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Abstract: The aim of this contribution is to develop a theory of such concepts as fuzzy point, fuzzy set and fuzzy function
in a similar style as is common in classical mathematical analysis. We recall some known notions and propose
new ones with the purpose to show that, similarly to the classical case, a (fuzzy) set is a collection of (fuzzy)
points or singletons. We show a relationship between a fuzzy function and its ordinary “skeleton” that can
be naturally associated with the original function. We show that any fuzzy function can be extended to the
domain of fuzzy subsets and this extension is analogous to the Extension Principle of L. A. Zadeh.

1 INTRODUCTION lection of (fuzzy) points or (fuzzy) singletons.
Last, but not least, we analyze a relationship be-
The notion of fuzzy function has at least two differ- tween a surjective fuzzy function and its ordinary
ent meanings in fuzzy literature. On the one side (see core function. The similar study has been attempted
e.g., (Hajek, 1998; Klawonn, 2000; Demirci, 1999; in (Demirci, 1999) for a perfect fuzzy function and
Demirci, 2002; Hohle et al., 200@ostak, 2001)), a  in (Klawonn, 2000) for one particular example of a
fuzzy function is a special fuzzy relation with a gen- fuzzy function. We propose a solution in the general
eralized property of uniqueness. According to this case.
approach, each element from the ordinary domain of =~ The present paper is organized as follows. In Sec-
thus defined fuzzy function is associated with a cer- tion 2, we give preliminary information about ex-
tain fuzzy set. Thus, a fuzzy function establishes a tension principle, residuated lattices, fuzzy sets and
“point™-to-“fuzzy set” correspondence. fuzzy spaces. Fuzzy functions and two approaches to
On the other hand (see (Novak, 1989; Perfilieva, this notion are discussed in Section 3. Section 3 con-
2004; Perfilieva, 2011; Perfilieva et al., 2012)), a tains also main results of the paper.
fuzzy function is a mapping between two universes
of fuzzy sets, i.e. establishes a “fuzzy set"-to-“fuzzy
set” correspondence. This approach is implicitly used 2 PRELIMINARIES
in many papers devoted to fuzzy IF-THEN rule mod-
feuli(\:/;/ir;(re]rse' the latter are actually partially given fuzzy 2.1 Extension Principle and Its
In this contribution, we show that both viewpoints Relational Form
can be connected by a natural generalization of the
Extension Principle of L. Zadeh (Zadeh, 1975). In An extension principle has been proposed by L.
details, a fuzzy function as a mapping is an extension Zadeh (Zadeh, 1975) in 1975 and since then it is
of afuzzy function as a relation to the domain of fuzzy widely used in the fuzzy set theory and its applica-
sets. The similar approach has been use®ostak, tions. Let us recall the principle and propose its rela-
2001). tion form which will be later on used in a relationship
In order to establish the above mentioned exten- to fuzzy function.
sion, we introduce various spaces of fuzzy objects  Assume thaX,Y are universal sets anfl: X —
with fuzzy equivalence relations on them. We show Y is a function with the domailX. Let moreover,
that similar to the classical case, a (fuzzy) setis a col- % (X),.Z (Y) be respective universes of fuzzy sets on
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X andY identified with their membership functions,
ie. Z(X)={A:X — 10,1} and similarly, % (Y).
By the extension principlef, induces a functiorf — :
F(X) — Z(Y) such that for alA € .7 (X),
f7(A)(y) = sup Ax).
y="F(x)

Let R; be a binary relation oX x Y which corre-
sponds to the functiof, i.e.

Ri(xy) =1ey=f(x).

(1)

Then it is easy to see that (1) can be equivalently rep-

resented by
= (A)Y)

)

V/ (A(X)-Re (xY)).
yey

Expression (2) is theelational form of the extension
principle. The meaning of expression (2) becomes
more general whed is anL-fuzzy set (see Defini-
tion 3 below), binary relatior; is a fuzzy relation,
and multiplication- changes to a monoidal operation

(see Section 2.2). In Section 3, we will discuss the
proposed generalization and its relationship to fuzzy

functions.

2.2 Residuated Lattice

Our basic algebra of operations is a residuated lattice.

