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Abstract: Commutative basic algebras are non-associative generalizatidfi¢-a@lgebras. They are an algebraic coun-
terpart of a non-associative propositional logic which generalizes the tukasiewicz infinite valued logic and
which is related to reasoning under uncertainty. The paper investigates approximation spaces in commutative
basic algebras based on their ideals.

1 INTRODUCTION usually depends on several statemehitsThen, e.g.,
the probabilityp(S; & $) of S & S can take differ-
Rough sets were introduced by Pawlak (Pawlak, ent values depending on whettrandS; are inde-
1982) in 1982 to give a new mathematical approach to pendent or correlated. It is known that for given=
vagueness. The key idea is that our knowledge aboutp(S1) andpz = p(S), possible values of(S; & )
the properties of the objects of a given universe of dis- form an intervalp = [p~, p*] C [0, 1], wherep™ =
course may be inadequate or incomplete in the sensemaxp1 + p2 — 1,0) and p™ = min(py, p2). (See
that the objects of this universe can be observed only (Kreinovich, 2004) or (Botur and Halas, 2009).)
within the accuracy of indiscernibility relations. Re- Therefore we can use such interval estimates to
call that in the classical rough set theory, subsets areget an intervap(C) of possible values op(C). But
approximated by means of pairs of ordinary sets, so- the intervalp(C) can be too large. Then in such sit-
called lower and upper approximations, which are e.g. uations it is reasonable to select a point within this
composed by some classes of given equivalences. interval as an estimate fqy(S; & &), e.g., a mid-

It is known that the basic (fuzzy) logiB L is the point of this interval. That means, we can evaluate
logic of continuous-norms and their residua (Hajek, S1 & S := 3-max(p1+ p2— 1,0) + 3 -min(py, pa).
1998). That means, if a continuotshorm & is (See (Botur and Halas, 2009).) It is obvious that op-
considered as the truth function of conjunction and eration & is not associative.
its residuum— is the truth function of implication, Hence we can see that in such situations we need
then each evaluation of propositional variables by to have a propositional logic which generalizes fuzzy
truth values from [0,1] extends to the evaluation of logics, e.g. Lukasiewicz, Godel or product logic, such
each formula. (See (Hajek, 1998), (Botur and Halas, that the conjunction is not necessarily associative.

2009).) In all these logics the conjunction & is asso- In (Botur and Halas, 2009), the authors proposed
ciative, i.e., for arbitrary formulag, g, X, the formula a logic foundation for fuzzy reasoning with non-
0& (W& X) +— (& W) & X is provable. associative conjunction in the form of a new for-

But there are situations where the associativity of mal deductive systemicga. This logic is very close
& need not be satisfied. Let we have expert systemsto the tukasiewicz logic (differs just in this non-
where we need estimate for the degree of certainty of associativity of the conjunction). The authors have
conjunction and disjunction of stateme®s...., S, of shown that.cga is algebraizable logic in the sense of
which they are not completely sure. This uncertainty (Blok and Pigozzi, 1989) and that its equivalent al-
is described by the probabilitigg assigned to the  gebraic semantics is the variety of commutative basic
statements§. The conclusiorC of an expert system algebras. Sinc&1V-algebras are an algebraic coun-
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terpart of the tukasiewicz logic, commutative basic

For the fundamental properties of commutative

algebras are appropriate non-associative generalizabasic algebras see (Botur and Halas, 2008), (Botur

tions of MV -algebras.

MV -algebras are an algebraic semantics of a logic

with truth values from the real interval [0, 1] and thus
it is natural that rough sets MV -algebras were in-

and Halas, 2009) or (Botur et al., 2012).

Let A be a commutative basic algebra dhg | C
A. Thenl is called

troduced and investigated. (See (Rasouli and Davvaz(a) apreidealof A if

2010).) The corresponding approximate spaces are
based on congruences or, equivalently, on ideals of

MV -algebras.

() x,yel = xayel;
(i) xel,yeAy<x=yel;

In the paper we introduce and study approximate (b) anidealof Aif | is the 0-class of some congruence

spaces in commutative basic algebras. Analogously

onA.

as inMV-algebras, congruences correspond to ideals (see (Krijavek and Kihr, 2011) or (Botur et al.,
and so we deal with approximate spaces based on ide-2012).)

als of these algebras.

2 PRELIMINARIES

An algebraA = (A; ®,—,0) of type (2,1,0) is called
abasic algebrgChajda et al., 2009) if forany y, z€
A

(1) x®0=x

(2 -——x=x

3) —~(xpy)dYy=-("yEX) DX

4) —(-(-(xey)ey)dz) @ (X2 =-0.

