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Sokolská 33, Ostrava, Czech Republic

Keywords: Commutative Basic Algebra, MV-algebra, Non-associative Logic, Łukasiewicz Logic, Classical Rough Set,
Approximation Space, Ideal, Congruence.

Abstract: Commutative basic algebras are non-associative generalizations ofMV-algebras. They are an algebraic coun-
terpart of a non-associative propositional logic which generalizes the Łukasiewicz infinite valued logic and
which is related to reasoning under uncertainty. The paper investigates approximation spaces in commutative
basic algebras based on their ideals.

1 INTRODUCTION

Rough sets were introduced by Pawlak (Pawlak,
1982) in 1982 to give a new mathematical approach to
vagueness. The key idea is that our knowledge about
the properties of the objects of a given universe of dis-
course may be inadequate or incomplete in the sense
that the objects of this universe can be observed only
within the accuracy of indiscernibility relations. Re-
call that in the classical rough set theory, subsets are
approximated by means of pairs of ordinary sets, so-
called lower and upper approximations, which are e.g.
composed by some classes of given equivalences.

It is known that the basic (fuzzy) logicBL is the
logic of continuoust-norms and their residua (Hájek,
1998). That means, if a continuoust-norm & is
considered as the truth function of conjunction and
its residuum→ is the truth function of implication,
then each evaluation of propositional variables by
truth values from [0,1] extends to the evaluation of
each formula. (See (Hájek, 1998), (Botur and Halaš,
2009).) In all these logics the conjunction & is asso-
ciative, i.e., for arbitrary formulasφ,ψ,χ, the formula
φ & (ψ & χ)←→ (φ & ψ) & χ is provable.

But there are situations where the associativity of
& need not be satisfied. Let we have expert systems
where we need estimate for the degree of certainty of
conjunction and disjunction of statementsS1, ..., Sn of
which they are not completely sure. This uncertainty
is described by the probabilitiespi assigned to the
statementsSi . The conclusionC of an expert system

usually depends on several statementsSi. Then, e.g.,
the probabilityp(S1 & S2) of S1 & S2 can take differ-
ent values depending on whetherS1 andS2 are inde-
pendent or correlated. It is known that for givenp1 =
p(S1) andp2 = p(S2), possible values ofp(S1 & S2)
form an intervalp = [p−, p+] ⊆ [0, 1], wherep− =
max(p1 + p2− 1, 0) and p+ = min(p1, p2). (See
(Kreinovich, 2004) or (Botur and Halaš, 2009).)

Therefore we can use such interval estimates to
get an intervalp(C) of possible values ofp(C). But
the intervalp(C) can be too large. Then in such sit-
uations it is reasonable to select a point within this
interval as an estimate forp(S1 & S2), e.g., a mid-
point of this interval. That means, we can evaluate
S1 & S2 := 1

2 ·max(p1+ p2−1, 0)+ 1
2 ·min(p1, p2).

(See (Botur and Halaš, 2009).) It is obvious that op-
eration & is not associative.

Hence we can see that in such situations we need
to have a propositional logic which generalizes fuzzy
logics, e.g. Łukasiewicz, Gödel or product logic, such
that the conjunction is not necessarily associative.

In (Botur and Halaš, 2009), the authors proposed
a logic foundation for fuzzy reasoning with non-
associative conjunction in the form of a new for-
mal deductive systemLCBA. This logic is very close
to the Łukasiewicz logic (differs just in this non-
associativity of the conjunction). The authors have
shown thatLCBA is algebraizable logic in the sense of
(Blok and Pigozzi, 1989) and that its equivalent al-
gebraic semantics is the variety of commutative basic
algebras. SinceMV-algebras are an algebraic coun-
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terpart of the Łukasiewicz logic, commutative basic
algebras are appropriate non-associative generaliza-
tions ofMV-algebras.

