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Abstract: The prediction of financial time series to enable improved portfolio management is a complex topic that has 
been widely researched.  Modelling challenges include the high level of noise present in the signals, the 
need to accurately model extreme rather than average behaviour, the inherent non-linearity of relationships 
between explanatory and predicted variables and the need to predict the future behaviour of a large number 
of independent investment instruments that must be considered for inclusion into a well-diversified 
portfolio.  This paper demonstrates that linear time series prediction does not offer the ability to develop 
reliable prediction models, due to the inherently non-linear nature of the relationship between explanatory 
and predicted variables.  It is shown that the results of histogram based sorting techniques can be used to 
guide the selection of suitable variables to be included in the development of a neural network model.  We 
find that multivariate neural network models can outperform the best models using only a single explanatory 
variable.  We furthermore demonstrate that the stochastic nature of the signals can be addressed by training 
common models for a number of similar instruments which forces the neural network to model the 
underlying relationships rather than the noise in the signals.   

1 INTRODUCTION 

The prediction of financial time series is a topic that 
has been widely researched (Fama and French, 
2008; Altay et al, 2005, Alcock et al, 2005 and 
many others).  Modelling the future behaviour of 
financial time-series is a non-trivial task as the 
process of the formation of market prices is 
influenced by many factors, some of these being 
unknown to the researcher, making it impossible to 
construct an exact model based on known 
underlying relationships.  To a large extent an 
empirical process must therefore be followed. 

Many techniques have been developed for the 
fitting of empirical models to complex data sets, 
including multiple regression and neural networks 
(Bishop, 1996).  In the case of financial time series 
this is complicated by several factors.  Firstly it is 
not known which explanatory variables would be the 
most suited amongst a large set of candidates.  It is 
however of critical importance to limit the model 
inputs to the smallest possible number, as all 
empirical modelling techniques suffer from the 
‘curse of dimensionality’ (Bishop, 1995) – too many 
input variables translate into too much modelling 

capacity, resulting in a model that is fitted to the 
noise in the training set and that do not generalize 
well in an out-of-sample test set. 

The second challenge is closely related to the 
first: in order to ensure good generalization 
properties the number of observations available in 
the training set must be large compared to the 
number of degrees of freedom offered by the model.  
The number of training samples available for a 
single financial instrument may however be limited: 
one may be limited to training sets with less than 
100 samples per instrument, as explained later in this 
paper.  If  a multivariate neural model is trained the 
number of degrees of freedom may be more than 50; 
given the noisy nature of the signals a model trained 
on so little data is almost guaranteed to train mostly 
on the noise in the training set and hence not to 
generalize well outside of the training set. 

A third challenge is the fact that, in the case of 
portfolio return maximization, one needs to select 
those investment instruments that will display 
extreme return behaviour.  As regression techniques 
tend to model the average behaviour of input-output 
relationships, the accuracy of such a model may be 
very bad for extreme behaviour, specifically if the 
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relationship is not linear, as will be demonstrated 
through an example later in this paper. 

Some of the most consistent techniques for 
selecting investment instruments are based on 
histogram techniques that involves the ranking and 
sorting of instruments with respect to one or more 
explanatory variables (Fama and French, 2008).  
While this approach has the benefit of simplicity and 
of averaging out most of the noise in the time series 
behaviour, it is limited to the modelling of simple 
relationships and to the use of only a small number 
of simultaneous input variables.   

Results claimed for the successful application of 
linear regression and neural network techniques to 
financial time series have mostly been applied either 
to a small number of instruments or to the modelling 
of stock indices only (e.g. Altay et al); such results 
may however not work equally well to support a 
portfolio management approach that requires the 
modelling of a large number of instruments to be 
considered for return maximization combined with a 
sufficient level of diversification.   

There is hence a need to develop a technique for 
reliably modelling the expected return behaviour of 
a large number of individual instruments, typically 
all stocks listed on an exchange.   It is the purpose of 
this paper to demonstrate a method that combines 
the capabilities of several modelling techniques and 
that can represent general return behaviour observed 
on an exchange. 

The rest of the paper is organized as follows: 
section 2 provides a brief literature survey, while 
sections 3 and 4 describe the results obtained using 
histogram and linear regression techniques.  In 
section 5 we describe the methodology used to 
develop a neural network model that overcomes 
several of the limitation of the prior techniques.  
Section 6 provides an overview of the most 
important results obtained, while section 7 concludes 
and makes recommendations about future work. 