If the groupoid (A; @) is commutative then
(A; @,-,0) is acommutative basic algebra

Put 1 = 0. Let < be the binary relation oA
such that

X<y <= Xpy=1
Then < is an order and the ordered q¢%;, <) is a

bounded lattice, where 0 is the least and 1 the greates

element, and for the lattice operations we have

XVYy==(=XDY)BY, XAY=-(-XV-y).

Every ideal ofA'is a preideal ofA but not con-
versely (Kriavek and Kihr, 2011). Ideals Afare
exactly kernels of congruences and since the variety
of commutative basic algebras is congruence regular,
any ideall is the O-class of a unigue congruerig®n
A. Then(x,y) € 6, iff xoy, yoxeI. Hence we will
denote the quotient algeb#d 8 also in the formA/I.

Let P(A) andI(A) be the set of preideals and ide-
als of A, respectively. Then by (Krhavek and Kihr,
2011),(P(A), Q) is a distributive complete lattice and
(I(A), C) is its complete sublattice.

An additive termis a commutative basic algebra
term in which the symbot does not occure. A
is a commutative basic algebra afigt B C A, then
the preidea{B) generated b3 contains exactly those
elementsa € A such thata < t(by, ..., b,) for some
n-ary additive ternt andby, ..., by € B.

Now we recall some basic notions of the theory
of classical approximation spaces. Approxima-
tion spaceis a pair (S,6) whereS is a set and

tan equivalence o%. For any approximation space

(S,8), by the upper rough approximatiorn (S,0)
we will mean the mappind\pr : P(S) — P(S)
such thatApr(X) := {x € S: x/6 NX # 0} and by

The class of basic algebras contains certain classeghe lower rough approximatiomm (S,6) the mapping
of algebras of many-valued and quantum logics. For Apr: P(S) — P(S) such thatApr(X) := {x € S:

exampleMV-algebras, orthomodular lattices and lat-

x/0 C X}, foranyX C S (x/0 is the class of5/6

tice effect algebras can be viewed as particular casescontainingx.)

of basic algebras (see (Chajda et al., 2009)).

In what follows, we will deal with commutative
basic algebras.
tice (A; v,A) is distributive (Chajda et al., 2009).

Recall that in such a case the lat-

If Apr(X) = Apr(X) thenX is called adefinable
set, otherwis« Is called aroughset.

Moreover, every finite commutative basic algebra is 3 APPROXIMATIONS INDUCED

an MV-algebra (Botur and Halas, 2008), but there
are commutative basic algebras which are kis-
algebras. (Recall tha#lV-algebras are just associa-
tive commutative basic algebras.)

Define, for anyx, y € A,

X0y 1= ~(-Xx®Y).

BY IDEALS

In this section we introduce and investigate special
approximation space@, 8) such thatA is the uni-
verse of a commutative basic algebra #&nid a con-
gruence on this basic algebra.
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If A= (A ®,—,0) is a commutative basic alge-
bra, 0 a congruence oA andl = lg the correspond-
ing ideal, thenApr, (X) andApr, (X) will denote the
lower and upper rough approximation of akyC A
in the approximation spad@\, 6).

Proposition 3.1. Let A be a commutative basic alge-
bra, | an ideal of A and ab € A. Then &l = b/l if
and only if there are xy € | such thata= (bay)ox.

Proof. Leta= (b@y) ©x wherex,y € I. Then
boa=bo((baoy) ox) <bo(box)=bAax<x,
thusbcaecl.

Furtheracb= ((bay)ex)ob< (bay)
yA-b<yel, henceacbel.

Thereforea/l = b/I.

Conversely, let/l =b/l,i.e. x=boa, y=a6o
bel. We havey¢b=(acb)@b=avb=(bs
a)@a=x®a, thus(ydb)ox= (x@&a) o x=aA-x.
At the same tim=bs a< 1ca= —a, that means
x < =a, hencea < —x, thusaA —x = a.

Therefore we gea = (bpy) © x. O

cb=

If A is a commutative basic algebra aidd~
X,Y C A, denote by(X,Y) the preideal ofA gener-
ated byXuy.

If 1=1(a,...,2) is an additive term, then by
[(t) we will mean the number of occurencies of the
variablesz, ..., z,in 1.

Lemma 3.2. (Botur et al., 2012) Let A be a commu-
tative basic algebra and | an ideal of A. Then, for all
abeA ad(bal)=(adb)®l.

Theorem 3.3. Let | be an ideal of a commutative ba-
sic algebra A and) # X,Y C A. Then

Apr ((X,Y)) € (Apr; (X),Apr (Y)).
If Ais linearly ordered then

Apr ((X,Y)) = (Apr (X),Apr (Y)).