MV-algebras are an algebraic semantics of a logic
with truth values from the real interval [0, 1] and thus
it is natural that rough sets inMV-algebras were in-
troduced and investigated. (See (Rasouli and Davvaz,
2010).) The corresponding approximate spaces are
based on congruences or, equivalently, on ideals of
MV-algebras.

In the paper we introduce and study approximate
spaces in commutative basic algebras. Analogously
as inMV-algebras, congruences correspond to ideals
and so we deal with approximate spaces based on ide-
als of these algebras.

2 PRELIMINARIES

An algebraA= (A; ⊕,¬,0) of type〈2,1,0〉 is called
abasic algebra(Chajda et al., 2009) if for anyx, y, z∈
A:

(1) x⊕0= x;
(2) ¬¬x= x;
(3) ¬(¬x⊕ y)⊕ y= ¬(¬y⊕ x)⊕ x;
(4) ¬(¬(¬(x⊕ y)⊕ y)⊕ z)⊕ (x⊕ z)= ¬0.

If the groupoid (A; ⊕) is commutative then
(A; ⊕,¬,0) is acommutative basic algebra.

Put 1 := ¬0. Let≤ be the binary relation onA
such that

x≤ y :⇐⇒ ¬x⊕ y= 1.

Then≤ is an order and the ordered set(A; ≤) is a
bounded lattice, where 0 is the least and 1 the greatest
element, and for the lattice operations we have

x∨y= ¬(¬x⊕ y)⊕ y, x∧y= ¬(¬x∨¬y).

The class of basic algebras contains certain classes
of algebras of many-valued and quantum logics. For
example,MV-algebras, orthomodular lattices and lat-
tice effect algebras can be viewed as particular cases
of basic algebras (see (Chajda et al., 2009)).

In what follows, we will deal with commutative
basic algebras. Recall that in such a case the lat-
tice (A; ∨,∧) is distributive (Chajda et al., 2009).
Moreover, every finite commutative basic algebra is
an MV-algebra (Botur and Halaš, 2008), but there
are commutative basic algebras which are notMV-
algebras. (Recall thatMV-algebras are just associa-
tive commutative basic algebras.)

Define, for anyx, y∈ A,

x⊖ y := ¬(¬x⊕ y).

For the fundamental properties of commutative
basic algebras see (Botur and Halaš, 2008), (Botur
and Halaš, 2009) or (Botur et al., 2012).

Let A be a commutative basic algebra and/0 6= I ⊆
A. ThenI is called

(a) apreidealof A if

(i) x, y∈ I =⇒ x⊕ y∈ I ;
(ii) x∈ I , y∈ A, y≤ x =⇒ y∈ I ;

(b) anidealof A if I is the 0-class of some congruence
onA.

(See (Krňávek and Kühr, 2011) or (Botur et al.,
2012).)

Every ideal ofA is a preideal ofA but not con-
versely (Krňávek and Kühr, 2011). Ideals ofA are
exactly kernels of congruences and since the variety
of commutative basic algebras is congruence regular,
any idealI is the 0-class of a unique congruenceθI on
A. Then(x,y) ∈ θI iff x⊖ y, y⊖ x∈ I . Hence we will
denote the quotient algebraA/θI also in the formA/I .

Let P (A) andI (A) be the set of preideals and ide-
als of A, respectively. Then by (Krňávek and Kühr,
2011),(P (A),⊆) is a distributive complete lattice and
(I (A),⊆) is its complete sublattice.

An additive termis a commutative basic algebra
term in which the symbol¬ does not occure. IfA
is a commutative basic algebra and/0 6= B⊆ A, then
the preideal〈B〉 generated byB contains exactly those
elementsa ∈ A such thata≤ τ(b1, . . . , bn) for some
n-ary additive termτ andb1, . . . , bn ∈ B.

