representing an image block is processed by the neural network indi-
vidually and a measure is assigned which reflects the probability of presence of a QR
code part in that block. After the evaluation of all image blocks, a matrix is formed with
the probability values (Fig. 1). This can be considered as a feature image, downsampled
by a factor of 8 from the original resolution. The next step of the process is to find clus-
ters in this matrix that has sufficient size, compactness and high values of probability to
form a QR code.

2.1 The Neural Network

Vectors are passed to the core of this approach, which is the neural network. We propose
using deep rectifier networks instead of conventional ones, since they perform better at
MNIST and other various image classification tasks, according to the findings of Glorot
et al. [2].

Deep Rectifier Neural Networks (DRN) alter the hidden neurons in the network and
not the training algorithm by using rectified linear units. These rectified units differ
from standard neurons only in their activation function, as they apply the rectifier func-
tion max(0; x) instead of the sigmoid or hyperbolic tangent activation. Owing to their
properties, the DRNs do not require any pre-training to achieve good results [2].

38

(a) real-life image example (b) feature image using JET color palette

Fig. 1. Image captured by a phone camera (a) and visualized feature image according to the output
of the neural network (b).

The rectifier function has two important properties, namely its hard saturation at 0
and its linear behaviour for positive input. The first property means that only a subset of
neurons will be active in each hidden layer. For example, when we initialize the weights
uniformly, around half of the hidden units output are zeros. In theory, this hard satura-
tion at 0 could harm optimization by blocking gradient backpropagation. Fortunately,
experimental results do not support this, showing that the hard non-linearities do no
harm as long as the gradient can propagate along some path [2]. Owing to the other
property of the rectified units, namely the linear behaviour of the active units, there is
no “vanishing gradient” effect [2]. This linear behaviour also means that the compu-
tational cost will be smaller, as there is no need to compute the exponential function
during the activation calculation, and the sparsity can also be exploited. Unfortunately,
there is a disadvantage because of this linearity, the “exploding gradient” effect, which
means that the gradients can grow without limit. To prevent this, we applied L1 normal-
ization by scaling the weights such that the L1 norm of each layer’s weights remained
the same as it was after initialization. What makes this possible is that for a given input
the subset of active neurons behaves linearly, so a scaling of the weights is equivalent
to a scaling of the activations.

Our deep networks consisted of three hidden layers and each hidden layer had 1000
rectified neurons, as DRN with this structure yielded the best results on the development
sets.

The output layer of the neural networks consisted of two softmax neurons, one for
the positive and one for the negative label, allowing the networks to output not only
classification decisions but also posterior probabilities. As error function we applied
the cross entropy function.

In our study were utilized two regularization methods to prevent overfitting, namely
early stopping and weight decay. Early stopping was achieved by stopping the training
when there was no improvement in two subsequent iterations on the validation set. As
weight decay regularization the weights were scaled back after each iteration, forcing
them to converge to smaller absolute values than they otherwise would.

The neural networks were trained using semi-batch backpropagation, the batch size
being 100. The initial learn rate was set to 0.001 and held fixed while the error on the
development set kept decreasing. Afterwards, if the error rate did not decrease in the
given iteration, then the learn rate was subsequently halved.

39

We used our custom implementation for neural networks, which was implemented
to run on GPU. The training of a DRN on the synthetic dataset took less than 8 minutes
using an NVIDIA GTX-770 graphics card.

2.2 Input Data

The training vectors are labeled positive if the QR code coverage ratio is higher than
a selected Tc threshold for that block. Typically, F-score peaks at Tc � 0:5, while
Tc � 0:1 leads to better recall (hit rate). However, the number of these partially covered
blocks is one scale smaller than the one of empty and fully covered blocks, therefore Tc
is not a determinative parameter of the training. Furthermore, even if the DRN misses
partially covered blocks, that only means it misses the perimeter of the code object, and
expansion of the positively classified cell groups of the feature matrix overcomes this
issue.

The input vectors for the DRN are one-dimensional vectors, formed by the quan-
tized DCT coefficients of a 8�8 px block. During the decoding, the multiplication with
the quantization table can be omitted for two reasons. On one hand, due to the non-
linear nature of neural networks, they are capable to learn on a vector set and on the
same set multiplied element-wise with another fixed vector, with similar efficiency. The
other reason is that, the components of the input vectors were normalized as described
in [4] to have zero mean and unit variance. This normalization improved the numerical
condition of the optimization problem during training, ensuring faster convergence.

According to this setup, the DRN has to be trained using images of the same com-
pression level as images of the end-user application, since we are not using the original
DCT matrix, which would require a multiplication by the quantization table. Without
de-quantization, different levels of compression applied to the same image content lead
to different vectors. These vectors can be far away from the training samples of a spe-
cific compression level. To overcome this, DRNs can be trained using the de-quantized
coefficient vectors, which are roughly the same on similar compression levels. Detailed
evaluation of this concept is in the Results section (Fig. 4).