2 LITERATURE OVERVIEW 

There has been much fundamental debate in 
literature about the predictability of financial time 
series, and more specifically of stock returns (Blasco 
et al, 1997; Kluppelberg et al, 2002).  Initial views 
in favour of the efficient market hypothesis stated 
that stock prices already reflect all available 
knowledge about that stock, making the prediction 
of stock returns to earn abnormal returns on a 
portfolio impossible in principle.  Much has 
however been published in recent years confounding 

those early views, and today it is widely accepted 
that the strong form of market efficiency does not 
hold up in practice (Fama and French, 2004).   

Many studies have demonstrated the ability of 
both linear and non-linear time series prediction 
models to predict future stock behaviour, contrary to 
earlier beliefs that the market behaviour should be 
described as a random walk model (Lorek et al, 
1983; Altay and Satman, 2005; Bekiros, 2007; Jasic 
and Wood, 2004; Huang et al, 2007).   

3 HISTOGRAM TECHNIQUES 

The most direct approach to uncover the ability of an 
explanatory variable to predict future returns is to 
sort the available set of instruments based on the 
value of the explanatory variable.  This technique 
has been used successfully by Fama and French 
(2008) to identify a set of fundamental and technical 
variables that can explain so-called anomalous 
future stock returns.  The technique involves the 
periodic ranking of stocks based on the values of 
each of the explanatory variables.  The ranked stocks 
are then sorted into a number of bins and the average 
returns of the stocks in each bin are calculated to 
provide periodic sorted returns for the set of stocks 
under consideration.  The set of sorted returns 
effectively represents the histogram of returns with 
respect to the sorting variable. 

Based on previous results (Hoffman, 2012) we 
considered the following set of sorting variables: 

 MC (log of market capitalization); 
 One month return over last month (Ret1(-1); 
 Momentum (12 month accumulated returns); 
 BtoM (book-to-market equity ratio); 
 DO (detrended oscillator, variable used to detect 

the onset of upward or downward movements); 
 1 month (Ret1_Sector) and 12 month 

(Ret12_Sector) returns of the sector from which 
the stock originated. 

Results obtained with the sorting of stocks listed 
on the Johannesburg Stock Exchange (JSE) using 5 
sorting bins are shown in table 1 below.  By 
calculating the t-statistics of the sorted returns it can 
be determined whether the deviations in returns 
between bins are statistically significant.  If a hedged 
portfolio is formed long positions will be taken in 
stocks in the highest sorted bin and short positions 
for stocks in the lowest sorted bin.  
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Table 1: Sorted monthly returns of explanatory variables. 

Sorted Bin  1  2  3  4  5 

MC  0.76%  0.21%  0.48%  0.51%  0.08% 

Momentum  ‐0.60%  0.05%  0.31%  0.62%  1.56% 

Ret1(‐1)  0.64%  0.59%  0.84%  0.77%  1.19% 

BtoM  ‐0.48%  0.13%  0.69%  0.42%  1.22% 

YtoB  ‐0.42%  0.48%  0.90%  0.60%  0.45% 

DO_Value  ‐0.62%  0.08%  0.27%  0.82%  1.39% 

DO_Ret  ‐0.42%  0.33%  0.47%  0.64%  0.95% 

R1_Sector  ‐0.11%  0.15%  0.28%  0.59%  1.06% 

R12_Sector  ‐0.05%  ‐0.10%  0.41%  0.78%  0.94% 

Histograms rely on the averaging effect over all 
sorted items to eliminate noise specific to individual 
item properties and to retain only common aspects 
of behaviour; an accurate reflection of the 
underlying relationship is obtained only if there are a 
significant number of items in each sorted bin.  On a 
smaller exchange like the JSE the total number of 
listed stocks is approximately 400.  Should two 
sorting variables and five bins be used the number of 
items in each of the 25 bins will be approximately 
16, which is already marginal in terms of the 
standard deviation of the sorted means.  This 
demonstrates the inherent limitation of the histogram 
technique to be used as multivariate model.   

4 LINEAR REGRESSION 

Linear regression is probably the most widely used 
modelling technique to uncover empirical 
relationships; it provides consistent results as, in 
contrast to neural networks, exact statistical 
formulas can be used for extracting the values of 
linear regression coefficients that e.g. minimize the 
sum-of-squared modelling errors.  In the case of 
financial time series different versions of so-called 
ARMAX techniques can be used as a special version 
of linear regression, with the ARMAX model chosen 
depending of the type of autoregressive and moving 
average relationships that are included into the 
model, and whether extraneous variables are 
included or not. 