Now we recall some basic notions of the theory
of classical approximation spaces. Anapproxima-
tion spaceis a pair (S,θ) where S is a set andθ
an equivalence onS. For any approximation space
(S,θ), by the upper rough approximationin (S,θ)
we will mean the mappingApr : P (S) −→ P (S)
such thatApr(X) := {x ∈ S : x/θ ∩X 6= /0} and by
the lower rough approximationin (S,θ) the mapping
Apr : P (S) −→ P (S) such thatApr(X) := {x∈ S :
x/θ ⊆ X}, for any X ⊆ S. (x/θ is the class ofS/θ
containingx.)

If Apr(X) = Apr(X) thenX is called adefinable
set, otherwiseX is called aroughset.

3 APPROXIMATIONS INDUCED
BY IDEALS

In this section we introduce and investigate special
approximation spaces(A,θ) such thatA is the uni-
verse of a commutative basic algebra andθ is a con-
gruence on this basic algebra.
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If A = (A; ⊕,¬,0) is a commutative basic alge-
bra,θ a congruence onA andI = Iθ the correspond-
ing ideal, thenApr

I
(X) andAprI (X) will denote the

lower and upper rough approximation of anyX ⊆ A
in the approximation space(A,θ).
Proposition 3.1. Let A be a commutative basic alge-
bra, I an ideal of A and a, b ∈ A. Then a/I = b/I if
and only if there are x, y∈ I such that a= (b⊕y)⊖x.

Proof. Let a = (b⊕ y)⊖ x, wherex, y∈ I . Then
b⊖ a = b⊖ ((b⊕ y)⊖ x) ≤ b⊖ (b⊖ x) = b∧ x≤ x,
thusb⊖a∈ I .

Further,a⊖b= ((b⊕ y)⊖ x)⊖b≤ (b⊕ y)⊖b=
y∧¬b≤ y∈ I , hencea⊖b∈ I .

Thereforea/I = b/I .
Conversely, leta/I = b/I , i.e. x= b⊖a, y= a⊖

b ∈ I . We havey⊕ b = (a⊖ b)⊕ b = a∨ b = (b⊖
a)⊕a= x⊕a, thus(y⊕b)⊖x= (x⊕a)⊖x= a∧¬x.
At the same timex= b⊖a≤ 1⊖a= ¬a, that means
x≤ ¬a, hencea≤ ¬x, thusa∧¬x= a.

Therefore we geta= (b⊕ y)⊖ x. �

If A is a commutative basic algebra and/0 6=
X,Y ⊆ A, denote by〈X,Y〉 the preideal ofA gener-
ated byX∪Y.

If τ = τ(z1, . . . , zn) is an additive term, then by
l(τ) we will mean the number of occurencies of the
variablesz1, . . . , zn in τ.

Lemma 3.2. (Botur et al., 2012) Let A be a commu-
tative basic algebra and I an ideal of A. Then, for all
a,b∈ A, a⊕ (b⊕ I) = (a⊕b)⊕ I.

Theorem 3.3. Let I be an ideal of a commutative ba-
sic algebra A and/0 6= X,Y ⊆ A. Then

AprI (〈X,Y〉)⊆ 〈AprI (X),AprI (Y)〉.

If A is linearly ordered then

AprI (〈X,Y〉) = 〈AprI (X),AprI (Y)〉.

Proof. If a ∈ AprI (〈X,Y〉) then a/I ∩ 〈X,Y〉 6=
/0. Let b ∈ a/I ∩ 〈X,Y〉 and b ≤ τ(z1, . . . , zn)
where τ is an n-ary additive term andzi ∈ X ∪
Y, i = 1, . . . ,n. Suppose thatτ1 and τ2 are n-
ary additive terms such thatl(τ1), l(τ2) < l(τ) and
τ(z1, . . . , zn) = τ1(z1, . . . , zn)⊕ τ2(z1, . . . , zn). Since
a/I = b/I , there arex, y∈ I such thata= (b⊕y)⊖x.
Hencea = (b⊕ y)⊖ x ≤ b⊕ y ≤ (τ1(z1, . . . , zn)⊕
τ2(z1, . . . , zn))⊕y= τ1(z1, . . . , zn)⊕(τ2(z1, . . . , zn)⊕
u) where u ∈ I . Since (τ2(z1, . . . , zn) ⊕ u)/I =
τ2(z1, . . . , zn)/I ⊕ u/I = τ2(z1, . . . , zn)/I and zi ∈
AprI (X) ∪ AprI (Y), i = 1, . . . ,n, we obtain a ∈
〈AprI (X),AprI (Y)〉.