Proof. If a € Apr;((X,Y)) thena/l N (X,Y) #
0. Letbea/ln(X)Y) andb < t1(z,...,z)
where T is an n-ary additive term andz € X U
Y,i=1,...,n. Suppose thatt; and 1, are n-
ary additive terms such thatts),1(t2) < I(1) and
(z1,...,z0) =11z, -, Z0) B T2(Z1, ..., Zn). Since
a/l =b/l, thereare,y € | suchthaa= (bady)ox.
Hencea= (bay)ox<bay< (Tu(zr,...,7) D
(2, s 20) OY=T1(21s o 20) @ (Ta(2, ., 20)
u) whereu € |. Since (t12(z1,...,2zn) @ U)/l =
Tz_(zl,...7zn)_/l@u/l = 12(z,...,2z0)/1 and z €
Apr, (X) U Apr(Y), i = 1,...,n, we obtaina €
(Apr, (X), Apr; (Y)).

Suppose A is linearly ordered. Leta €
(RPN (X), AP (Y)), @< T(V,...,Vn), wheret is an
n-ary additive term,v; € Apr, (X) UApr(Y), i =

1,....,n. Letw € vi/l NnX, providedy; € X, and
w; € vi/INY, providedy; € Y, and letze a/l. Sup-
posea/l # T(wy,...w,)/l. SinceA is linearly or-
dered,z < t(w1,...Wn), hencez € (X,Y). Therefore
ac Apn ((X,Y)). 0

Theorem 3.4. Let | be an ideal of a commutative ba-
sic algebra A and # X,Y C A. Then

(ADI, (X),Apr, (Y)) € ApF, ((X,Y)).

Proof. Let a € (Apr (X),Apr,(Y)). Suppose
a<1t(z,...,z), wheret is ann-ary additive term
andz € Apr (X)UApr (Y),i=1,....n Letbe a/l.
Thenthere arg y € | withb=(a®x)oy. If 11 andtz
aren-ary additive terms such thatty), [(t2) < I(1)
and 1(z;, ..., z0) = (@, ..., z) ® 2z, ..., Z),
thenb= (aex)oy<adx<1(z,...,z) EX=

(t1(z1, .-y Z0)BT2AZ, ..o, Z0))BX=T1(Z1, ..., Zn) B
(t2(z1, ..., Z0) ® u), whereu e I.

We have (t2(z1,...,z70) @ W/l =
2z, ..., z0)/l = Ta(z/l,...;za/1) C (X)Y),

because; /| C XUY,i=1,...,n

Analogously 11(z1/1,...,z3/1) C (X,Y), thus
also 1(z1/l,...,zy/1) C (X,Y), i.e. b e (X)Y).
Thereforea € Apr, ((X,Y)). O

Theorem 3.5. Let A be a linearly ordered commuta-
tive basic algebra, | an ideal of A and X 0 a convex
subset of A. Then also AgK) andApr; (X) are con-
vex.

Proof. Let x,y € Apr, (X), ze A, x<z<yand
x/I #z/1 #y/l. Suppose € z/I. The congruence
0, has convex classes, hence for any elemegnts
x/1, y1 €y/l andz; € z/l we havex; < z; < y1, thus
z, € Apr, (X), and therefore € Apr, (X). That means
Apr, (X) is convex

Let nowx,y € Apr, (X) andz € Asuch thak < z<
y. Letxg e x/1 NX, y1 €y/I NnX andx/l #z/1 £y/I.
If z7 € /I, thenx; < z1 <y;. Sincexy,y1 € X, we
getz € z/1 NX, thereforez € Apr,(X). That means
Apr, (X) is convex. O

Let A be a commutative basic algebra.BfC A,
put—-B:={-b: be B}.
Theorem 3.6. Let A be a commutative basic algebra,
| anideal of A and) # X C A. Then

-Apr (X) = Apr (=X);
—Apr, (X) = Apr, (=X).

Proof. a) Letx € —Apr, (X). Then—x € Apr, (X),
thus—x/1 NX #0. Lety € —x/I NX. Then—-xo
y, yo—xe€l, hence alsaxe -y, -yexel and-y e
—-X. Thereforex € Apr,(—X), and so—-Apr, (X) C
Apr, (=X).

a)
b)
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Let x € Apr;(—=X) andy € x/I N=X. Thenxo
y, yox €1, hence also-xe -y, -ye-x €|, and
-y € X. Thus—x/I NX # 0, so—-x € Apr,(X), and
consequently € -Apr, (X). That meanépr, (—=X) C
-Apr, (X).

b) Letx € —Apr, (X). Then-x € Apr, (X), that
means—x/I C X. Thus x/l C =X, hencex €
Apr (=X).

Letx € Apr, (=X), i.e. x/I € =X. Hence—x/I C
X, thereforex € —=Apr, (X). O

Lemma 3.7. (Botur et al., 2012, Lemma 2.7) If A is
a commutative basic algebra and | is a preideal of A,
then the following are equivalent:

0]
(ii)
Theorem 3.8. Let A be a linearly ordered commu-

tative basic algebra and I and J ideals of A. Then
Apr(J) is an ideal of A.