While linear regression has significant appeal 
due to its simplicity, consistency and the limited 
computational effort required to extract the linear 
regression coefficients, it is limited to the modelling 
of linear relationships.  We will demonstrate the 
fitting of a linear regression model to an inherently 
non-linear relationship that was uncovered by a 
sorting method, resulting in linear regression 
predictions that are counter-productive. 

Table 2 below provides results for the sorting of 
1 month future returns using 12 month historic 
returns as sorting variable.  The sorting technique 
produces a very useful hedge return of 1.82% on 
average per month.  The size of the t-statistics for 
extreme bins also indicates a statistically significant 
relationship. It can be seen that, while there is not a 
strong relationship between input and output over 
bins 2 to 4, the relationship seems to bend strongly 
up- and downwards in bins 2 and 1 respectively, 
indicative of a non-linear relationship.  We extract a 
linear regression model using 12 month historic 
returns as input and one month future returns as 
output variable and calculate the predicted and 
residual returns, the latter defined as the difference 
between the actual and predicted returns.  By sorting 
the stocks based on predicted returns we calculate 
the average returns and residual predicted returns 
within each sorted bin, as displayed in table 3 below. 

Table 2: Sorted monthly returns using 12 monthly historic 
returns as sorting variable. 

Bin No  1  2  3  4  5 

Ave Ret  ‐0.08%  0.60%  0.76%  0.98%  1.74% 

t Stat  ‐5.52  ‐1.34  ‐0.34  1.02  5.73 

High‐Low  1.82% 

Table 3: Sorted monthly returns and residual returns using 
linear regression based predicted returns as sorting 
variable. 

Bin No  1  2  3  4  5 

Ave Ret%  0.69  1.02  0.53  1.03  0.80 

t Stat  ‐0.77  1.27  ‐1.77  1.38  ‐0.09 

High‐Low%  0.11 

Res Pred Ret %  6.6  2.0  ‐0.1  ‐1.0  ‐4.6 

t Stat  42.8  12.7  ‐0.7  ‐6.3  ‐30.3 

It can be seen that, in contrast to the direct 
application of sorting to the explanatory variable, the 
linear regression prediction produced almost zero 
hedge returns.  In this case the average linear 
correlation between input and output variable was -
0.044, even though there is a strong positive 
correlation between input and output for items in the 
extreme bins. It is also clear that the residual returns 
in the extreme bins have means that are distinctly 
positive or negative respectively, which is indicative 
of an inherently non-linear underlying relationship; 
this is confirmed by the large t-statistics obtained in 
the extreme bins.  This simple example demonstrates 
the limitations of using linear models to financial 
time series prediction. 
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5 DEVELOPING A NEURAL 
NETWORK MODEL  

The most popular technique for modelling non-
linear empirical relationships is neural networks 
(NNs), based on their ability to model relationships 
of arbitrary nature using small number of model 
parameters (Bishop, 1996).  A number of key 
decisions have to be made as part of the NN 
development process.  The first of these is to decide 
whether to develop a separate NN for each 
instrument, one NN for all instruments or a separate 
NN for each category of instruments that are 
believed to display similar behaviour.  A second 
decision involves the selection of input variables; as 
the number of model inputs impacts the number of 
degrees of freedom, and given the limited number of 
training observations and the need to generalize 
outside of the training set, this decision is closely 
link to the first.  A third decision is the length of 
time history to be included into the training set: 
making the training set as large as possible in order 
to reduce the impact of noise may not be optimal in 
other respects, as the underlying nature of the 
relationships to be modelled may change over time.  
The above choices depend on the available number 
of training observations, the strength and stability of 
the expected relationships and the degree to which it 
is expected that different instruments will display 
common behaviour.  The expected complexity of the 
relationships will dictate the neural architecture to be 
implemented.  The stability of the relationships 
should determine the time span of training sets.   

It is clear that there are a significant number of 
options to choose from, resulting in a potentially 
very large number of model permutations.  Given 
the relatively lengthy process to train a NN (which 
typically includes training several networks for each 
permutation, given the stochastic nature of the NN 
training process) it is not practically possible to 
exhaustively experiment with all possibilities.  A 
more productive approach is use sorting and linear 
regression techniques to select those variables that 
show potential for inclusion into a set of NN inputs, 
and to determine the presence of non-linearities in 
the relationships. 