Definition 1. A residuated lattice is an algebra
L =(L,V,A\,x,—,0,1).

with a support L and four binary operations and two
constants such that
e (L,Vv,A,0,1) is alattice where the ordering de-
fined using operations, A as usual, and, 1 are
the least and the greatest elements, respectively;
e (L,x 1) is a commutative monoid, that is,is a
commutative and associative operation with the
identity ax1 = a;
e the operation— is a residuation operation with
respect tox, i.e.

axb<c<«= a<b-c

Aresiduated lattice is complete if it is complete as
a lattice.
The following is a binary operation of biresidua-
tion on.Z:
X y=(X=Y)AY—=X).

The well known examples of residuated lattices

are: boolean algebra, Godel, tukasiewicz and prod-

uct algebras. In the particular calse= [0, 1], multi-
plicationx is a left continuous-norm.

From now on we fix a complete residuated lattice
Z.
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2.3 L-fuzzy Sets, Fuzzy Relations and
Fuzzy Spaces

Below, we recall definitions of principal notions in the
fuzzy set theory.

Fuzzy Sets with Crisp Equality. Let X be a non-
empty universal setZ a complete residuated lattice.
An (L-)fuzzy setA of X (fuzzy set, shortly) is a map
A: X — L that establishes a relationship between ele-
ments ofX and degrees ahembershipo A.

Fuzzy setA is normalif there existsxa € X such
thatA(xa) = 1. The (ordinary) set Co(8) = {x
X | A(x) =1} is acore of the normal fuzzy seA.
The (ordinary) set Sugp) = {x€ X | A(x) >0} isa
supportset of fuzzy sef.

A class of L-fuzzy sets ofX will be denoted
LX. The couple(LX,=) is called anordinary fuzzy
spaceon X. The elements ofL*,=) are fuzzy sets
equipped with a crisp equality relation, i.e. for all

BeLX,

A =B ifandonly if(¥x € X) A(X) = B(x).

In (LX, =), we strictly distinguish between fuzzy sets
even if their membership functions differ in one point.
On (LX,=), we can define the structure of resid-
uated lattice using pointwise operations over fuzzy
sets. Moreover, the underlying latti¢e*, v, A,0,1)

is complete, where the bottodand the tod are con-
stant fuzzy sets, respectively.

A class of normal-fuzzy sets ofX will be de-
no)EedJV(X). The spacg./'(X),=) is a subspace of
(L™, =).

By identifying a pointu € X with a fuzzy subset
Iy : X — L such that,(u) = 1 andl,(x) = 0 whenever
X # uwe may viewX as a subspace ¢f*, =) and as
a subspace af ¥ (X),=)

Space with Fuzzy Equivalence. Fuzzy Points. Let
X, Y be universal sets. Similarly tb-valued fuzzy
sets, we defing¢binary) (L-)fuzzy relationss fuzzy
sets ofX x Y. If X =Y, then a fuzzy set oK x X is
called a (binary)l(-)fuzzy relation onX.

A binary fuzzy relationE on X is called fuzzy
equivalenceon X (see (Klawonn and Castro, 1995;
Hohle, 1998; De Baets and Mesiar, 1998j)for all
X,¥,z € X, the following holds:

1. E(x,x) =1, reflexivity,
2. E(x,y) =E(y,x), symmetry,
3. E(x,y)xE(y,z) <E(x,2), transitivity.

1Fuzzy equivalence appears in the literature under the
namessimilarity or indistinguishabilityas well.



If fuzzy equivalencee fulfills
1. E(x,y) =1ifand only ifx=y,

then itis callecseparatedbr afuzzy equalitpn X.

Let us remark that fuzzy equivalen&e creates
fuzzy sets orX, we will call themE-fuzzy point% of
X or simply fuzzy pointsiE is clear from the context.
EveryE-fuzzy pointis a class of fuzzy equivalenie
of just one point ofX. In more detalils, it € X, then
E-fuzzy pointE; is a fuzzy sef; : X — L such that
for all x € X, Ei(x) = E(t,Xx). Itis easy to see thai;
is a normal fuzzy set artde CoreE;).

