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Abstract: In the Statistical Process Control (SPC) field, an Exponentially Weighted Moving Average for Stationary 
processes (EWMAST) chart with proper control limits has been proposed to monitor the process mean of a 
stationary autocorrelated process. There are two issues of note when using the EWMAST charts. These are 
the smoothing parameter selections for the process mean shifts, and the determination of the control limits 
to meet the required average run length (ARL). In this paper, a guideline for selecting the smoothing 
parameter is discussed. These results can be used to select the optimal smoothing parameter in the 
EWMAST chart. Also, a numerical procedure using an integration approach is presented for the ARL 
computation with the specified control limits. The proposed approach is easy to implement and provides a 
good approximation to the average run length of EWMAST charts. 

1 INTRODUCTION 

The majority of traditional control charts are based 
on an assumption that processed data is statistically 
independent; however, this assumption does not hold 
in certain production environments. It is well known 
that using traditional charts for monitoring 
autocorrelated processes usually results in an 
unnecessarily high occurrence of false positives. A 
common approach to handling autocorrelated data is 
to apply traditional control charts on the stream of 
residuals after the process data have been fitted to a 
time-series model. Several residual control charts 
have been proposed in recent years. Such as: Alwan 
and Roberts (1998) proposed a special cause chart 
(SCC) which uses a time-series model to obtain and 
monitor the residuals. Montgomery and Mastrangelo 
(1991) provided a procedure of plotting one-step-
ahead EWMA prediction errors on a control chart 
(M-M chart). English et al (1991) and Wincek 
(1990) suggested Kalman filtering to obtain the 
residuals. The Proportional-Integral- Derivative 
(PID) chart by Jiang et al (2002) and the Dynamic 

2T chart by Tsung and Apley (2002) have been 
proposed for monitoring of processes with a

 feedback controller.  
There are some problems in the above control 

charts. Zhang (1998) proposed an EWMAST control 
chart to monitor the original autocorrelated data. The 
EWMAST chart is very similar to the traditional 
EWMA chart, except that it is designed to be applied 
to the monitoring of stationary, autocorrelated data. 
Both the EWMA and EWMAST charts are used for 
charting the same statistic, but the EWMAST chart 
is used in conjunction with modified control limits 
to account for the additional variation within an 
autocorrelated process. The major advantages in 
using an EWMAST chart are: there is no 
requirement for an operator to use time-series 
techniques; and this method has a comparable ability 
to the residual-based charts for detecting large mean 
shifts. Specifically, when we set the smoothing 
parameter,  =1, when using an EWMAST chart, 
then it is equivalent to the traditional Shewhart chart. 
Therefore, the EWMAST chart can be more flexible 
than the Shewhart chart as its smoothing parameter 
can be set according to the magnitude of the mean 
shift in the stationary autocorrelated process. 
According to the simulation results in Zhang (1998), 
the EWMAST chart is more sensitive than residual-
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based charts for positive autocorrelated data. For 
negative autocorrelated data, the performance of the 
EWMAST chart is still superior, but is not as 
significant as the positively correlated cases.  

Regarding the selection of an optimal 
smoothing parameter for the EWMAST chart, 
Zhang’s (2000) suggestion was to set the smoothing 
parameter   equal 0.2 for most applications, and 
provided the ARLs for many autocorrelated 
processes. In general, the simulation technique is 
rather costly, especially in the case of on-target 
analysis. Therefore, it is not a suitable approach 
when investigating the ARL performance in 
practical applications.  
In order to set the parameters of EWMAST charts 
more easily, a computing algorithm is presented and 
tabulated parameters, which yield the shortest out-
of-control ARL for EWMAST charts, are provided 
in this article. 

2 DESCRIPTION OF THE 
EWMAST CHART  

To illustrate the autocorrelated process, we consider 
the important case of monitoring the process mean 

0  of a stationary AR(1) process and defined as: 
 

    ttt eXX   )( 010  , ,...2,1t             (1) 
 

where  tX  represents the process output, 1  is a 

constant representing the stationary process, and 
}{ te  is a normally distributed white noise with finite 

variance, 2
e . The EWMAST chart is constructed by 

charting the EWMA control statistic under the 
stationary process. The chart statistic tZ  is defined 

as: 
   ,...2,1    ,)1( 1    tXZZ ttt  ,                  (2) 

 

where 00 Z  is the on-target process mean, and   

is a smoothing parameter within the range )10(   . 
Assume the process }{ tX  with stationary variance 

