
Building Poker Agent Using Reinforcement Learning 
with Neural Networks 

Annija Rupeneite 
Faculty of Computing, University of Latvia, 19 Raina blvd., LV-1586 Riga, Latvia 

      

Keywords: Poker Game, Reinforcement Learning, Neural Networks. 

Abstract: Poker is a game with incomplete and imperfect information. The ability to estimate opponent and interpret 
its actions makes a player as a world class player. Finding optimal game strategy is not enough to win poker 
game. As in real life as in online poker game, the most time of it consists of opponent analysis. This paper 
illustrates a development of poker agent using reinforcement learning with neural networks. 

1 STAGE OF THE RESEARCH 

Poker is a game with incomplete and imperfect 
information. The ability to estimate opponent and 
interpret its actions makes a player as a world class 
player. Finding optimal game strategy is not enough 
to win poker game. As in real life as in online poker 
game, the most time of it consists of opponent 
analysis.  

Author is working on development of poker 
agent that would find optimal game strategy using 
reinforcement learning (RL) in combination with 
artificial neural network (ANN) for value function 
approximation.  

2 OUTLINE OF OBJECTIVES 

This paper illustrates a development of poker agent 
using reinforcement learning with neural networks. 
Complete poker agent should have an ability to 
create optimal game strategy that makes decisions 
based on information: 
 Hand strength/potential estimation; 
 Table card estimation; 
 Opponent hand strength prediction; 
 Opponent classification (tight/loose - passive/ 

aggressive); 
 Current state evaluation using neural network. 

 
AI Poker agent should be able to find an optimal 

strategy by itself (unsupervised learning) using 
information given above. It also should be able to 

adapt opponent play style and change its strategy 
during the game. 

3 RESEARCH PROBLEM 

Games are to AI as grand prix racing is to 
automobile design. 

Poker game has become a field of interest for 
artificial intelligence technologies. There are some 
concealed cards in the game that makes impossible 
to calculate the final outcome of the hand. 
Therefore, artificial intelligence approach is used 
more often to develop online poker agents. 

Poker game can be defined as a partially 
observable Markov decision process (POMDP). 
There is no complete and ready solution for 
POMDP. Reinforcement learning technologies allow 
to create an agent for Markov decision process 
(MDP), but it can’t make model for POMDP - it is 
impossible to define current state and calculate value 
function in uncertain environment. To solve 
POMDP with reinforcement learning neural network 
is used for value function approximation. Value 
function approximation with neural network allows 
to estimate a current state in uncertain environment.  

Most of the known research work on poker game 
with AI  includes opponent model with neural 
networks (Davidson, 1999) or reinforcement 
learning for finding optimal game strategy (Teófilo, 
Reis, Cardoso, Félix, Sêca, Ferreira, Mendes,Cruz, 
Pereira, Passos, 2012). However none of them uses 

22

Rupeneite A..
Building Poker Agent Using Reinforcement Learning with Neural Networks .
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)



 

both these technologies together. Reinforcement 
learning together with neural networks have 
successfully been applied for different control 
problems - control of gas turbine (Schafer, 2008) 
and motor-control task (Coulom, 2002). 

Given research describes poker agent 
development using RL with ANN. 

4 STATE OF THE ART 

Texas Hold’em is one of the most popular forms of 
poker. It is also a very complex game. There are 
several factors that make poker game as uncertain 
environment (concealed cards, bluffing). These 
characteristics make poker partially observable 
Markov Decision process that has no ready solution. 

Reinforcement learning together with neural 
network for value function approximation provides a 
solution for uncertain environment agent. This paper 
gives a brief description of information needed to 
develop agent poker game: 
 Poker game rules; 
 Definition of the partially observable Markov 

decision process; 
 Neural network theory; 
 Reinforcement learning theory. 

4.1 Poker Game 

Poker is a game of imperfect information in which 
players have only partial knowledge about the 
current state of the game (Johanson, 2007). Poker 
involves betting and individual play, and the winner 
is determined by the rank and combination of cards. 
Poker has many variations - in experiments, and data 
analyses author uses Texas hold’em poker game 
version. Texas hold’em consists of two cards dealt to 
player and five table cards. Texas hold’em is an 
extremely complicated form of poker. This is 
because the exact manner in which a hand should be 
played is often debatable. It is not uncommon to 
hear two expert players argue the pros and cons of a 
certain strategy (Sklansky, Malmuth, 1999). 

