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Abstract: The aim of this contribution is to develop a theory of such concepts as fuzzy point, fuzzy set and fuzzy function
in a similar style as is common in classical mathematical analysis. We recall some known notions and propose
new ones with the purpose to show that, similarly to the classical case, a (fuzzy) set is a collection of (fuzzy)
points or singletons. We show a relationship between a fuzzy function and its ordinary “skeleton” that can
be naturally associated with the original function. We show that any fuzzy function can be extended to the
domain of fuzzy subsets and this extension is analogous to the Extension Principle of L. A. Zadeh.

1 INTRODUCTION

The notion of fuzzy function has at least two differ-
ent meanings in fuzzy literature. On the one side (see
e.g., (Hájek, 1998; Klawonn, 2000; Demirci, 1999;
Demirci, 2002; Höhle et al., 2000;̌Sostak, 2001)), a
fuzzy function is a special fuzzy relation with a gen-
eralized property of uniqueness. According to this
approach, each element from the ordinary domain of
thus defined fuzzy function is associated with a cer-
tain fuzzy set. Thus, a fuzzy function establishes a
“point”-to-“fuzzy set” correspondence.

On the other hand (see (Novák, 1989; Perfilieva,
2004; Perfilieva, 2011; Perfilieva et al., 2012)), a
fuzzy function is a mapping between two universes
of fuzzy sets, i.e. establishes a “fuzzy set”-to-“fuzzy
set” correspondence. This approach is implicitly used
in many papers devoted to fuzzy IF-THEN rule mod-
els where the latter are actually partially given fuzzy
functions.

In this contribution, we show that both viewpoints
can be connected by a natural generalization of the
Extension Principle of L. Zadeh (Zadeh, 1975). In
details, a fuzzy function as a mapping is an extension
of a fuzzy function as a relation to the domain of fuzzy
sets. The similar approach has been used in (Šostak,
2001).

In order to establish the above mentioned exten-
sion, we introduce various spaces of fuzzy objects
with fuzzy equivalence relations on them. We show
that similar to the classical case, a (fuzzy) set is a col-

lection of (fuzzy) points or (fuzzy) singletons.
Last, but not least, we analyze a relationship be-

tween a surjective fuzzy function and its ordinary
core function. The similar study has been attempted
in (Demirci, 1999) for a perfect fuzzy function and
in (Klawonn, 2000) for one particular example of a
fuzzy function. We propose a solution in the general
case.

The present paper is organized as follows. In Sec-
tion 2, we give preliminary information about ex-
tension principle, residuated lattices, fuzzy sets and
fuzzy spaces. Fuzzy functions and two approaches to
this notion are discussed in Section 3. Section 3 con-
tains also main results of the paper.

2 PRELIMINARIES

2.1 Extension Principle and Its
Relational Form

An extension principle has been proposed by L.
Zadeh (Zadeh, 1975) in 1975 and since then it is
widely used in the fuzzy set theory and its applica-
tions. Let us recall the principle and propose its rela-
tion form which will be later on used in a relationship
to fuzzy function.

Assume thatX,Y are universal sets andf : X →
Y is a function with the domainX. Let moreover,
F (X),F (Y) be respective universes of fuzzy sets on
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X andY identified with their membership functions,
i.e. F (X) = {A : X → [0,1]} and similarly,F (Y).
By the extension principle,f induces a functionf→ :
F (X)→ F (Y) such that for allA∈ F (X),

f→(A)(y) = sup
y= f (x)

A(x). (1)

Let Rf be a binary relation onX ×Y which corre-
sponds to the functionf , i.e.

Rf (x,y) = 1⇔ y= f (x).

Then it is easy to see that (1) can be equivalently rep-
resented by

f→(A)(y) =
∨

y∈Y

(A(x) ·Rf (x,y)). (2)

Expression (2) is therelational form of the extension
principle. The meaning of expression (2) becomes
more general whenA is anL-fuzzy set (see Defini-
tion 3 below), binary relationRf is a fuzzy relation,
and multiplication· changes to a monoidal operation
(see Section 2.2). In Section 3, we will discuss the
proposed generalization and its relationship to fuzzy
functions.