3 Evaluation and Results

The test database consists of 10 000 synthetic and 100 arbitrarily acquired images con-
taining QR code. The synthetic examples are built with a computer-generated QR code
containing all of the lower- and uppercase letters of the alphabet in random order. This
QR code was placed on a random negative image, with perspective transformation.
After that, Gaussian smoothing and noise have been gradually added to the images,
ranging [0,3] for the � of the Gaussian kernel. For noise, a noise image (In) was gener-
ated with intensities ranging from [-127, 127] following normal distribution, and added
gradually to the original 8-bit image (Io) as I = �In+(1��)Io, with � ranging [0, 0.5].
Some samples with parameters being in the discussed ranges are present in (Fig. 2). A
total number of 42 million vectors were extracted from those images, about 10 mil-
lons of them are labeled as positive. Real images were taken with a 3.2 Mpx Huawei
hand-held phone camera. Significant smoothing is present on those images due to the

40

absence of flash and precise focusing capability. These images contain a printed QR
code that mostly suffer from minor bending, placed on various textured backgrounds,
like creased cloth, carpet, marble or cover page of a book (Fig. 1(a)), in order to cre-
ate high background variability and to make the classification task more complex. The
arbitrarily acquired image set roughly had QR codes of the same size as the artificial
set, and its extracted vector set consisted about 750 000 vectors, about 180 000 of them
being positive.

(a) � = 0:07,
� = 0:39

(b) � = 0:65,
� = 0:77

(c) � = 1:32,
� = 0:05

(d) � = 1:88,
� = 0:95

(e) � = 2:86,
� = 0:65

(f) � = 2:99,
� = 0:69

Fig. 2. Samples of the training database with different amount of smoothing and noise.

We examined the effect of compression to DRN performance. As expected, better
image quality yield to better training results, as shown on Fig. 3(a).

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 10 20 30 40 50 60 70 80 90 100

JPEG quality

precision
recall

F-score
Accuracy

P
er

fo
rm

an
ce

(a)

 0.55
 0.6

 0.65
 0.7

 0.75
 0.8

 0.85
 0.9

 0.95
 1

precision
recall

F-score
Accuracy

P
er

fo
rm

an
ce

 0 10 20 30 40 50 60 70

 training vector length

(b)

Fig. 3. DRN performance with respect to (b): the quality of the data set and (b): the length of the
training vectors

Since the zigzag pattern represents the order of coefficients with respect to visual
importance, it raises the question of how many elements are needed from this vector
for efficient classification. Fig. 3(b) shows performance measures of DRNs trained on
the first n elements of the vectors. It is shown that roughly the first 10 elements of
the coefficient vector are sufficient for training a DRN that has F-score above 0.9, and
performance only slightly increases when using more than half of the vector.

All networks trained to a test set of specific quality also have been evaluated on all
sets, thus showing robustness of the networks with respect to difference of compression
levels between the training and test sets (Fig. 4). Results show that DRNs are somewhat
specific to the quality they were trained on, but still perform well up to a cca. 10–15 %
tolerance. According to these results, training of a DRN to a specific image quality is not
required, however they perform the best when both images are of the exact same quality.
An analogous rule applies when training the DRN using all vectors extracted from
images of various JPEG qualities. The DRN trained to those vectors would perform
inferior to the one trained with the same JPEG quality as the end-user scenario.

41

 10 20 30 40 50 60 70 80 90

Test set JPEG quality

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

T
ra

in
in

g
 s

e
t

JP
E
G

 q
u
a
lit

y

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

Fig. 4. Performance map of the trained DRNs used on images having the same content but differ-
ent JPEG quality.

After all these experiments, a DRN has been trained with the best experimental
training setup, in order to compare it with other localization methods of the literature.
According to Table 1, NN training is proven to be a viable option for real-time efficient
QR code localization, compared to the works of Ohbuchi et al. [6] and Lin et al. [5].
However, precision of the DRN on the real set is inferior, which is probably due to
the smaller number of training vectors. Furthermore, the QR codes were slightly larger
compared to the training set, which resulted in less prominent patterns to learn within an
8�8 px block. High-resolution images having QR code structure elements larger than
the JPEG block size are required to have been downsampled before processing. This
also has a positive effect to processing speed, since it greatly reduces the number of
blocks that have to be evaluated. The downsampled image computation can be avoided
by setting the camera to acquire lower resolution images in case we have assumption
on the expected QR code size.