Poker game consists of 4 phases - pre-flop, flop, 
turn, river. On the first phase (pre-flop) two cards 
are dealt for every player. On the second phase 
(flop) three table cards are shown. On next phase 
(turn) fourth card is shown and finally on the last 
phase (river) table fifth card is shown and winner is 
determined. Game winner is a player with the 
strongest five card combination. Possible card 
combinations are (starting from the highest rank) 
Straight flush, Royal flush, Four of a kind, Full 

house, Flush, Straight, Three of a kind, Two pair, 
One pair, High card. 

4.2 Partially Observable Markov 
Decision Process 

Markov decision process can be described as a tuple 
(S, A, P, R), where 
 S, a set of states of the world; 
 A, a set of actions; 
 P:S×S ×A →[0,1], which specifies the 

dynamics. This is written P(s'|s,a), where 
∀s ∈S  ∀a ∈A   ∑s'∈S P(s'|s,a) = 1. 

 
In particular, P(s'|s,a) specifies the probability of 

transitioning to state s' given that the agent is in a 
state s and does action a. 
 R:S×A ×S →R, where R(s,a,s') gives the 

expected immediate reward from doing action 
a and transitioning to state s' from state s 
(Poole and Mackworth, 2010). 

 

 

Figure 1: Decision network representing a finite part of an 
MDP (Poole and Mackworth, 2010). 

Partially observable Markov decision process is a 
formalism for representing decision problems for 
agents that must act under uncertainty (Sandberg, 
Lo, Fancourt, Principe, Katagiri, Haykin, 2001).   

POMDP can be formally described as a tuple (S, 
A, T, R, O, Ω), where 
 S - finite set of states of the environment; 
 A - finite set of actions; 
 T: S × A → ∆(S) - state-transition function, 

giving a distribution over states of the 
environment, given a starting state and an 
action performed by the agent; 

 R: S × A → R - the reward function, giving a 
real-values expected immediate reward, given 
a starting state and an action performed by the 
agent; 

 Ω - finite set of observations the agent can 
experience; 

 O: S × A → ∆(Ω) - the observation function, 
giving a distribution over possible 
observations, given a starting state and an 
action performed by the agent. 

Building�Poker�Agent�Using�Reinforcement�Learning�with�Neural�Networks�

23



 

Poker game can be described as POMDP - there are 
concealed cards during the game what makes it 
partially observable. This characteristic makes poker 
game as testbed for AI research - there is no 
mathematical model for optimal game strategy.   

4.3 Neural Networks 

A neural network is a massively parallel distributed 
processor that has a natural propensity for storing 
experiential knowledge and making it available for 
use. It resembles the brain in two respects: 

1. Knowledge is acquired by the network through a 
learning process. 

2. Interconnection strengths known as synaptic 
weights are used to store the knowledge (Haykin , 
1999). 

Basically, learning is a process by which the free 
parameters (i.e., synaptic weights and bias levels) of 
a neural network are adapted through a continuing 
process of stimulation by the environment in which 
the network is embedded (Sandberg, Lo, Fancourt, 
Principe, Katagiri, Haykin, 2001).  

Neural network has interconnections between 
neurons in different layers. The first layer has input 
neurons, which send data via synapses to the next 
layer of neurons and so on till the last layer of 
neurons. Neural network is described by parameters: 
 Interconnection pattern between different 

layers of neurons; 
 Learning process for updating weights; 
 Activation function that calculates neuron 

output from input with weights. 
 

 

Figure 2: Basic structure of an Artificial Neural Network 
(ANN). 

In the given research neural network technology 
is used for several purposes: 
 To model opponent based on previous actions; 
 For value function approximation with 

reinforcement learning. 

4.4 Reinforcement Learning 

Reinforcement learning (RL) is learning what to do -
how to map situations to actions - so as to maximize 
a numerical reward signal. The learner is not told 
which actions to take, as in most forms of machine 
learning, but instead must discover which actions 
yield the most reward by trying them. In the most 
interesting and challenging cases, actions may affect 
not only the immediate reward but also the next 
situation and, through that, all subsequent rewards. 
(Sutton & Barto , 1998). 