2
X  undergoes a single assignable cause that shifts 

the process mean to Xt   0  at time t. To 

monitor }{ t , a plot of tZ  is made by selecting 

suitable values of the smoothing parameter   and 
the width of the control limits 

tZL 0 , where 

0L . The parameter L serves as a width adjustment 
for control limits to meet the required in-control 
ARL. Zhang (1998) indicates that the control 

statistic tZ  has variance: 
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where )(k is the autocorrelation function of }{ tX  

at time lag k , and )(k  can simplify to k  for the 
AR(1) processes. The limiting value of the variance 
of tZ  in equation (3) as t  increases to infinity is 

given in (4): 
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Hence, the control limits are taken to be:  
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3 DESIGN OF THE EWMAST 
CHART  

Constructing an EWMAST chart requires the 
specification of   and the constant L. In general, the 
choice of parameters (  , L) is based on a 
compromise for certain statistic or economic 
constraints. It is well known that small values of   
are better for detecting small shifts in the mean and 
large values of   are better for detecting large 
shifts. Although the suggestion for designing the 
EWMAST smoothing parameter ( 2.0 ) by Zhang 
(1998) is given in practical terms, there remain 
multiple issues that have not been clearly specified. 
The 2.0  can only be viewed as a heuristic 
suggestion when the magnitude of the shift is 
unknown. Another concern is that Zhang’s 
suggestion does not consider the in-control ARL.  

To select optimal parameters   and L for an 
EWMAST chart, an extensive simulation, with 
10,000 runs per parameter setting, was implemented. 
Thus, the standard deviation of the ARL estimation 
error is less than 1% of the actual ARL. For each 
simulation run, the }{ te  are generated as an 

independent sequence of random numbers, based 
upon the standard normal distribution utilized in the 
IMSL® software (1989). The value of }{ tX  is 

generated from equation (1). The charting statistic is 
calculated via equation (2), with 0Z  initialized at 0 

and terminated when tZ  exceeds the control limits. 
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Table 1: Optimal EWMAST control schemes. 

 =0.5  =1.5 

  0ARL    L  minARL    0ARL   L  minARL  

0.25  100  0.05  1.815  23.36  0.25 100 0.3 2.388 5.28 

 370  0.05  2.432  37.99  370 0.2 2.800 7.21 

 500  0.05  2.555  41.90  500 0.2 2.903 7.68 

 1000 0.05  2.828  52.42  1000 0.2 3.133 8.83 

0.50  100  0.05  1.730  32.40  0.50 100 0.2 2.185 7.42 

 370  0.05  2.356  58.17  370 0.2 2.714 10.93 

 500  0.05  2.483  65.72  500 0.1 2.670 11.73 

 1000 0.05  2.759  87.24  1000 0.1 2.925 13.59 

0.75  100  0.05  1.585  49.05  0.75 100 0.2 2.013 11.92 

 370  0.05  2.230  104.07  370 0.1 2.410 19.14 

 500  0.05  2.358  121.86  500 0.1 2.532 21.01 

 1000 0.05  2.641  177.68  1000 0.05 2.641 25.44 

0.90  100  0.05  1.372  68.04  0.90 100 1.0 2.185 17.24 

 370  0.05  2.041  176.47  370 0.05 2.041 35.88 

 500  0.05  2.175  217.04  500 0.05 2.175 40.07 

 1000 0.05  2.470  349.61  1000 0.05 2.470 51.46 

 =2.5  =3.0 

  0ARL    L  minARL    0ARL   L  minARL  

0.25  100  0.8 2.552 2.25 0.25 100 1.00  2.570  1.60  

 370  0.5 2.954 3.04 370 0.70  2.976  2.12  

 500  0.5 3.041 3.22 500 0.70  3.071  2.25  

 1000 0.4 3.230 3.63 1000 0.70  3.284  2.59  

0.50  100  1.0 2.538 2.67 0.50 100 1.00  2.538  1.72  

 370  0.5 2.887 4.13 370 1.00  2.980  2.52  

 500  0.5 2.985 4.45 500 1.00  3.071  2.76  

 1000 0.4 3.173 5.18 1000 0.80  3.259  3.41  

0.75 100  1.0 2.430 3.30 0.75 100 1.00  2.430  1.95  

 370  1.0 2.903 5.97 370 1.00  2.903  3.19  

 500  1.0 3.000 6.79 500 1.00  3.000  3.59  

 1000 0.3 3.008 8.92 1000 1.00  3.218  4.68  

0.90  100  1.0 2.185 4.02 0.90 100 1.00  2.185  2.16  

 370  1.0 2.711 8.54 370 1.00  2.711  4.18  

 500  1.0 2.821 10.03 500 1.00  2.821  4.89  

 1000 1.0 3.064 14.46 1000 1.00  3.064  6.88  

 
The same program  was  used  for  an  out-of-control 
ARL with a mean shift X  added to }{ tX  at time 

t =1. The design of an EWMAST chart consists of 
the selection of charting parameters ),( L  that 
satisfy certain  ,  , and in-control ARL. For most 
practical purposes, Table I show the particular 
values of   and L  on the EWMAST chart for 

certain   (  0.25,0.5,0.75 and 0.9) to provide the 
required in-control ARLs ( 0ARL =100, 370, 500 and 