2.2 Residuated Lattice

Our basic algebra of operations is a residuated lattice.

Definition 1. A residuated lattice is an algebra

L = 〈L,∨,∧,∗,→,0,1〉.

with a support L and four binary operations and two
constants such that

• 〈L,∨,∧,0,1〉 is a lattice where the ordering≤ de-
fined using operations∨,∧ as usual, and0,1 are
the least and the greatest elements, respectively;

• 〈L,∗,1〉 is a commutative monoid, that is,∗ is a
commutative and associative operation with the
identity a∗1= a;

• the operation→ is a residuation operation with
respect to∗, i.e.

a∗b≤ c ⇐⇒ a≤ b→ c.

A residuated lattice is complete if it is complete as
a lattice.

The following is a binary operation of biresidua-
tion onL :

x↔ y= (x→ y)∧ (y→ x).

The well known examples of residuated lattices
are: boolean algebra, Gödel, Łukasiewicz and prod-
uct algebras. In the particular caseL = [0,1], multi-
plication∗ is a left continuoust-norm.

From now on we fix a complete residuated lattice
L .

2.3 L-fuzzy Sets, Fuzzy Relations and
Fuzzy Spaces

Below, we recall definitions of principal notions in the
fuzzy set theory.

Fuzzy Sets with Crisp Equality. Let X be a non-
empty universal set,L a complete residuated lattice.
An (L-)fuzzy setA of X (fuzzy set, shortly) is a map
A : X → L that establishes a relationship between ele-
ments ofX and degrees ofmembershipto A.

Fuzzy setA is normal if there existsxA ∈ X such
that A(xA) = 1. The (ordinary) set Core(A) = {x ∈
X | A(x) = 1} is a core of the normal fuzzy setA.
The (ordinary) set Supp(A) = {x∈ X | A(x)> 0} is a
supportset of fuzzy setA.

A class of L-fuzzy sets ofX will be denoted
LX . The couple(LX ,=) is called anordinary fuzzy
spaceon X. The elements of(LX ,=) are fuzzy sets
equipped with a crisp equality relation, i.e. for all
A,B∈ LX ,

A= B if and only if(∀x∈ X)A(x) = B(x).

In (LX ,=), we strictly distinguish between fuzzy sets
even if their membership functions differ in one point.
On (LX ,=), we can define the structure of resid-
uated lattice using pointwise operations over fuzzy
sets. Moreover, the underlying lattice〈LX ,∨,∧,0,1〉
is complete, where the bottom0 and the top1 are con-
stant fuzzy sets, respectively.

A class of normalL-fuzzy sets ofX will be de-
notedN (X). The space(N (X),=) is a subspace of
(LX ,=).

By identifying a pointu ∈ X with a fuzzy subset
Iu : X → L such thatIu(u) = 1 andIu(x) = 0 whenever
x 6= u we may viewX as a subspace of(LX ,=) and as
a subspace of(N (X),=)

Space with Fuzzy Equivalence. Fuzzy Points. Let
X, Y be universal sets. Similarly toL-valued fuzzy
sets, we define(binary) (L-)fuzzy relationsas fuzzy
sets ofX×Y. If X = Y, then a fuzzy set ofX ×X is
called a (binary) (L-)fuzzy relation onX.

A binary fuzzy relationE on X is called fuzzy
equivalenceon X (see (Klawonn and Castro, 1995;
Höhle, 1998; De Baets and Mesiar, 1998))1 if for all
x,y,z∈ X, the following holds:

1. E(x,x) = 1, reflexivity,

2. E(x,y) = E(y,x), symmetry,

3. E(x,y)∗E(y,z)≤ E(x,z), transitivity.

1Fuzzy equivalence appears in the literature under the
namessimilarity or indistinguishabilityas well.
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If fuzzy equivalenceE fulfills

1. E(x,y) = 1 if and only if x= y,

then it is calledseparatedor a fuzzy equalityonX.
Let us remark that fuzzy equivalenceE creates

fuzzy sets onX, we will call themE-fuzzy points2 of
X or simply fuzzy points ifE is clear from the context.
EveryE-fuzzy point is a class of fuzzy equivalenceE
of just one point ofX. In more details, ift ∈ X, then
E-fuzzy pointEt is a fuzzy setEt : X → L such that
for all x∈ X, Et(x) = E(t,x). It is easy to see thatEt
is a normal fuzzy set andt ∈ Core(Et).