These characteristics is the most important 
reason why RL is used to make different game 
programs. For example, in 1995, G.Tesauro created 
TD-Gammon program for game of Backgammon, 
where innovation was in the method how it learned 
its evaluation function (Tesauro, 1995). 

RL problem can be formalized as follows. The 
environment is modeled as a stochastic finite state 
machine with inputs (actions sent from the agent) 
and outputs (observations and rewards sent to the 
agent): 
 State transition function P(X(t)|X(t-1),A(t)); 
 Observation (output) function P(Y(t) | X(t), 

A(t)); 
 Reward function E(R(t) | X(t), A(t)). 

 

The agent's goal is to find a policy and state-
update function so as to maximize the expected sum 
of discounted rewards (Murphy, 1998). 

There are several RL algorithms to solve 
problems described as MDP. Learning approaches 
can be classified as indirect learning and direct 
learning. Direct learning includes a value-function 
based learning - temporal difference (TD) learning, 
Q-learning. In this research, author focuses on value-
based methods.   

Value Functions are state -action pair functions 
that estimate how good a particular action will be in 
a given state, or what the return for that action is 
expected to be.  

The value of taking action a  in the state s  under 
a policy π is called Q-value denoted as Qt(st,at). 

Reinforcement learning model consists of: 
1. a set of possible states, represented by S; 
2. a set of actions, A; 
3.  a set of numerical rewards R (Patel and 
Barve, 2014). 
In Q-learning and related algorithms, an agent 

tries to learn the optimal policy from its history of 
interaction with the environment. Q*(s,a), where a is 
an action and s is a state, is the expected value 
(cumulative discounted reward) of doing a in the 
state s and then following the optimal policy. 

ICINCO�2014�-�Doctoral�Consortium

24



 

 

Figure 3: Standard Reinforcement Learning Model. (Patel 
and Barve, 2014). 

Q-learning uses temporal differences to estimate 
the value of Q*(s,a). In Q-learning, the agent 
maintains a table of Q[S,A], where S is the set of 
states, and A is the set of actions. Q[s,a] represents 
its current estimate of Q*(s,a) (Poole and 
Mackworth, 2010).  

Reinforcement learning technologies allow 
Markov decision process agent development, but 
standard RL algorithm can’t solve POMDP because 
of uncertainty and lack of information about the 
current state. 

4.5 Related Work 

There have been many different approaches in 
online poker agent development. They can be 
classified as AI based or based on mathematics and 
statistics. University of Alberta Computer Poker 
Research Group has developed several online poker 
agents that use game theory approach (Nash 
equilibrium), statistics and also there are some 
modification's using artificial neural networks: Loki 
(1997), Poki - improved Loki (1999) PsOpti/Sparbot

(2002), Vexbot (2003), Hyperborean (2006), Polaris 
(2007), Hyperborean (2007), Hyperborean Ring 
(2009). 

There are also several research works that use 
only AI technologies. For example, Néill Sweeney, 
David Sinclair in their work "Applying 
Reinforcement Learning to Poker" describes the 
application of basic reinforcement learning 
techniques to the game of multi-player limit hold'em 
poker. A.Davidson, D.Billings, J.Schaeer, D.Szafron 
in their work "Improved Opponent Modeling in 
Poker" reports progress achieved by improved 
statistical methods, which were suggested by 
experiments using artificial neural networks. 

None of these experiments have used 
reinforcement learning together with artificial neural 
networks to develop poker agent.  

There are some research works using 
reinforcement learning with neural network for 
value function approximation in other areas. Anton 
Maximilian Schafer in his research work 
"Reinforcement Learning with Recurrent Neural 
Networks" has shown successful application of these 
technologies for controlling a high-dimensional 
dynamic system with continuous state and action 
spaces in partially unknown environment like a gas 
turbine. 

5 METHODOLOGY 

Given research describes poker agent developed 
using several AI technologies - reinforcement  

 

Figure 4: Poker agent architecture. 