The set of alE-fuzzy points ofX will be denoted
by

PE={E|teX]}.
Obviously, #& C L* and (2%, =) is a subspace of
(LX,=). If Eis a fuzzy equivalence oX, then it may
happen that the same element, &yrom (£g,=)
has different representations, i.e. there existsX
such thaE, = E;. It can be shown that this holds true
if and only if E(t,u) = 1, oru € CorgE).

On the other side, iE is a fuzzy equality orX,
then the core of everf-fuzzy point consists of one
element and thus, a representation of &yuzzy
point in the formE; is unique.

Space with Fuzzy Equivalence and Crisp Equal-
ity. Fuzzy Singletons and Sub-singletons. Let us
equip the spac with both crisp= and fuzzyE
equalities and denote it X, =, E). In this space, we
are able to distinguish degrees of coincideB¢E u)
between any two elementsu from X. As we dis-

cussed above, crisp and fuzzy equalities put into the

correspondence with each elememf X its charac-
teristic functionl; and itsE-fuzzy pointE;. Both are
normal fuzzy sets in.X with the same one-element
core. Let us consider fuzzy se$s € L, that are in
between; andE, i.e. for allx € X,

lt(x) < S(X) < E(X). 3)

We will call them fuzzy singletons In (Klawonn,
2000), fuzzy singletons were introduced as normal
fuzzy sets§ € L* with {t} as a one-element core,
i.e. §(t) =1, and such that for all,y € X,

S(X¥) *S(y) <E(xy), (4)

where x is the monoidal operation from a chosen
residuated latticd.. It is easy to show that this is
equivalent to our definition. Indeed, ¥ fulfills (3),
then itis normal, it ha$t} as a one-element core, and
forall x,y € X,

S(X) *S(y) <E(t,x) «E(t,y) <E(XY).

2This notion was introduced in (Klawonn, 2000)
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On the other side, i§ has{t} as a one-element core
and fulfills (4), then for alk € X, I;(x) < S(x) and

S(X)=S(X)xS(t) < E(t,x) = E(X).

From (4) and the discussion above it follows tkat
fuzzy pointE; is the greatest fuzzy singleton with the
one-element corét}. The space of all fuzzy single-
tons, considered itX, =, E), will be denoted by#F.
Ol:))(viously,yxE C LX and (£, =) is a subspace of
(L*,=).

Let us discard normality in the definition of fuzzy
singleton and definfuzzy sub-singletass a fuzzy set
U e L%, such that there existse X, so that

0<U(X) <E(x),xe X. (5)

In order to stress that a fuzzy sub-singleton is con-
nected with a certain fuzzy poift, we will denote

it as U;. Similarly to the above, we can prove that
any fuzzy sub-singleton fulfills (4). The space of all
fuzzy sub-singletons, considered(i, =, E), will be
denoted byZ€. Obviously, #F C #F C LX and
(%E ,=)is a subspace dL*,

Extensional Hulls. Let again our space beX,=

,E) — a space with fuzzy equivalence and crisp equal-
ity. We remind (Klawonn, 2000) that fuzzy sAtis
extensiona(with respect tcE) if for all x,y € X,

AX) +E(x,y) <A(Y)-

The smallest extensional fuzzy s&F containing
fuzzy setA is called theextensional hulbf A. It is
not difficult to prove the following representation of
AE.

Lemma 1. The extensional hull Aof every fuzzy set
A € LX can be represented as follows:

AF(y) = SUPA(X) * E(X,Y). (6)
xeX
Representation (6) has been obtained in many pa-
pers (see e.g.,(Hohle, 1998)), therefore will not prove
this again.
Lemma 1 has two important corollaries.

Corollary 1. Extensional hull of elementd X iden-
tified with | is equal to fuzzy pointE

Corollary 2. Extensional hull of fuzzy singletop &
LX, t € X, is equal to the corresponding fuzzy point
t .

m

Decomposition of a Fuzzy Set into Fuzzy Sub-
singletons

Theorem 1. Let Ac LX be a non-zero fuzzy set. Then
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e A can be represented as a supremum of fuzzy sub-3 FUZZY FUNCTIONS

singletons J, t € SupgA), such that

UA(X) = A(X) AEt(X), X € X, 7)