1000).  
Table I shows that, as we expected, when 

 =0.25 and 0ARL =100 the optimal   value is 0.3 

for detecting a 1.5- X  shift; and  =0.8 is optimal 
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for detecting a 2.5- X  shift, but in the case of 

 =0.25 and 0ARL =500 the optimal   value is 0.2 

for detecting a 1.5- X  shift and  =0.5 for a 2.5-

X  shift. This phenomenon is the same as which 

occurs in EWMA charts that have been studied by 
Lucas and Saccucci (1990). Another test, with 
specified 0ARL =370 and a three- X  shift 

determined that the optimal value of   is 0.7 for 
 =0.25, but the optimal value of   is 1.0 for 
 =0.75. Therefore, the optimal   of an EWMAST 
chart may be affected by the different values of  , 
the magnitude of the mean shift ( X ) and the in-

control average run length ( 0ARL ). 

The optimal   values should be dependent on 
the magnitude of the mean shift, the autoregressive 
parameter, and the in-control average run length. 
This is helpful for the operator to set an appropriate 
value of   when an EWMAST chart is chosen to 
monitor a stationary process. The following steps are 
recommended as guidelines for designing an optimal 
EWMAST chart. 
Step 1.  First, specify the desired in-control 0ARL , 

the autocorrelation coefficient  , and decide  
upon the smallest process mean shift, in 
terms of X , that must be rapidly 

detected..  
Step 2.  Next, select the optimal parameters ),( L  

from Table I. 
Step 3. Finally, evaluate the entire ARL performance 

for this EWMAST chart to determine 
whether the chart provides suitable 
protection against other shifts.  

4 THE NUMERICAL  
PROCEDURE FOR FINDING 
THE ARL OF THE EWMAST 
CHART  

In this section, a numerical procedure is presented 
for the investigation of the ARL of EWMAST 
charts. Knowledge of the run length is important and 
permits us to illustrate the performance of a chart in 
terms of average run length. In general, since the run 
length of a chart is a nonnegative, random, integer 
variable, chart performance can be evaluated by 
averaging: 
 

             


0
)RL()RL(ARL

k
kpkE            (6) 

In the iid case, a traditional Shewhart chart can be 
easily calculated. The )RL( kp   are evaluated 
directly and summed to obtain the ARL. However, 
in charting procedures that use recursive charting 
statistics, such as EWMA charts and CUSUM 
charts, equation (6) is not easily evaluated. In this 
situation, equation (6) can be rewritten as:  
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Let the random variable N  be the time of the 
first passage of the process  tZ  exceeding the 

control limits given by equation (5). The probability 
of an in-control process at time k , given the initial 
condition 0Z ( UCLZLCL  0 ), is written as: 

 

,)RL( 1 kkk rPkpP                 (8) 
 

where 0.10 P , and kr  is the shrink ratio of kP  

relative to 1kP . By using equation (8) to establish a 

recursive formulation for the probability of a ruined 
problem, the average run lengths can be found by 
directly summing the kP  terms. These computations 

demonstrate the behavior of run length distributions 
over various AR(1) parameters. 

To investigate the behavior of kP  and kr , our 

analysis shows that there is a linear relationship 
between kP  and kr  with increasing k .  

The following steps constitute the ARL 
computation method for an EWMAST chart applied 
to the AR(1) process. 
Step 1.  Given   and L values, and letting k  be the 

time index, set k =1 as the beginning of 
the process; 

Step 2. Calculate the 2
kz  using equation (3) for 

each k, if 2k , and also calculate 
),(Cov ji ZZ  for kji  ,1  using the 

equation (A.3) in Zhang’s (1998) studies ;  
Step 3.  Use Alan’s (1998) algorithm to find the 

probability of )RL( kp  ; 

Step 4. Find the shrink ratio of 
)1RL(

)RL(





kp

kp
rk ; 

Step 5. Collect krrr ,...,, 21 , if }{ kr  is converging 

to a constant p  or 510)RL(  kp ; then, 

set Nk   and go to Step 6; otherwise, set 
1 kk  and go to Step 2; 

Step 6. Compute    

 
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Table 2: ARLs for the EWMAST chart applied to an AR(1) process with 0  . 

( , L) shift 
 r.d. 