The set of allE-fuzzy points ofX will be denoted
by

P
E
X = {Et | t ∈ X}.

Obviously,PE
X ⊆ LX and(PE

X ,=) is a subspace of
(LX ,=). If E is a fuzzy equivalence onX, then it may
happen that the same element, sayEt from (PE

X ,=)
has different representations, i.e. there existsu ∈ X
such thatEu = Et . It can be shown that this holds true
if and only if E(t,u) = 1, oru∈ Core(Et).

On the other side, ifE is a fuzzy equality onX,
then the core of everyE-fuzzy point consists of one
element and thus, a representation of anyE-fuzzy
point in the formEt is unique.

Space with Fuzzy Equivalence and Crisp Equal-
ity. Fuzzy Singletons and Sub-singletons. Let us
equip the spaceX with both crisp= and fuzzyE
equalities and denote it by(X,=,E). In this space, we
are able to distinguish degrees of coincidenceE(t,u)
between any two elementst,u from X. As we dis-
cussed above, crisp and fuzzy equalities put into the
correspondence with each elementt of X its charac-
teristic functionIt and itsE-fuzzy pointEt . Both are
normal fuzzy sets inLX with the same one-element
core. Let us consider fuzzy setsSt ∈ LX , that are in
betweenIt andEt , i.e. for allx∈ X,

It(x)≤ St(x)≤ Et(x). (3)

We will call them fuzzy singletons. In (Klawonn,
2000), fuzzy singletons were introduced as normal
fuzzy setsSt ∈ LX with {t} as a one-element core,
i.e. St(t) = 1, and such that for allx,y∈ X,

St(x)∗St(y)≤ E(x,y), (4)

where ∗ is the monoidal operation from a chosen
residuated latticeL. It is easy to show that this is
equivalent to our definition. Indeed, ifSt fulfills (3),
then it is normal, it has{t} as a one-element core, and
for all x,y∈ X,

St(x)∗St(y)≤ E(t,x)∗E(t,y)≤ E(x,y).

2This notion was introduced in (Klawonn, 2000)

On the other side, ifSt has{t} as a one-element core
and fulfills (4), then for allx∈ X, It(x)≤ St(x) and

St(x) = St(x)∗St(t)≤ E(t,x) = Et(x).

From (4) and the discussion above it follows thatE-
fuzzy pointEt is the greatest fuzzy singleton with the
one-element core{t}. The space of all fuzzy single-
tons, considered in(X,=,E), will be denoted byS E

X .
Obviously,S E

X ⊆ LX and(S E
X ,=) is a subspace of

(LX ,=).
Let us discard normality in the definition of fuzzy

singleton and definefuzzy sub-singletonas a fuzzy set
U ∈ LX , such that there existst ∈ X, so that

0<U(x)≤ Et(x), x∈ X. (5)

In order to stress that a fuzzy sub-singleton is con-
nected with a certain fuzzy pointEt , we will denote
it as Ut . Similarly to the above, we can prove that
any fuzzy sub-singleton fulfills (4). The space of all
fuzzy sub-singletons, considered in(X,=,E), will be
denoted byU E

X . Obviously,S E
X ⊆ U E

X ⊆ LX and
(U E

X ,=) is a subspace of(LX ,=).

Extensional Hulls. Let again our space be(X,=
,E) – a space with fuzzy equivalence and crisp equal-
ity. We remind (Klawonn, 2000) that fuzzy setA is
extensional(with respect toE) if for all x,y∈ X,

A(x)∗E(x,y)≤ A(y).

The smallest extensional fuzzy setAE containing
fuzzy setA is called theextensional hullof A. It is
not difficult to prove the following representation of
AE.

Lemma 1. The extensional hull AE of every fuzzy set
A∈ LX can be represented as follows:

AE(y) = sup
x∈X

A(x)∗E(x,y). (6)

Representation (6) has been obtained in many pa-
pers (see e.g.,(Höhle, 1998)), therefore will not prove
this again.