Suppose A is linearly ordered. Leta ∈
〈AprI (X),AprI (Y)〉, a≤ τ(v1, . . . ,vn), whereτ is an
n-ary additive term,vi ∈ AprI (X) ∪ AprI (Y), i =

1, . . . ,n. Let wi ∈ vi/I ∩ X, providedvi ∈ X, and
wi ∈ vi/I ∩Y, providedvi ∈ Y, and letz∈ a/I . Sup-
posea/I 6= τ(w1, . . .wn)/I . SinceA is linearly or-
dered,z< τ(w1, . . .wn), hencez∈ 〈X,Y〉. Therefore
a∈ AprI (〈X,Y〉). �

Theorem 3.4. Let I be an ideal of a commutative ba-
sic algebra A and/0 6= X,Y ⊆ A. Then

〈Apr
I
(X),Apr

I
(Y)〉 ⊆ Apr

I
(〈X,Y〉).

Proof. Let a ∈ 〈Apr
I
(X),Apr

I
(Y)〉. Suppose

a≤ τ(z1, . . . , zn), whereτ is an n-ary additive term
andzi ∈ Apr

I
(X)∪Apr

I
(Y), i = 1, . . . ,n. Let b∈ a/I .

Then there arex,y∈ I with b=(a⊕x)⊖y. If τ1 andτ2
aren-ary additive terms such thatl(τ1), l(τ2) < l(τ)
and τ(z1, . . . , zn) = τ1(z1, . . . , zn) ⊕ τ2(z1, . . . , zn),
then b = (a⊕ x)⊖ y ≤ a⊕ x ≤ τ(z1, . . . , zn)⊕ x =
(τ1(z1, . . . , zn)⊕τ2(z1, . . . , zn))⊕x= τ1(z1, . . . , zn)⊕
(τ2(z1, . . . , zn)⊕u), whereu∈ I .

We have (τ2(z1, . . . , zn) ⊕ u)/I =
τ2(z1, . . . , zn)/I = τ2(z1/I , . . . , zn/I) ⊆ 〈X,Y〉,
becausezi/I ⊆ X∪Y, i = 1, . . . ,n.

Analogously τ1(z1/I , . . . , zn/I) ⊆ 〈X,Y〉, thus
also τ(z1/I , . . . , zn/I) ⊆ 〈X,Y〉, i.e. b ∈ 〈X,Y〉.
Thereforea∈ Apr

I
(〈X,Y〉). �

Theorem 3.5. Let A be a linearly ordered commuta-
tive basic algebra, I an ideal of A and X6= /0 a convex
subset of A. Then also Apr

I
(X) andAprI (X) are con-

vex.

Proof. Let x,y ∈ Apr
I
(X), z∈ A, x≤ z≤ y and

x/I 6= z/I 6= y/I . Supposea ∈ z/I . The congruence
θI has convex classes, hence for any elementsx1 ∈
x/I , y1 ∈ y/I andz1 ∈ z/I we havex1 < z1 < y1, thus
z1 ∈ Apr

I
(X), and thereforez∈ Apr

I
(X). That means

Apr
I
(X) is convex

Let nowx,y∈AprI (X) andz∈A such thatx≤ z≤
y. Letx1∈ x/I ∩X, y1 ∈ y/I ∩X andx/I 6= z/I 6= y/I .
If z1 ∈ z/I , thenx1 < z1 < y1. Sincex1,y1 ∈ X, we
getz1 ∈ z/I ∩X, thereforez∈ AprI (X). That means
AprI (X) is convex. �

Let A be a commutative basic algebra. IfB⊆ A,
put¬B := {¬b : b∈ B}.