Building�Poker�Agent�Using�Reinforcement�Learning�with�Neural�Networks�

25



learning and neural  networks. To be a world class 
poker player it is not enough to optimize only one 
part of game. Good poker agent should be able to 
process different type information to make a 
decision about action. This information includes: 
 

 Hand potential evaluation; 
 Hand strength evaluation; 
 Bankroll management; 
 Opponent modeling; 
 Unpredictability; 
 Bluffing. 
 

Based on information given above poker agent 
should choose action - check, fold, raise or call. Full 
poker agent model is shown in Figure 4. Author 
examines first four information types in this 
research. 

5.1 Hand Strength and Potential 

The hand strength (HS) is the probability that a 
given hand is better than that of an active 
opponent.(Felix,Reis, 2008) 

To quantify the strength of a poker hand where 
its result expresses the strength of a particular hand 
in percentile (i.e. ranging from 0 to 1), compared to 
all other possible hands Effective Hand Strength 
(EHS) algorithm is used. Algorithm conceived by 
computer scientists Darse Billings, Denis Papp, 
Jonathan Schaeffer and Duane Szafron.  

Hand potential is calculated: 
 

P(win) = HS x (1 - NPot) + (1-HS) x PPot. (1) 

Where 
 P(win) - probability of winning at the 

showdown; 
 HS - current Hand Strength (not taking into 

account potential to improve or deteriorate, 
depending on upcoming table cards); 

 NPot - negative potential (probability that 
current hand, if the strongest, deteriorates and 
becomes a losing hand); 

 PPot - positive potential (probability that 
current hand, if losing, improves and becomes 
the winning hand) (Felix,Reis, 2008).  

5.2 Opponents’ Modeling 

There are many research work done which prove 
that opponent exploration is one of the key factors 
for a good poker player (Felix, Reis, 2008 ).  

In the given research, 2 approaches are combined 
for opponent modeling - opponent classification and 
for opponent modelling - opponent classification and 

opponent’s hand strength evaluation. Opponent 
classification by play style is quite simple - it can be 
calculated by a formula, but to predict opponent’s 
hand strength neural network technology is used. 
Neural networks allow to process different input 
data to get approximate assessment of hand strength.   

5.2.1 Opponent Classification 

Poker player can be classified under four categories 
of playing styles. Each style describes the frequency 
of play and how the player bets. Playing styles are 
loose/passive, tight/passive, loose/aggressive and 
tight/aggressive.  

Loose/Tight Play Style 

A tight player plays few hands and often folds. 
These players limit their play to only the best 
starting hands. Loose players play with a wide range 
of hands - they play many hands and are at the 
center of the action. 

Player can be classified by loose/tight by percent 
of games they have played: 
  Tight -  plays <28% hands; 
  Loose - plays >=28% hands. 

Aggressive/Passive Play Style 

Aggressive players bet and raise a lot and almost 
never check or call, but passive players usually 
check and call - they follow the action rather than 
take the lead. Aggressive players can win hands, 
even if they don’t have the best cards. 

Player can be classified as Aggressive or Passive 
by aggression factor (AF) (Li,2013). AF can be 
calculated with the formula: 

 

AF = NumRaises/NumCalls. (2) 

Where 
 NumRaises – number of hands raised; 

NumCalls – number of hands called. 
 

Player is classified as aggressive if AF >1 and 
passive if AF <=1. 

Table 1: Player classification by play style (Felix, Reis, 
2008). 

 AF<=1 AF>1 

%GP>=28 
Loose 

Passive 
Loose 

Aggressive 

%GP<28 
Tight 

Passive 
Tight 

Aggressive 

ICINCO�2014�-�Doctoral�Consortium

26



 

Figure 5 shows player classification and target play 
zone for the agent. 
 

 

Figure5: The hand strength (HS) is the probability that a 
given hand is better than that of an active opponent.(Felix, 
Reis, 2008). 

5.2.2 Opponent Modeling using Neural 
Networks 

In the research, neural network - AI technology is 
used to predict opponent hand strength. Neural 
network has the ability to generalize data - a trained 
network can classify data from the same class as the 
learning data. Neural networks process information 
in a similar way the human brain does. The network 
is composed of a large number of highly 
interconnected processing elements (neurons) 
working in parallel to solve a specific problem. 
Neural networks learn by example (Stergiou, 
Siganos, 1995). 