For the purpose of this exercise we considered 
those candidate inputs that were found to possess 
significant explanatory power to predict one month 
returns based on ranking and sorting. We selected 
market capitalization (MC) and book-to-market ratio 
(BtoM) as the fundamental variables with the most 
prominent explanatory power.  In order to improve 
upon the predictive abilities of these fundamental 

inputs we considered several technical variables; at 
monthly time scales the most prominent 
relationships between past and future returns are 
mean reversion in returns (Cubbins et al, 2006) and 
momentum in returns (Fama and French, 2008).  We 
therefore add momentum and a detrended oscillator 
to the set of inputs; the latter is a commonly used 
technical indicator used to detect changes in the 
current trend and that has been found to display 
consistent positive relations with future returns 
(Hoffman, 2012).  We also add sector 1 and 12 
month returns as additional extraneous variables. 

In the case of JSE listed stocks we are limited to 
less than 400 stocks at any given point in time, with 
an available time history spanning between 20 and 
25 years.  We are therefore limited to maximum 250 
to 300 monthly observations per stock.  To allow the 
calculation of variables like momentum, requiring a 
history of 12 months, the training set must be further 
reduced.  In order to determine whether the model 
development technique produces repeatable results 
we furthermore have to repeat the model training 
and prediction process over a period of at least 10 
years to observe the impact of the different market 
(bull and bear) cycles.  It is hence clear that we will 
be left with less than 100 training observations per 
stock for every model training cycle.  If we include 5 
or more input features and several hidden nodes the 
number of model degrees of freedom will range 
between 30 and 60; 100 training samples is thus too 
few to allow the extraction of a separate NN model 
for each stock, given the stochastic nature of the 
relationships to be modelled.  We are therefore 
forced to group stocks together in order to 
accumulate sufficiently large training sets. 

As observed from the sorted returns results, the 
behaviour that should be profitable to exploit occurs 
in the extreme sorted categories.  We assist the 
neural training process to focus primarily on extreme 
behaviour by weighing the training sets unevenly: 
we identify extreme observations (observations 
where either the input or the target value falls into an 
extreme sorted bin) and load the training set with a 
disproportionate fraction of extreme observations to 
ensure that ‘average’ observations will not dominate 
the learning process. 

For each model extraction cycle we select a 
training set that spans over a maximum period of 5 
years and construct a training set that contains 
observations selected with equal probability from 
the available time history of all stocks.  A separate 
test set is constructed using the same selection 
techniques but spanning over a time period that 
directly follows on the time period representing the 
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training set.  After training the model it is applied to 
the training and test sets.  The prediction results are 
then allocated to the individual stocks so that the 
predicted returns for each stock can be determined 
for the next investment period.  The predicted stock 
returns are ranked and sorted and a hedge portfolio 
is formed by going long in the highest sorted 
category and short in the lowest sorted category.  
The above process is repeated over the available 
time window, and the average sorted return for each 
bin over the available time period as well as the 
hedge portfolio returns is calculated. 

The success of this combined approach to model 
development will be measured by comparing the 
sorted returns generated by the prediction model 
against the sorted returns generated by any of the 
individual explanatory variables used in the original 
sorted returns exercise, as well as with the results 
obtained from using linear regression models. 

6 RESULTS 

We use stock returns calculated relative to a value 
weighted market return – a model with no predictive 
capability should therefore produce sorted returns 
that do not significantly differ from zero.  Variables 
with hedged returns that are statistically significant 
from zero are displayed in table 4 below.   

Table 4: Sorted monthly hedged returns and t-statistics of 
explanatory variables used as model inputs. 

 High ‐ Low H ‐ L t Stat

MC ‐0.68% ‐4.7

Ret1(‐1)  0.55%  3.4

Momentum 2.16% 14.8

BtoM 1.71% 11.7

YtoB 0.87% 6.0

DO_Value 2.00% 13.7

DO_Ret 1.37% 9.4

Ret1_Sector 1.17% 8.0

Ret12_Sector  0.99%  6.8

Secondly we use the above set of variables as 
inputs in a linear regression model to determine 
whether a multivariate linear model can produce 
predicted return results that are superior to the sorted 
return results of the individual variables.  The sorted 
predicted returns and residual predicted returns are 
displayed in table 5.  It can be seen that the hedged 
return produced by the linear regression model is 
significantly lower than the hedged returns produced 
by any of the variables used as regression inputs.  
This failure of linear regression to capture the true 

input-output relationship is confirmed by the large 
residual returns in the extreme bins. 