Theorem 3.6. Let A be a commutative basic algebra,
I an ideal of A and/0 6= X ⊆ A. Then

a) ¬AprI (X) = AprI (¬X);

b) ¬Apr
I
(X) = Apr

I
(¬X).

Proof. a) Letx∈ ¬AprI (X). Then¬x∈ AprI (X),
thus¬x/I ∩X 6= /0. Let y ∈ ¬x/I ∩X. Then¬x⊖
y, y⊖¬x∈ I , hence alsox⊖¬y, ¬y⊖ x∈ I and¬y∈
¬X. Thereforex ∈ AprI (¬X), and so¬AprI (X) ⊆
AprI (¬X).
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Let x ∈ AprI (¬X) andy ∈ x/I ∩¬X. Thenx⊖
y, y⊖ x ∈ I , hence also¬x⊖¬y, ¬y⊖¬x ∈ I , and
¬y ∈ X. Thus¬x/I ∩X 6= /0, so¬x ∈ AprI (X), and
consequentlyx∈¬AprI (X). That meansAprI (¬X)⊆
¬AprI (X).

b) Let x ∈ ¬Apr
I
(X). Then¬x ∈ Apr

I
(X), that

means¬x/I ⊆ X. Thus x/I ⊆ ¬X, hence x ∈
Apr

I
(¬X).

Let x∈ Apr
I
(¬X), i.e. x/I ⊆ ¬X. Hence¬x/I ⊆

X, thereforex∈ ¬Apr
I
(X). �

Lemma 3.7. (Botur et al., 2012, Lemma 2.7) If A is
a commutative basic algebra and I is a preideal of A,
then the following are equivalent:

(i) I is an ideal of A;

(ii) (a⊕(b⊕x))⊖(a⊕b) ∈ I for all a,b∈ A, x∈ I.

Theorem 3.8. Let A be a linearly ordered commu-
tative basic algebra and I and J ideals of A. Then
AprI (J) is an ideal of A.

Proof. Obviously 0∈ AprI (J).
Let x ∈ AprI (J), y∈ A, y≤ x. Let x1 ∈ x/I ∩ J.

Suppose thaty1 ∈ y/I andy/I 6= x/I . Theny1 < x1,
hencey1 ∈ J, and thusy∈ AprI (J).

Now, let x,y ∈ AprI (J), x1 ∈ x/I ∩ J and y1 ∈
y/I ∩J. Thenx1⊕y1∈ J andx1⊕y1∈ (x/I)⊕(y/I)=
(x⊕ y)/I . Thereforex⊕ y∈ AprI (J).

Let x,y∈ A, a∈ AprI (J) anda1 ∈ a/I ∩ J. Then
((x⊕ (y⊕ a))⊖ (x⊕ y))/I = (x/I ⊕ (y/I ⊕ a/I))⊖
(x/I ⊕ y/I) = (x/I ⊕ (y/I ⊕ a1/I))⊖ (x/I ⊕ y/I) =
(x⊕ (y⊕a1))⊖ (x⊕ y))/I and(x⊕ (y⊕ a1))⊖ (x⊕
y) ∈ J. Hence(x⊕ (y⊕a))⊖ (x⊕ y)∈ AprI (J).

Therefore by Lemma 3.7,AprI (J) is an ideal ofA.
�

4 CONNECTIONS AMONG
APPROXIMATION SPACES

In this section we investigate approximation spaces
which are induced by different or special ideals.

Proposition 4.1. If I and J are ideals of a commuta-
tive basic algebra and/0 6= X ⊆ A, then

Apr
〈I ,J〉

(X)⊆ 〈Apr
I
(X),Apr

J
(X)〉.

Proof. If a ∈ Apr
〈I ,J〉

(X), then a/〈I ,J〉 ⊆ X,

thus also a/I , a/J ⊆ X. Hence a ≤ a ⊕ a ∈
〈Apr

I
(X),Apr

J
(X)〉. �

Lemma 4.2. Let A1 and A2 be commutative basic al-
gebras, I an ideal of A2 and f a homomorphism of A1
into A2. Then f−1(I) is an ideal of A1.