Multilayer feed-forward neural network 
architecture with supervised learning was used for 
the poker opponent model. Real online game poker 
data was used for experiments. Data consisted of 
more than 700 000 Texas hold‘em poker game 
hands in a raw text format. Neural network system 
was created to predict opponent’s hand strength, 
which would help a player to make a decision. 

Data pre-processing is very important to achieve 
good results from machine learning technologies, 
including neural network. 

To get structural and readable data, text files 
were processed and imported into MS SQL 
database. Data contained: 

 

 Player action in every poker phase; 
 Table cards; 
 Table pot size; 
 Every player pot size; 
 Winner player; 
 Player identifier; 
 Cards for players, who made a showdown.  

Given data was processed and transferred into a 
table that was used as input data for neural network: 

 

 Hand and player identifier; 
 Hand date and time; 
 Player and table chip count; 
 Player action done; 
 Flag if player won hand; 
 Flag if hand date is on weekend; 
 Flag if only 2 players are left on river phase; 
 Flag if player had won in last 10 games; 
 Flag if player had ever bluffed; 
 Table cards and player card; 
 Table cards strength evaluation; 
 Player cards strength evaluation. 

 

Processed data was split into 2 parts - training 
data (80%), validation data and test data (20%). To 
analyze input data impact on results several 
combinations of input data was used. 

Good poker opponent model is a part of good 
poker agent. Given results shows that neural 
network can predict poker opponent card strength in 
78% of hands. Given neural network can be used to 
help with making the decision in poker game. Given 
experiments shows that input data have a huge 
impact on network result, and it can be improved by 
adding more pre-processed input data. 

5.3 Game Strategy 

Good poker game strategy should consider 
information above for making decision how to act 
(check, call, raise and fold). Algorithm for complex 
game such as poker should be able to estimate whole 
game result and possible total reward (not optimize 
one game phase).  

Reinforcement learning provides technology to 
develop such model if game can be described as the 
Markov decision process.  

Reinforcement learning can’t be directly applied 
to poker game because of uncertainty. Poker game 
state can’t be calculated, and we can’t define value 
function. Instead of formula for action function 
approximation can be used. We can make value 
function approximation in poker game based on 
information available. Such information is: number 
of players, place on the table, table cards, hand 
strength, hand potential, opponent classification and 
opponent’s hand strength evaluation. To get such 
value approximation we need technology that can 
form function with noisy, multidimensional data. 
Artificial neural network is such technology. 

Aim of this research is to develop a model that 
can find optimal game strategy using reinforcement 

Building�Poker�Agent�Using�Reinforcement�Learning�with�Neural�Networks�

27



 

learning and neural network for value function using 
input data described above. Author has developed 
simple RL model with NN value function that can 
find optimal game strategy in 2 player poker game.  

5.4 Agent Evaluation 

To evaluate developed poker game agent various 
approaches will be used. AI poker game play results 
will be compared to 3 different poker agents that are 
developed during the research: 

1) Random poker player; 
2) Safe-game poker player; 
3) Game strategy obtained from poker 
professionals. 
Random poker player is a computer program that 

chooses action with random number generator.  
Safe-game poker player is a strategy obtained 

from several poker rooms and poker tutorials for 
beginners. This approach is based on a theory of 
Probability - all 2 card hands are rated on a 0 to 40 
scale. 

 

 

Figure 6: Unsuited Cards Power Rating 
(http://wizardofodds.com). 

For example, Figure 6 shows power rating for 
each initial different suit 2-card hand if cards are 
from different suits. This strategy says, that player 
should play if hand rate is at least 13 or play with 
rate 19 in early position, but 10 in late position.  

Game strategy obtained from poker 
professionals is similar to the Safe-game poker 
player, but it has a more detailed description for 
each game phase - action depends on player’s 
position on the table and previous opponent’s 
actions. This strategy is obtained by combining 
several poker professional strategies (Hilger, 2003 
and Sklansky, 2005). Figure 7 shows middle 
position player strategy. For example, table shows 
that player with hand of the same suit ace and king 
should raise if there is no previous call or raise or 
there has been only raise, but it should re-raise if 
other players have raised and called. 

 

Figure 7: Game strategy for middle position. 

Author has developed 3 type computer poker 
players that allow to compare and evaluate AI poker 
agent results. 