The notion of fuzzy function has many definitions in
the literature, see e.g. (Hajek, 1998; Klawonn, 2000;

e A can be represented as a supremum of fuzzy sub-Demirci, 2002; Perfilieva, 2004). In (Hajek, 1998;

singletons i, t € SupgA), such that
WAX) = A(X) * Ei(x), X € X,
In both cases, for all x X,

(8)

AX)= sup UA(x)= sup (AX)AE(X), (9)
teSuppA) teSupgA)
and
AX)= sup WAX) = sup (A(X)=E(X)).
teSupgA) teSupgA)

(10)

Proof. At first, we will prove that for alt € SupgA),
U andW” are fuzzy sub-singletons, i andW”
are non-zero and less th&n The first assertion fol-
lows from the assumptione SupgA), so that

UA®R) =At) A E(t) = At) >0,
WA(L) =A(t)  E¢(t) = A(t) > 0.
The second assertion easily follows from (7) and (8).
To prove (9) and (10), we first notice that both of
them are trivially valid forx ¢ SupgA). Therefore,

we assume thate SupgA). Then (9) follows from
the two inequalities below:

AX)= sup UAX) =
teSupfA)
= sup (AX)AE(X)) > AX) AEx(X) = A(X),
teSupfA)
and
AX)= sup UAX) = sup (AX)AE(X)<
teSupfA) teSupfA)
< sup AX) =A(X).
teSupfA)

To prove (10), we recall that in every complete
residuated lattice the following holds true:

sup (AX)*E¢(X)) =AX)* sup Ei(x).
teSupfA) teSupfA)
Because fok € SupgA), sup E(x) =1, we eas-
teSupfA)
ily get
AX)= sup WAKX) = sup (AX)*E(x)=
teSupfA) teSupA)
=A(X)*x sup Ei(x)=A(X).
teSupfA)
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Klawonn, 2000; Demirci, 2002), a fuzzy function is
considered as a special fuzzy relation. Below, we re-
mind the notion of fuzzy function as it appeared (in-
dependently) in (Klawonn, 2000), (Hohle et al., 2000)
and (Demirci, 2002):

Definition 2. Let E, F be fuzzy equivalences on X
and Y, respectively. A fuzzy function is a binary fuzzy
relationp on Xx Y such that forallxx' € X,yy €Y

the following axioms hold true:

L p(xy) *E(xX) < p(X,y),

2. p(xy) =xF(y.y) < p(xy),

3. p(xy)xp(xY) <F(yY),

A fuzzy function is called perfect (Demirci, 1999), (cf
also (Hohle et al., 2000, Section 3.2)) if it additionally
fulfills

1. forallxe X, there exists ¥ Y, such thap(x,y) =
1.

A fuzzy function is called (strongkurjective
(Demirci, 1999), cf also (Hohle et al., 2000, Section
4.2)if

1. forally €Y, there existx € X, such thap(x,y) =
1.

Actually, a fuzzy functiorp establishes a double ex-
tensional correspondence between the spéce  E)
and the space diY,=,F) (axiomsFF.1, FF.2 which
is weakly functional (axiom&F.3). Moreover, it is a
point-to-(fuzzy set) mapping betweéhandL" such
that for allx € X, p(x,-) is a fuzzy set orY. If for
all x e X, p(x,-) is a normal fuzzy set thep is per-
fect, and there is an ordinary functign X — Y such
that for ally € Y, p(x,y) = F(g(x),y) (see (Demirci,
2002)). This means that eveR¢fuzzy pointFy, of
Y determined by(x) is a fuzzy value op atx € X.

In our study, we will consider the case wherés
surjective and defined everywhere Xni.e.

(xeX)(FyeY) p(xy)>0.

In this case, we will propose an analytic representa-
tion of p and usep in the generalized extension prin-
ciple. Moreover, we will discover a relationship be-
tween a fuzzy function, its ordinary core function and
its extension to a mapping over the domain of fuzzy
sets.

(11)
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3.1 Fuzzy Function and Its Core 1. forallxe X,ye€Y,

In this Section, we will show that each surjective pxy) =V (Ee(X)*Fge)(¥).  (16)
fuzzy functionp on X x Y determines a correspond- Xex!

ing ordinary core functiog : X’ — Y, whereX’ C X, 2. forallte X',yeY,

such that at any’ € X', the valuep(xX,-) is equal to

the F-fuzzy pointFyy ). The proofs of the below p(t.y) = Fyn) (¥). (17)

given Theorems 2 and 3 are in (Perfilieva, 2011).

