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Abstract: Sudoku is a well-known puzzle that has achieved international popularity in the latest decade. Recently, 
there are explosive growths in the application of metaheuristic algorithms for solving Sudoku puzzles. In 
this paper, an algorithm based on Variable Neighborhood Search (VNS) is proposed to solve the Sudoku 
problem and the details of the implementation such as problem representation, neighbourhood structures are 
explained. The proposed algorithm is tested with Sudoku benchmarks which have been used in previous 
studies. The experimental results indicate that VNS is able to produce competitive results in easy level 
puzzles and promising results in medium and hard level puzzles. 

1 INTRODUCTION 

The Sudoku game is one of the most interesting 
challenging games which have been well known 
around the world. It is spread through different kinds 
of media, from newspapers to internet sites as well 
as mobile applications. Beside the popularity of the 
game, Sudoku is known as a NP-complete problem 
(Yato and Seta, 2003); these factors attract many 
researchers to apply different metaheuristics 
algorithms to solve Sudoku puzzles. The difference 
between researcher’s results lies in their algorithms’ 
abilities to reach Sudoku optimal solution in 
reasonable time, so the rate of success and the 
number of iterations and elapsed times are the most 
important factors in comparing their performance. 

First, we will shed lights on previous researches 
which submitted for solving Sudoku game; we found 
that most of these implementations use population-
based metaheuristics such as Genetic algorithm 
(GA) , Harmony Algorithm (HA), Ant Colony 
Optimization (ACO) etc. On the other hand, there 
are a few trajectory-based metaheuristic 
implementations in this field, the earlier one was 
used Simulated Annealing in 2006. In this paper we 
proposed a trajectory-based VNS algorithm to solve 
different levels of Sudoku problem and tested our 
algorithm with the benchmarks that used in the 
previous studies. 

2 SUDOKU GAME 

Sudoku has been claimed to be very popular and 
even addictive because it’s easy to play as it doesn’t 
require general knowledge, linguistic ability or even 
mathematical skills, with simple rules but very 
challenging game with different levels. 

 

 

Figure 1: A Sample of Sudoku puzzle. 

Sudoku puzzle with order 9×9 are composed of a 
9 × 9 boxes (cells) namely of 81 positions as shown 
in Figure 1, they divided into nine 3×3 sub-blocks. 
When the Sudoku game is prepared to play, there are 
some pre-filled (fixed) numbers which are not 
allowed to changed or moved during the process of 
solving Sudoku puzzles, then you will start to fill 
other unfilled boxes (unfixed) in such way so that 
each row, column and 3×3 sub-blocks contain each 
integer {1,2,3,4,5,6,7,8,9} once and only once. 
Filling all the cells in Sudoku will be the solution. 
Finally, in solving Sudoku puzzles, we deal with 

  Fixed Cell 
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Column Sub‐
block 
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puzzles that have unique solution. We can 
summarize rules to solve Sudoku into three rules 
(Satyendra and Saumi, 2013): 
- Rule 1: Each row should contain values from 1 to 9 
without repeating any number. 
- Rule 2: Each column should contain values from 1 
to 9 without repeating any number. 
- Rule 3: The sub-block should contain only values 
from 1 to 9 without repetition. 

3 RELATED WORK 

Many algorithms were proposed for solving and 
generating Sudoku problems.  A number of studies 
can definitely solve Sudoku problems by using exact 
methods (Crawford et.al, 2008), (Gunther and 
Moon, 2012) and (Simonis, 2005). By using these 
exact methods, easy level Sudoku problems can be 
solved in a reasonable amount of time. However, 
when the level gets harder, the computational time 
grows exponentially and these methods become 
impractical. Therefore, many researchers focus on 
heuristic algorithms. 