Proof. Obviously f−1(I) is a preideal ofA1. Let
x,y∈ A1 anda∈ f−1(I). Then f ((x⊕ (y⊕a))⊖ (x⊕
y)) = ( f (x)⊕( f (y)⊕ f (a))⊖( f (x)⊕ f (y))∈ I , there-
fore f−1(I) is an ideal ofA1. �

Theorem 4.3. Let A1 and A2 be commutative basic
algebras, f a homomorphism of A1 into A2, I an ideal
of A2 and /0 6= X ⊆ A2. Then

f−1(AprI (X)) = Aprf−1(I)( f−1(X)).

Proof. Let x ∈ A1. Thenx ∈ Apr f−1(I)( f−1(X))

if and only if there existsz∈ x/ f−1(I) ∩ f−1(X) iff
z⊖x, x⊖z∈ f−1(I) iff f (z⊖x), f (x⊖x)∈ I iff f (z)⊖
f (x), f (x)⊖ f (z) ∈ I iff f (z)/I = f (x)/I .

We havef (z) ∈ f (x)/I , z∈ f−1(X), then f (z) ∈
f (x)/I ∩ X, hence f (x)/I ∩ X 6= /0, and so f (x) ∈
AprI (X).

That meansx∈ Aprf−1(I)( f−1(X)) if and only if

x∈ f−1(AprI (X)). �

Theorem 4.4. Let A1 and A2 be commutative basic
algebras, f : A1 −→ A2 a homomorphism and/0 6=
X ⊆ A1. Then

f (AprKer( f )(X)) = f (X).

Proof. Let x ∈ f (AprKer( f )(X)) and y ∈

AprKer( f )(X) be such thatx = f (y). Let z ∈
y/Ker( f ) ∩X. Thenz⊖ y, y⊖ z∈ Ker( f ) andz∈ X.
Hence f (z⊖ y) = 0, f (y⊖ z) = 0, so f (z)⊖ f (y) =
0, f (y)⊖ f (z) = 0. Thereforef (z) = f (y) = x, i.e.
f (z) ∈ f (X), and consequentlyf (AprKer( f )(X)) ⊆

f (X).
The converse inclusion is obvious. �

Proposition 4.5. Let A be a commutative basic alge-
bra, I and J ideals of A and/0 6= X ⊆ A.

a) If A is linearly ordered, then

Apr
I
(X)∩Apr

J
(X) = Apr

I∩J
(X).

b) If X is definable with respect to I or J, or if A is
linearly ordered, then

AprI∩J(X) = AprI (X)∩AprJ(X).

Proof. a) Obvious.
b) Let X be definable, e.g., with respect toI .

Then AprI (X) ∩ AprJ(X) = X ∩ AprJ(X) = X ⊆
AprI∩J(X).

The converse inclusion follows from the fact that
I ∩J⊆ I , J impliesAprI∩J(X)⊆ AprI (X), AprJ(X).

For linearly orderedA it is obvious. �
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5 CONCLUSIONS

It is known that there are situations concerning rea-
soning where the associativity of the logical con-
nection conjunction need not be satisfied. Recently,
a logic foundation for fuzzy reasoning with non-
associative conjunction, as a generalization of the
Lukasiewicz infinite valued logic, was proposed.
Commutative basic algebras are an algebraic seman-
tics of such logic. This paper introduces and inves-
tigates the concept of approximate spaces based on
ideals of commutative basic algebras and shows that
it is reasonable to study approximate spaces in non-
associative structures.
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Hájek, P. (1998).Metamathematics of Fuzzy Logic. Kluwer,
Amsterdam.

Kreinovich, V. (2004). Towards more realistic (e.g., non-
associative) ‘and’- and ‘or’ operations in fuzzy logic.
Soft Comput., 8:274–280.
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