Theorem 2. Let fuzzy relations E on X and F on 3.2 Generalized Extension Principle

Y be fuzzy equivalences and moreover, F be a fuzzy

equality. Let fuzzy relatiop on Xx Y be a surjective {%;h'stficé';g’bmeh:’s"laShgin\]' tf{]oa}t fi\;(;rysfgtzz%;unicr;
fuzzy function. For everyg Y, let us choose and fix P X (fuzzy set) mapping

- betweenX andLY can be extended (via the Gener-
#yhir? t?\r:(f%(lig\zlv)i)n.ngSQ; tere>|( ati c;{:ycan;(E X.yev}. alized extension principle) to a (fuzzy set)-to-(fuzzy
y set) mapping betweeb® andLY. We will use ex-

E/(x,X) = /\ (p(x,y) < p(X.y)), (12) pression (2), where we replacdy « and use fuzzy
relationp instead of ordinarRs. Moreover, we will

ey
_ _ ’ use our representation (10) of a non-zero fuzzy set
is a fuzzy equivalence'Buch that and show that the extended mapping betwe®€rand
1. E<E’ andp is a fuzzy function with respect to LY is fully determined by its reduction to a certain set
fuzzy equivalences'and F, of fuzzy sub-singletons, and in particular, to sets of

E'-fuzzy points ofX.
Definition 3 (Generalized extension principle).et

2. forallxe X,yeY,

=
P(xy) =E(xx), (13) % be a complete residuated lattice ar{t*,=),
3. forally,y €V, (LY,=) fuzzy spaces. Let E, F be fuzzy equivalences
on X and Y, respectively, and fuzzy relatipron
E'(x, %) =F(%,Y), (14) X xY be a fuzzy function. Theninduces the map

- X Y X
4. the mapping gX’ — Y such that gx;) =y is sur- fo? 1 L7 = L7 such that for every & L,

jective and extensional with respect to &d F, = (AY) = \/ (A 18
i.e. forall xt € X', o (A(Y) x\e/x( (X) *p(x.y))- (18)
E'(x,t) <F(g(x),9(t)). (15)  Theorem 4. Letfuzzy relations E on X and F onY be

fuzzy equivalences and moreover, F be a fuzzy equal-
ity. Let fuzzy relatiopp on Xx Y be a surjective fuzzy
function and E be fuzzy equivalence given by (12).

Corollary 3. Fuzzy equivalence’Egiven by (12), is
the greatest one (in the sense<of that fulfils Theo-

rem 2. Then for any Ac L%,

Corollary 4. Fuzzy equivalence’Egiven by (12),

covers X, i.e. for all x X there exists xc X’ such f A=\ o (Wh, (19)
that E'(x,x,) > 0. teSupgA)

Proof. By (11), for arbitraryx € X there existy € Y, where \{V\ is a fuzzy sub-singleton (8) in the space
such thap(x,y) > 0. By (13),0(x,y) =E/(x,%,),and  (X,=,E). o
therefore E'(x,xy) > 0. 0 In parncular, if A is represented as a supremum of
fuzzy points £ i.e. A= Vicsupga) E» then
The meaning of the assertions below is that a sur-
jective fuzzy functiorp is indeed a fuzzified version frAy=\ E)Y= \V oty.
of its core functiorg: X’ — Y, whereX’ C X. If xe X, teSupiA) teSupiA)
then the fuzzy value gb(x, -) is a “linear’-like com- (20)

bination ofF-fuzzy pointsFy) (). In particular, if By Theorem 1,A can be represented as a

X' € X' - domain ofg, then the fuzzy value gb(x’,-) .
. X . ! supremum of fuzzy sub-singletod§®, t € SupdA),
is equal to the correspondifgfuzzy pointFy (-). whpereV\4A(x) _ A(x%l* E.(x) xge X. Thence, PHA)

Theorem 3. Let fuzzy relations E, £F, p and func-
tion g: X" — Y where X= {xy | y € Y} fulfil assump-
tions and conclusions of Theorem 2. Then
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