Various population-based metaheuristics have 
been proposed such as ant colony optimization 
algorithm (ACO) (Asif, 2009), genetic algorithm 
(GA) (Xiuqin, Yongda and Ruichu, 2012), (Li and 
Deng, 2011) and (Mantere and Koljonen, 2007), 
harmony search algorithm (HS) (Satyendra and 
Saumi, 2013). In the paper (Asif, 2009), the author 
employs as heuristic information the number of 
digits correctly placed on the board. However, the 
best value reached is 76 where 81 being the global 
optimum. Li and Deng (2011) proposed a modified 
genetic algorithm for solving Sudoku games under 
the name of Improved Genetic Algorithm. The 
results were good in solving easy levels but it was 
unable to solve higher levels. They followed their 
algorithm with New Genetic algorithm (NGA) 
(Xiuqin, Yongda and Ruichu, 2012) which contains 
many major modifications. The results were 
significantly improved in solving all Sudoku levels 
even when comparing the results with other 
population algorithms like GA (Mantere and 
Koljonen, 2007), Cultural Algorithm (CA) (Mantere 
and Koljonen, 2008) and ACO (Mantere and 
Koljonen, 2009). 

Another algorithm has been published by 
Satyendra and Saumi (2013) using harmony 
algorithm. The algorithm in addition to solving 
different levels of Sudoku, it can determine the level 
of the Sudoku game. The results were quite good in 
solving easy levels with success rate of 100%, but 

these rates are decreased along with levels of 
difficulty to be 10% in the hardest level (level 5). 

Although there are many population based 
heuristic algorithms, there are a few trajectory-based 
algorithms for solving Sudoku games. Lewis (2007) 
proposed a simulated annealing algorithm to solve 
different level types of (3 * 3) Sudoku games as well 
as (4 * 4) games. In addition, he developed an 
algorithm to create solvable problem instances with 
different levels by using some rules and criteria. The 
results were amazing as the algorithm solved all 
samples of all levels in short time, but with more 
times in solving 4 * 4 Sudoku problems. The main 
factor of reducing running time was in calculating 
the fitness function by recalculating only affected 
rows and columns by the swap neighborhood 
structure operation. Unfortunately, the data set used 
in experiments is unavailable to compare his results 
with our results.  

4 VNS IMPLEMENTATION 

In this paper we propose a Variable Neighborhood 
Search (VNS) algorithm to solve Sudoku problem. 
Variable Neighborhood Search has been proposed 
by Mladenovic and Hansen (1997). The basic idea of 
VNS is to successively explore a set of predefined 
neighborhoods to provide a better diversification of 
solution. It explores either at random or 
systematically a set of neighborhoods to get different 
local optima and to escape from local optima. VNS 
 

 

Figure 2: Pseudo-code of GVNS algorithm. 

Input: a set of neighborhood structures Nk for k = 1,, 
kmax for  shaking. 
a set of neighborhood structures Nl for l = 1,.. lmax for 
local search. 
x = x0;  
Repeat 
     For k=1 to kmax Do 
Shaking: pick a random solution xʹ′from the kth 

neighborhood   Nk(x) of xʹ ; 
Local search by VND ; 
For j=1 To jmax Do 
 Find the best neighbor x′′ of x′ in Nj(x′) ; 
If f (x′′) < f (x′) Then x′= x′′ ; j=1 ; 
Otherwise j=j+1; 
Move or not: 
If local optimum is better than x Then x = xʺ 
Continue to search with N1 (k = 1) ; 
Otherwise k=k+1 ; 
Until stopping criteria 
Output: Best found solution 
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algorithm has three main phases: Shake, Local 
Search and Move or Not. While shake diversifies the 
solution, local search explores local area thoroughly. 

Variable Neighborhood Descent (VND) is a 
variation of the VNS. It explores local optima with 
using various neighborhood structures only. VND 
can be used as a part of VNS in the local search 
phase which is called general VNS (GVNS). 

In this study, a GVNS algorithm where the 
simple local search procedure is replaced by the 
VND algorithm is used. The pseudo-code of GVNS 
algorithm is described in Figure 2. 