Proof. Obviously Oc Apr;(J).

Letxe Apr,(J), ye A y<x. Letx ex/l-nJ.
Suppose thays € y/I andy/l # x/1. Thenyy < x1,
hencey: € J, and thuy € Apr, (J).

Now, let x,y € Apr(J), x; € X/l NJ andy; €
y/I NJ. Thenxy ®dyi € Jandxidys € (/1)@ (y/1) =
(x@y)/l. Thereforexady € Apr, (J).

Letx,y € A, ac Apr,(J) anda; € a/l NJ. Then
(x® (yoa) e xey)/l = X/1ay/1ea/l)o
(x/1oy/l) = (x/le(y/l ®a/l))o (x/l ©y/l) =
(x@ (yoa)) o (xay))/l and(x® (yoa)) © (X
y) € J. Hence(x® (yd a)) © (x@y) € Apr, (J).

Therefore by Lemma 3.Apr, (J) is an ideal ofA.

0

| is an ideal of A,
(a®@ (box))o(adb) elforalla,be A xel.

4 CONNECTIONS AMONG
APPROXIMATION SPACES

In this section we investigate approximation spaces
which are induced by different or special ideals.

Proposition 4.1. If | and J are ideals of a commuta-
tive basic algebra an@ = X C A, then

ADY,  (X) € (AR, (X), Apr, (X))

Proof. If a e A_pr<I 3 (X), thena/(l1,J) C X,
thus alsoa/l, a/J C X. Hencea< a®aec
(Apr, (X),Apr,(X)). 0

Lemma 4.2. Let A, and A be commutative basic al-
gebras, | an ideal of Aand f a homomorphism ofiA
into A,. Then f1(1) is an ideal of A.

Proof. Obviously f (1) is a preideal of;. Let
x,y € A; andac f~1(1). Thenf((x@® (y®a)) © (x®
y) =X (fy)ef(a)o(f(x)ef(y)el, there-
fore f~1(1) is an ideal ofA;. O
Theorem 4.3. Let A; and A be commutative basic
algebras, f a homomorphism of Ato Ay, | an ideal
of Ao and0 # X C Az. Then

4 (ApR (X)) = Apry1g) (F1(X)).

Proof. Let x € A1 Thenx € Apr¢-y)(f~(X))
if and only if there existz € x/f~1(1) N f~1(X) iff
zex, xoze f71(1)iff f(zex), f(xex) liff f(z)o
f(x), f(x)ef(z) eliff f(z)/I =1fx)/I.

We havef(z) € f(x)/1, ze f~1(X), thenf(z) €
f(x)/1 X, hencef(x)/l NX # 0, and sof(x) €
Apr, (X). L

That meansc € Apr;-1,(f (X)) if and only if
x € f-1(Apr (X)). O
Theorem 4.4. Let A, and A be commutative basic
algebras, f: A; — A» a homomorphism an@ #
X CA;. Then

f (APrger(r)(X))

Proof.  Let x € f(Aprker)(X)) and y €
Aprker()(X) be such thatx = f(y). Let z¢
y/Ker(f) NnX. Thenzoy, yoze Ker(f) andze X.
Hencef(zoy) =0, f(yoz) =0,so0f(z © f(y) =
0, f(y)© f(2) = 0. Thereforef(z) = f(y) = x, i.e.
f(2) € f(X), and consequentlyf (Apryer(r)(X)) €
f(X).

The converse inclusion is obvious. O
Proposition 4.5. Let A be a commutative basic alge-
bra, | and J ideals of A an@ # X C A.

a) If Ais linearly ordered, then
Apr, (X)NApr, (X) = Apr,;(X).

b) If X is definable with respectto | or J, or if A is
linearly ordered, then

Apriny(X) = Apr (X) NApr(X).

Proof. a) Obvious.

b) Let X be definable, e.g., with respect to
Then Apr, (X) NApry(X) = X NApr(X) = X C
APl (X).

The converse inclusion follows from the fact that
INJ C 1, JimpliesApr~;(X) C Apr, (X), Apry(X).

For linearly ordered\ it is obvious. O

£(X).
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5 CONCLUSIONS

It is known that there are situations concerning rea-
soning where the associativity of the logical con-
nection conjunction need not be satisfied. Recently,
a logic foundation for fuzzy reasoning with non-
associative conjunction, as a generalization of the
Lukasiewicz infinite valued logic, was proposed.
Commutative basic algebras are an algebraic seman-
tics of such logic. This paper introduces and inves-
tigates the concept of approximate spaces based on
ideals of commutative basic algebras and shows that
it is reasonable to study approximate spaces in non-
associative structures.
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