DRNs have to be trained to vectors that come from QR codes of comparable size to
the expected test images. This limitation can be overcome using multiple DRNs trained
on vectors of various QR code sizes, or one single DRN trained on all expected sizes,
which will have inferior overall performance than the specific neural networks.

Performance measures were computed considering each block individually. How-
ever, groups of blocks with appropriate size and shape have to be extracted from this
feature map by clustering or connected component labeling, and bounding boxes have
to be defined in order to send cropped image regions to decoding algorithms [10, ?].

We used our custom implementation for neural networks, which was implemented
to run on GPU. The training of a DRN on the synthetic dataset took less than 8 minutes
using an NVIDIA GTX-770 grapics card. The computation power of this setup allowed
to process about 450 000 vectors per second, which means real-time processing of 800�
600 px images with cca. 60 FPS, and 1600� 1200 px images with cca. 15 FPS.

42

Table 1. Performance comparison of the proposed DRN and other REF-OHBUCHI [6] and REF-
LIN [5].

Data set Algorithm Precision Recall Accuracy
Synthetic Proposed 0.9607 0.9770 0.9899
Synthetic REF-OHBUCHI 1.0000 0.8370 0.8730
Synthetic REF-LIN 0.9340 0.9490 0.8890
Real Proposed 0.8379 0.8935 0.9715
Real REF-OHBUCHI 0.9500 0.8750 0.8360
Real REF-LIN 0.9400 0.8930 0.8450

4 Concluding Remarks

Usage of neural networks is a viable approach for real-time localization of visual codes.
We have examined performance of deep rectifier neural networks trained on the DCT
coefficients of JPEG image blocks, without accessing actual pixel data. Using this ap-
proach, the most complex step of the JPEG decoding process, the inverse DCT can be
omitted. We have proven efficiency of NNs on a large amount of input blocks of both
synthetic and real input images.

NNs can also be trained on vectors of a specific compression level, and using these
networks on images of the same level, the multiplication of the coefficients with the
quantization table can also be omitted, thus further speeding up the process.

Our future work includes examination of the JPEG coefficients considering data
of adjacent blocks, and the construction of post-processing steps aiming to increase
compactness of block groups.

Acknowledgements

This publication is supported by the European Union and co-funded by the Euro-
pean Social Fund. Project title: Telemedicine-oriented research activities in the fields
of mathematics, informatics and medical sciences. Project number: TÁMOP-4.2.2.A-
11/1/KONV-2012-0073.

References

1. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural net-
works. In: Proc. AISTATS. pp. 249–256 (2010)

2. Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier networks. In: Proc. AISTATS. pp.
315–323 (2011)

3. Hinton, G. E., Osindero, S., Teh, Y. W.: A fast learning algorithm for deep belief nets. Neural
Computation 18(7), 1527–1554 (2006)

4. LeCun, Y., Bottou, L., Orr, G., Muller, K. R.: Efficient backprop. In: Orr, G., K., M. (eds.)
Neural Networks: Tricks of the trade. Springer (1998)

5. Lin, D. T., Lin, C. L.: Automatic location for multi-symbology and multiple 1D and 2D
barcodes. Journal of Marine Science and Technology 21(6), 663–668 (2013)

43

6. Ohbuchi, E., Hanaizumi, H., Hock, L. A.: Barcode readers using the camera device in mobile
phones. In: Cyberworlds, 2004 International Conference on. pp. 260–265 (2004)

7. Seide, F., Li, G., Chen, X., Yu, D.: Feature engineering in context-dependent deep neural
networks for conversational speech transcription. In: Proc. ASRU. pp. 24–29 (2011)

8. Sörös, G., Flörkemeier, C.: Blur-resistant joint 1D and 2D barcode localization for smart-
phones. In: Proceedings of the 12th International Conference on Mobile and Ubiquitous
Multimedia. pp. 11:1–11:8. MUM ’13 (2013)

9. Szentandrási, I., Herout, A., Dubská, M.: Fast detection and recognition of qr codes in high-
resolution images. In: Proceedings of the 28th Spring Conference on Computer Graphics.
pp. 129–136. SCCG ’12 (2013)

10. Tekin, E., Coughlan, J.: A bayesian algorithm for reading 1D barcodes. In: Proceedings of
the 2009 Canadian Conference on Computer and Robot Vision. pp. 61–67. CRV ’09, IEEE
Computer Society, Washington, DC, USA (2009)

11. Wallace, G. K.: The JPEG still picture compression standard. Consumer Electronics, IEEE
Transactions on 38(1), xviii–xxxiv (Feb 1992)

12. Wang, K., Zou, Y., Wang, H.: Bar code reading from images captured by camera phones. In:
Mobile Technology, Applications and Systems, 2005 2nd International Conference on. p. 6
(2005)

44