Table 5: Sorted monthly returns using linear regression 
predicted returns as sorting variable.  

Sorted Bin  1  2  3  4  5 

Ave Ret %  0.32  0.08  0.37  0.40  0.70 

t Stat  ‐0.43  ‐2.08  ‐0.06  0.15  2.26 

High‐Low%  0.39 

H ‐ L t Stat  2.69 

Res Pred Ret%  12.9  2.0  ‐0.22  ‐2.0  12.5 

t Stat  94.52  14.68  ‐1.64  ‐14.6  91.50 

Thirdly we develop neural network models using 
the same set of input variables.  We start with the 
single input variable that produced the highest sorted 
returns.  Other variables are then considered for 
addition; such additional variables are only retained 
if the sorted hedged returns of the resulting 
prediction model exceed that of the model excluding 
that variable.  We verify if the modelled 
relationships display gradual changes over the range 
of inputs values (as would be expected in practice), 
rather than abrupt changes (as can easily be obtained 
with neural models if insufficient regularization is 
used).  This was done by varying one input at a time 
between its extreme values while maintaining the 
other inputs at their average values.  One of the 
modelled relationships is displayed in figure 1 below 
– the relationship, however nonlinear, display 
gradual changes over the ranges of input values; this 
provides additional confidence in the model. 

 

Figure 1: Typical input-target variable scatter plot and 
neural network prediction. 

The sorted returns as well as the High-Low 
hedged returns using the NN prediction as sorting 
variable are displayed in table 6 below.  It is clear 
that the neural model produce results that are 
superior to the results of any of the individual 
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explanatory variables.  Whereas the largest average 
monthly hedged return for a single variable is 
2.15%, the best neural model produced hedged 
returns of 3.35% per month, which translates to an 
annual return of approximately 48% relative to the 
market return.  This is a very significant result, given 
that in practice the best stock based investment 
funds seldom outperforms the market by more than 
8-10 % per annum.  It can furthermore be seen that 
the residual returns are spread much more evenly 
across all sorted bins, in contrast to the results 
obtained using linear regression.  This means that 
the neural network model was able to effectively 
capture the inherent non-linearity in the input-output 
relationships. 

Table 6: Sorted monthly returns and residual returns using 
neural network predicted returns as sorting variable. 

Sorted Bin  1  2  3  4  5 

Ave Ret%  ‐1.27  0.03  0.40  0.67  2.08 

t Stat  ‐11.37  ‐2.45  0.15  1.98  11.62 

High‐Low%  3.35% 

H ‐ L t Stat  22.98 

AveResRet%  ‐1.03  ‐0.71  ‐0.34  0.05  1.62 

t Stat  ‐7.57  ‐5.24  ‐2.48  0.39  11.87 

7 CONCLUSIONS 

In this paper we demonstrated the value of 
combining several different computational 
techniques in an integrated methodology.  We 
described the results that can be obtained by ranking 
and sorting returns as well as by using linear 
regression techniques, and demonstrated that while 
being useful, both approaches have specific 
limitations.  We then combined these techniques 
with neural networks to exploit the non-linearities in 
the relationships that were uncovered.  Neural 
network models were trained taking into account the 
fact that stocks are selected to exploit extreme rather 
than average behaviour.  The methodology was 
subjected to rigorous testing for all stocks forming 
part of the JSE and over a period of approximately 
20 years.  The resulting multivariate NN model 
produced significantly superior results compared to 
any of the variables on their own. 

In contrast to earlier work our results represent 
the performance obtained by equally considering all 
stocks available on the JSE, using explanatory 
variables that have been demonstrated before to each 
possess predictive power in their own right, and 
applying the same stock selection methodology over 

a period of more than 20 years that contains several 
bull and bear cycles.  We can therefore conclude that 
multivariate NN models can outperform single input 
sorting techniques as well as multivariate linear 
regression techniques.  It is furthermore clear that 
each important model development decision must be 
based on a solid understanding not only of the 
modelling techniques used but also of the 
application domain, in this case portfolio 
management. 

Future work will involve the expansion of the 
same methodology to different categories of stocks, 
as well as to decision making on a daily rather than a 
monthly basis. 
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