4.1 The Fitness Function 

The initial solution is created based on rule 3 which 
keeps the numbers between 1 and 9 without 
repeating in every sub-block. It’s clear that 
appropriate fitness function is obviously one that 
searches for violations of the remaining two rules 
(rule 1 and 2). To calculate fitness value, repeating 
number at each row and column are calculated. Total 
of these numbers give the fitness value of the 
candidate solution. Calculation of fitness value for a 
sample Sudoku puzzle is given in Table 1. 
Obviously, fitness value of an optimal solution is 
zero. Note that to calculate the missed numbers in 
row and column, we count number which are 
repeated more than one; then it subtracted by 1. For 
instance, if a number repeated two times in a row, 
counter equals 2-1=1, if a number repeated three 
times it will be 3-1=2 etc. this is because if 2 
numbers repeated in row, it means that one numbers 
is missed, and if we have three numbers then we 
have 2 missed numbers. This calculation makes for 
every the rows and columns. The total fitness will be 
the summation of all rows and columns fitness as 
showed in Table 1. 

Table 1: Calculation of fitness of the sample Sudoku 
puzzle 

3 2 5 4 1 7 6 3 4 2 
9 8 1 9 8 5 7 2 1 3 
7 6 4 3 2 6 5 9 8 1 
5 2 9 6 3 4 8 7 1 0 
1 3 6 7 9 8 2 4 5 0 
4 8 7 5 1 2 6 3 9 0 
6 1 3 8 7 4 2 8 6 2 
7 4 5 1 6 3 7 5 3 3 
8 9 2 2 5 9 9 1 4 3 
1 2 1 0 1 1 3 1 2 26 

4.2 Neighbourhood Structures 

The variety of neighborhood structures is an initial

condition to escape from local optima in order to 
find the optimal solution. For this purpose, we 
defined four neighborhood structures (NS). 
Following sections describes each of them. While 
the first three NS are used in VND local search 
phase, the last one is used in shaking phase.    

4.2.1 Exchange 

In this structure, two non-fixed boxes in the same 
sub-block selected randomly. Then they are simply 
swapped as shown in Figure 3.  

1 2 3 4 5 6 7 8 9 

         

1 2 5 4 3 6 7 8 9 

Figure 3: An example of exchange NS inside sub-block. 

4.2.2 A Centered Point Oriented Exchange 
(CPOEx) 

This structure is used to explore new solutions in a 
little further vicinity of a current solution. At first, a 
box is selected randomly in a sub-block. NS is used 
this box as a centered point to find exchange pairs. 
Starting from the nearest boxes to the centered point, 
exchange-pairs are determined and then applied 
exchange NS. The CPOex continues to find 
appropriate exchange-pairs until one or both boxes 
of pair consisted of a fixed cell. A sample of CPOEx 
is illustrated in Figure 4. The shaded box indicates a 
centered point (cell 4) and bold numbers are fixed 
(cell 1 and 8). In this example CPOEx are stands for 
two exchange operations, but number of exchanges 
depend on the location of the center point and fixed 
cells in sub-block. 
 

Before 1 2 3 4 5 6 7 8 9 

          

After 1 6 5 4 3 2 7 8 9 

Figure 4: Example of CPOEx with no changes in a sub-
block. 

4.2.3 Insert 

Another NS used in this study is inserting. This 
structure performs an insertion of a box chosen 
randomly from the sub-block, in front of another 
randomly chosen box. An example of insert NS is 
given in the Figure 5.  
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1 2 6 3 4 5 7 8 9 
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Figure 5: Insert NS operation. 

First we choose a random number as start point, 
(box 6), then we choose another random number as 
inserting point (box 3). The procedure is done by 
inserting the number in box (6) in front of the box 
(3). This operation will shift right hand numbers. 
Notice that the fixed box (8) wasn’t affected by the 
fixed cells. If insertion of a box is fixed, the insert 
does not work. But the other box is fixed the 
insertion could be done without affecting the places 
of fixed boxes.  