6 EXPECTED OUTCOME 

Based on reinforcement learning in combination 
with neural network techniques for problem solving, 
author proposed online poker agent development. 
This approach allows to solve poker game strategy 
optimization problem which can be described as 
POMDP. 

Complete poker agent should be able to process 
following information for optimal strategy finding 
with RL: 
 Hand potential and strength; 
 Opponent play style (classification); 
 Opponent hand strength evaluation with ANN: 
 Value function approximation with ANN. 

 

The future work tends to improve the neural 
network opponent model to achieve more precise 
prediction results. Several neural networks with 
different input data will be tested to find out the best 
one for the RL poker agent. Additionally testing for 
the proposed approach in different scenarios and 
with different learning data will be done.   

REFERENCES 

Coulom M.R., 2002. Reinforcement Learning Using 
Neural Networks, with Applications to Motor Control. 
PhD thesis, Institut National Polytechnique de 
Grenoble. 

Davidson A., 1999. Using Artifical Neural Networks to 
Model Opponents in Texas Hold'em. University of 
Alberta 

ICINCO�2014�-�Doctoral�Consortium

28



 

Davidson A., Billings D., Jonathan Schaeer, Duane 
Szafron, 2002. Improved Opponent Modeling in 
Poker. Artificial Intelligence - Chips challenging 
champions: games, computers and Artificial 
Intelligence Volume 134 Issue 1-2. 

Felix D., Reis L.P., 2008. An Experimental Approach to 
Online Opponent, Modeling in Texas Hold'em Poker. 
Advances in Artificial Intelligence –SBIA 2008. 

Félix D. and Reis L.P., 2008. Opponent Modelling in 
Texas Hold’em Poker asthe Key for Success. ECAI 
2008. 

Haykin S.S., 1999. Neural networks : a comprehensive 
foundation. Upper Saddle River, NJ : Prentice Hall. 

Hilger M., 2003, Internet Texas Hold'em: Winning 
Strategies from an Internet Pro. Dimat Enterprises, 
Inc. 

Johanson M., 2007. Robust strategies and 
counterstrategies: Building a champion level 
computer poker player. In Masters Abstracts 
International, volume 46. 

Li A., 2013. Enhancing Poker Agents with Hand History 
Statistics. Bachelor-Thesis, Technische Universitat 
Darmstadt. 

Murphy K.P., 1998. A brief introduction to reinforcement 
learning. University of British Columbia. 

Patel J.R. and Barve S.S., 2014. Reinforcement Learning: 
Features and its applications, International Journal of 
Computer Technology and Applications, volume 5 
Issue 3. 

Poole D. and Mackworth A., 2010. Artificial Intelligence: 
Foundations of Computational Agents. Cambridge 
University Press. 

Sandberg I.W., Lo J.T., Fancourt C.L., Principe J.C., 
Katagiri S., Hayk S., 2001. Nonlinear Dynamical 
Systems: Feedforward Neural Network Perspectives. 
John Wiley & Sons, 

Sklansky D, Malmuth M., 1999. Hold’em Poker For 
Advanced Players.Two Plus Two Pub. 

Sklansky D., 2004. The Theory of Poker, Two Plus Two 
Publishing. 

Stergiou C. and Siganos D., 1995. Neural Networks, 
Surprise 96 Volume 4 (Final Reports). 

Sutton R.S. and Barto A.G., 1998. Reinforcement 
Learning: An Introduction. The MIT Press. 

Szepesvari C., 2010. Algorithms for Reinforcement 
Learning. Morgan and Claypool Publishers. 

Sweeney N., Sinclair D., 2012. Applying Reinforcement 
Learning to Poker.Compter Poker Symposium. 

Teófilo L.F., Reis L.P., Cardoso H.L., Félix D., Sêca R., 
Ferreira J., Mendes P., Cruz N., Pereira V., Passos N., 
2012. Computer Poker Research at LIACC. 2012 
Computer Poker Symposium at AAAI. 

Tesauro G., 1995. Temporal Difference Learning and TD-
Gammon. Communications of the ACM, March 1995 / 
Vol. 38, No. 3. 

Building�Poker�Agent�Using�Reinforcement�Learning�with�Neural�Networks�

29