Lemma 1 has two important corollaries.

Corollary 1. Extensional hull of element t∈ X iden-
tified with It is equal to fuzzy point Et .

Corollary 2. Extensional hull of fuzzy singleton St ∈
LX , t ∈ X, is equal to the corresponding fuzzy point
Et .

Decomposition of a Fuzzy Set into Fuzzy Sub-
singletons

Theorem 1. Let A∈ LX be a non-zero fuzzy set. Then

Fuzzy�Function�and�the�Generalized�Extension�Principle

171



• A can be represented as a supremum of fuzzy sub-
singletons UA

t , t ∈ Supp(A), such that

UA
t (x) = A(x)∧Et(x), x∈ X, (7)

• A can be represented as a supremum of fuzzy sub-
singletons WA

t , t ∈ Supp(A), such that

WA
t (x) = A(x)∗Et(x), x∈ X, (8)

In both cases, for all x∈ X,

A(x) = sup
t∈Supp(A)

UA
t (x) = sup

t∈Supp(A)
(A(x)∧Et(x)), (9)

and

A(x) = sup
t∈Supp(A)

WA
t (x) = sup

t∈Supp(A)
(A(x)∗Et(x)).

(10)

Proof. At first, we will prove that for allt ∈ Supp(A),
UA

t andWA
t are fuzzy sub-singletons, i.e.UA

t andWA
t

are non-zero and less thanEt . The first assertion fol-
lows from the assumptiont ∈ Supp(A), so that

UA
t (t) =A(t)∧Et(t) = A(t)> 0,

WA
t (t) =A(t)∗Et(t) = A(t)> 0.

The second assertion easily follows from (7) and (8).
To prove (9) and (10), we first notice that both of

them are trivially valid forx 6∈ Supp(A). Therefore,
we assume thatx ∈ Supp(A). Then (9) follows from
the two inequalities below:

A(x) = sup
t∈Supp(A)

UA
t (x) =

= sup
t∈Supp(A)

(A(x)∧Et(x))≥ A(x)∧Ex(x) = A(x),

and

A(x) = sup
t∈Supp(A)

UA
t (x) = sup

t∈Supp(A)
(A(x)∧Et(x))≤

≤ sup
t∈Supp(A)

A(x) = A(x).

To prove (10), we recall that in every complete
residuated lattice the following holds true:

sup
t∈Supp(A)

(A(x)∗Et(x)) = A(x)∗ sup
t∈Supp(A)

Et(x).

Because forx∈ Supp(A), sup
t∈Supp(A)

Et(x) = 1, we eas-

ily get

A(x) = sup
t∈Supp(A)

WA
t (x) = sup

t∈Supp(A)
(A(x)∗Et(x)) =

= A(x)∗ sup
t∈Supp(A)

Et(x) = A(x).

3 FUZZY FUNCTIONS

The notion of fuzzy function has many definitions in
the literature, see e.g. (Hájek, 1998; Klawonn, 2000;
Demirci, 2002; Perfilieva, 2004). In (Hájek, 1998;
Klawonn, 2000; Demirci, 2002), a fuzzy function is
considered as a special fuzzy relation. Below, we re-
mind the notion of fuzzy function as it appeared (in-
dependently) in (Klawonn, 2000), (Höhle et al., 2000)
and (Demirci, 2002):

Definition 2. Let E, F be fuzzy equivalences on X
and Y, respectively. A fuzzy function is a binary fuzzy
relationρ on X×Y such that for all x,x′ ∈ X, y,y′ ∈Y
the following axioms hold true:

1. ρ(x,y)∗E(x,x′)≤ ρ(x′,y),
2. ρ(x,y)∗F(y,y′)≤ ρ(x,y′),
3. ρ(x,y)∗ρ(x,y′)≤ F(y,y′),

A fuzzy function is called perfect (Demirci, 1999), (cf
also (Höhle et al., 2000, Section 3.2)) if it additionally
fulfills

1. for all x∈X, there exists y∈Y, such thatρ(x,y) =
1.

A fuzzy function is called (strong)surjective
(Demirci, 1999), cf also (Höhle et al., 2000, Section
4.2) if

1. for ally∈Y, there existsx∈X, such thatρ(x,y) =
1.