(1)a          (2)b =[(1)-(2)]/(2)*100% 
 =0.25, L=2.80 0.0 373.41 379.49 -1.60% 

 0.5 56.31 56.57 -0.46% 
 1.0 14.72 14.74 -0.14% 
 2.0 4.676 4.68 -0.09% 

 3.0 2.797 2.73 2.45% 

 =0.50, L=2.72 0.0 378.15 372.43 1.54% 

 0.5 88.97 86.28 3.12% 
 1.0 24.29 23.22 4.61% 

 2.0 6.580 6.33 3.95% 
 3.0 3.571 3.50 2.03% 

 =0.75, L=2.59 0.0 390.41 378.90 3.04% 

 0.5 149.71 146.07 2.49% 
 1.0 47.40 45.45 4.29% 
 2.0 11.279 10.80 4.44% 
 3.0 5.129 5.03 1.97% 

 =0.90, L=2.43 0.0 423.87 377.46 12.30% 

 0.5 228.02 201.73 13.03% 
 1.0 89.14 82.62 7.89% 
 2.0 20.791 19.26 7.95% 
 3.0 7.615 7.09 7.40% 

a Computational results. 
b Zhang’s (2000) simulation results. 

Table 3: ARLs for the EWMAST chart applied to an AR(1) process with 0 . 

( , L) shift 
 r.d. 

(1)a          (2)b =[(1)-(2)]/(2)*100% 
 =-0.25, L=2.92 0.0 384.96 374.52 2.79% 

 0.5 23.31 22.35 4.30% 
 1.0 6.892 6.72 2.56% 
 2.0 2.862 2.85 0.42% 
 3.0 1.935 1.94 -0.26% 

 =-0.50, L=2.94 0.0 366.15 374.90 -2.33% 

 0.5 14.056 13.97 0.62% 
 1.0 4.840 4.64 4.31% 
 2.0 2.239 2.27 -1.37% 
 3.0 1.590 1.62 -1.85% 

 =-0.75, L=2.94 0.0 347.80 375.88 -7.47% 

 0.5 8.010 8.25 -2.91% 
 1.0 3.319 3.38 -1.80% 
 2.0 1.704 1.78 -4.27% 
 3.0 1.291 1.24 4.11% 

 =-0.90, L=2.90c 0.0 376.05 377.17 -0.30% 

 0.5 5.336 5.37 -0.63% 
 1.0 2.480 2.53 -1.98% 
 2.0 1.480 1.45 2.07% 
 3.0 1.147 1.07 7.20% 

a Computational results.  
b Zhang’s (2000) simulation results. 
c Result from Zhang’s (2000) use of L=2.65. 
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5 COMPUTATIONAL RESULTS 

Zhang (2000) estimated these ARLs at  0, 0.5, 1, 
2 and 3.0 in units of X on simulations utilizing at 

least 4,000 realizations from the AR(1) processes 
with  =  0.25,  0.5,  0.75 and  0.9. In contrast 
to the proposed methodology, we do  the same 
parameter combinations in Zhang’s studies. The 
results are listed in Table II for  >0 and in Table III 
for  <0. 

As indicated in Table II, it is clear that when the 
process is positively autocorrelated, the ARLs of our 
computational results are in agreement with those 
obtained by Zhang’s simulation results. Let the 
relative difference (r.d.) represent the difference 
between Zhang’s results and those obtained by the 
proposed method. Table II also shows that when 
mean shifts are small and   is large, the simulation 
results deviate more from the computational results. 
This phenomenon indicates that due to the inflation 

of 2
tz , the larger the  , the more simulation runs 

are required.  
As indicated in Table III, it is clear that when the 

process is negatively autocorrelated, the ARLs are 
also in agreement with Zhang’s results. Table III 
also shows an interesting phenomenon: when   
becomes increasingly negative and large, the 
EWMAST chart becomes more sensitive. This 
property is completely opposite to a positive 
autocorrelated process. As for the r.d. index, we can 
also observe that the results of a simulation with few 
realizations results in an unstable estimate of ARL, 
especially in the case of an in-control situation with 
highly correlated data.  

6 CONCLUSIONS 

In this research, the performance of an EWMAST 
chart has been investigated for various parameter 
settings when the AR(1) process is utilized. These 
results demonstrate guidelines for parameter (  , L) 
selection when the in-control ARL and the 
autogressive parameter are specified. A numerically 
analytical expression was also used to evaluate the 
ARLs of the EWMAST chart, in the important 
special case of an autocorrelated process. 
Importantly, this method enables the assessment of 
the run-length distribution of an EWMAST chart 
using underlying data from an AR(1) process. For an 
application of the results, the ARL algorithm can be 

extended to calculate run-length distribution and 
ARLs for other stationary-process data with 
determined parameters. Although these results are 
relatively narrow in scope when compared to the 
results in Lucas and Saccucci (1990), they are still 
helpful to the operator for setting parameters when 
using an EWMAST chart. As for the other 
requirements of in-control ARLs and the different   
values listed in Table I, a larger table covering a 
wider range of ARL values is available from the 
authors on request. 
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