Actually, a fuzzy functionρ establishes a double ex-
tensional correspondence between the space(X,=,E)
and the space of(Y,=,F) (axiomsFF.1, FF.2) which
is weakly functional (axiomsFF.3). Moreover, it is a
point-to-(fuzzy set) mapping betweenX andLY such
that for all x ∈ X, ρ(x, ·) is a fuzzy set onY. If for
all x ∈ X, ρ(x, ·) is a normal fuzzy set thenρ is per-
fect, and there is an ordinary functiong : X →Y such
that for ally∈ Y, ρ(x,y) = F(g(x),y) (see (Demirci,
2002)). This means that everyF-fuzzy pointFg(x) of
Y determined byg(x) is a fuzzy value ofρ atx∈ X.

In our study, we will consider the case whereρ is
surjective and defined everywhere onX, i.e.

(∀x∈ X)(∃y∈Y) ρ(x,y)> 0. (11)

In this case, we will propose an analytic representa-
tion of ρ and useρ in the generalized extension prin-
ciple. Moreover, we will discover a relationship be-
tween a fuzzy function, its ordinary core function and
its extension to a mapping over the domain of fuzzy
sets.

FCTA�2014�-�International�Conference�on�Fuzzy�Computation�Theory�and�Applications

172



3.1 Fuzzy Function and Its Core

In this Section, we will show that each surjective
fuzzy functionρ on X ×Y determines a correspond-
ing ordinary core functiong : X′ →Y, whereX′ ⊆ X,
such that at anyx′ ∈ X′, the valueρ(x′, ·) is equal to
the F-fuzzy pointFg(x′)(·). The proofs of the below
given Theorems 2 and 3 are in (Perfilieva, 2011).

Theorem 2. Let fuzzy relations E on X and F on
Y be fuzzy equivalences and moreover, F be a fuzzy
equality. Let fuzzy relationρ on X×Y be a surjective
fuzzy function. For every y∈Y, let us choose and fix
xy ∈ Core(ρ(x,y)). Denote X′ = {xy | xy ∈ X,y∈Y}.
Then the following fuzzy relation on X

E′(x,x′) =
∧

y∈Y

(ρ(x,y)↔ ρ(x′,y)), (12)

is a fuzzy equivalence E′ such that

1. E ≤ E′ and ρ is a fuzzy function with respect to
fuzzy equivalences E′ and F,

2. for all x∈ X, y∈Y,

ρ(x,y) = E′(x,xy), (13)

3. for all y,y′ ∈Y,

E′(xy,xy′) = F(y,y′), (14)

4. the mapping g: X′ →Y such that g(xy) = y is sur-
jective and extensional with respect to E′ and F,
i.e. for all x, t ∈ X′,

E′(x, t)≤ F(g(x),g(t)). (15)

Corollary 3. Fuzzy equivalence E′, given by (12), is
the greatest one (in the sense of≤) that fulfils Theo-
rem 2.

Corollary 4. Fuzzy equivalence E′, given by (12),
covers X, i.e. for all x∈ X there exists xy ∈ X′ such
that E′(x,xy)> 0.

Proof. By (11), for arbitraryx∈ X there existsy∈Y,
such thatρ(x,y)> 0. By (13),ρ(x,y) = E′(x,xy), and
therefore,E′(x,xy)> 0.

The meaning of the assertions below is that a sur-
jective fuzzy functionρ is indeed a fuzzified version
of its core functiong : X′→Y, whereX′ ⊆X. If x∈X,
then the fuzzy value ofρ(x, ·) is a “linear”-like com-
bination ofF-fuzzy pointsFg(x′)(·). In particular, if
x′ ∈ X′ - domain ofg, then the fuzzy value ofρ(x′, ·)
is equal to the correspondingF-fuzzy pointFg(x′)(·).

Theorem 3. Let fuzzy relations E, E′, F, ρ and func-
tion g : X′ →Y where X′ = {xy | y∈Y} fulfil assump-
tions and conclusions of Theorem 2. Then

1. for all x∈ X,y∈Y,

ρ(x,y) =
∨

x′∈X′

(E′
x′(x)∗Fg(x′)(y)), (16)

2. for all t ∈ X′,y∈Y,

ρ(t,y) = Fg(t)(y). (17)

3.2 Generalized Extension Principle

In this Section, we will show that every fuzzy func-
tion ρ that establishes a point-to-(fuzzy set) mapping
betweenX and LY can be extended (via the Gener-
alized extension principle) to a (fuzzy set)-to-(fuzzy
set) mapping betweenLX and LY. We will use ex-
pression (2), where we replace· by ∗ and use fuzzy
relationρ instead of ordinaryRf . Moreover, we will
use our representation (10) of a non-zero fuzzy set
and show that the extended mapping betweenLX′

and
LY is fully determined by its reduction to a certain set
of fuzzy sub-singletons, and in particular, to sets of
E′-fuzzy points ofX.

Definition 3 (Generalized extension principle). Let
L be a complete residuated lattice and(LX ,=),
(LY,=) fuzzy spaces. Let E, F be fuzzy equivalences
on X and Y, respectively, and fuzzy relationρ on
X ×Y be a fuzzy function. Thenρ induces the map
f→ρ : LX → LY such that for every A∈ LX,

f→ρ (A)(y) =
∨

x∈X

(A(x)∗ρ(x,y)). (18)

Theorem 4. Let fuzzy relations E on X and F on Y be
fuzzy equivalences and moreover, F be a fuzzy equal-
ity. Let fuzzy relationρ on X×Y be a surjective fuzzy
function and E′ be fuzzy equivalence given by (12).
Then for any A∈ LX ,

f→ρ (A) =
∨

t∈Supp(A)

f→ρ (WA
t ), (19)

where WA
t is a fuzzy sub-singleton (8) in the space

(X,=,E′).
In particular, if A is represented as a supremum of

fuzzy points E′t , i.e. A=
∨

t∈Supp(A)E′
t , then

f→ρ (A)(y) =
∨

t∈Supp(A)

f→ρ (E′
t )(y) =

∨

t∈Supp(A)

ρ(t,y).

(20)

Proof. By Theorem 1,A can be represented as a
supremum of fuzzy sub-singletonsWA

t , t ∈ Supp(A),
whereWA

t (x) = A(x)∗Et(x), x∈ X. Thence,
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f→ρ (A)(y) =
∨

x∈X

(A(x)∗ρ(x,y)) =

=
∨

x∈X





∨

t∈Supp(A)

WA
t (x)



∗ρ(x,y) =

∨

t∈Supp(A)

∨

x∈X

WA
t (x)∗ρ(x,y)=

∨

t∈Supp(A)

f→ρ (WA
t )(y).

To prove (20), we first decompose

f→ρ (A)(y) =
∨

t∈Supp(A)

f→ρ (E′
t )(y),

and then continue with the following chain of equali-
ties

f→ρ (E′
t )(y) =

∨

x∈X

(E′
t (x)∗ρ(x,y)) =

=
∨

x∈X

E′
t (x)∗

∨

x′∈X′

(E′
x′(x)∗Fg(x′)(y)) =

∨

x′∈X′

(

∨

x∈X

E′
x′(x)∗E′

t (x)

)

∗Fg(x′)(y) =

=
∨

x′∈X′

E′
x′(x)∗Fg(x′)(y) = ρ(t,y),

where we made use of representationρ by (16).

4 CONCLUSION

In this contribution we started a mathematical analy-
sis of basic concepts in the fuzzy set theory such as
fuzzy point, fuzzy set and fuzzy function. We intro-
duced various spaces of elements equipped with crisp
and fuzzy equivalences with the purpose to show that
similar to the classical case, a (fuzzy) set is a collec-
tion of (fuzzy) points or singletons. We recalled the
notion of a fuzzy function as a special fuzzy relation
and showed that similarly to the classical case, any
fuzzy function can be extended to the domain of fuzzy
subsets and this extension is similar to the Extension
Principle of L. Zadeh. We clarified a relationship be-
tween a fuzzy function and its ordinary core function.
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and Hǒdáková, P. (2012). Interpolation of fuzzy data:
analytical approach and overview.Fuzzy Sets and Sys-
tems, 192:134158.
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