4.2.4 Invert 

The last NS is used in the shaking phase of GVNS. 
The idea is to select two boxes in the sub-block 
randomly, then invert a subsequence of boxes 
between two selected boxes. Both the boxes outside 
the range and the fixed boxes in the range are not 
affected by the invert operation. In figure 6, we 
randomly select cell 3 and 6 which means we have 
four boxes {3,4,5, 6}. The inverse of these values we 
get {6, 5, 4, 3} 
 

1 2 3 4 5 6 7 8 9 

  
 

      

1 2 6 5 4 3 7 8 9 

Figure 6: Invert NS operation. 

4.3 The Procedure 

The algorithm starts with a generating initial 
solution x randomly but at the same time we should 
satisfy the third rule which ensures that no values are 
repeated inside sub-blocks. In the course of 
following two nested loops, the algorithm explores 
the solutions and tries to find the best solution. Local 
search and Shake functions perform this exploration, 
systematically. The function Shake updates the 
solution x, with another solution x’, by applying 
Invert NS to some sub-blocks of the problem. 

NSs are usually ranked in such a way that VNS 
algorithm explores increasingly further away from 
the incumbent solution. In our proposed algorithm, 
we ordered NSs in local search phase as follows: 
exchange, insert, and CPOEx. The tests also showed 
that these order are more efficient than other orders. 
The result of Shake, x’, is used as the starting point 
for the local search.  Starting from the first sub-
block, all variations of exchange pairs are 
experimented. If the best solution of exchange NS xʺ 
better than x’, the local search starts all over again 
from exchange NS. Otherwise, local search 
continues from next neighborhood structure. This 
local search loop is terminated after all 
neighborhood structures are exhausted. If the  best 
solution of local search xʺ better than x , algorithm 
starts all over again from Shaking phase with xʺ 
otherwise with x. This procedure goes on until 
stopping condition is met. Possible stopping 
conditions include maximum CPU time allowed, 
maximum number of iterations or maximum number 
of iterations between two improvements. 

5 EXPERIMENTAL RESULTS 

To test our VNS implementation with Sudoku 
games, we choose 15 benchmark of Sudoku samples 
(http://lipas.uwasa.fi/~timan/sudoku/) which has been 
used in testing GA based algorithm (Xiuqin et al., 
2012). The experiments are done 10 times for every 
game sample with maximum iterations 10000. The 
experimentation has been carried out on a PC 
equipped with Intel(R) Core (TM) i3 2.53 GHz 
processor and 4GB memory. The software coded in 
Visual C#.  The results are shown in Table 2. 

We choose first five problem sets which 
numbered from 1 to 5. Level 1 stand for easier level 
and level 5 for the most difficult level. Each level 
has three instances labeled as (a, b and c). From the 
Table 2, results show that our VNS experiments with 
maximum 10000 iterations can solve easy level 
problems (level 1) including  all three instances (a, b 
and c) with high success ratio (100%, 90 and 80%) 
respectively. This is a high rate of success exactly as 
we expect. Also the time to solve this level is 
acceptable except c instance which takes average 
time more than others. The success rate is still high 
in level 2 which is more difficult than level 1. The 
iterations needed to solve level 2 become larger and 
this increases the time as well. Level 3 can only 
solve type (a) in high success rate. Other b and c can 
be solved only 2 times out of 10 (20%). Level 5 
which is the difficult level is a serious challenge to  
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Table 2: Results on 15 Sudoku samples (i: iterations, t: 
time in seconds. 

# prb 
success 
 rate % 

max i  min i  avg i 
max 
t 

avg t 

1 

a  100  568  30  188  30  9.7 

b  90  320  2  52  14  2.4 

c  80  5472  243  2298  281  113 

2 

a  90  3427  616  1765  179  90 

b  80  6994  858  2962  345  149 

c  30  2007  367  952  95  45 

3 

a  80  1923  432  1156  96  59 

b  20  8046  4116  6081  404  307 

c  20  1434  918  1176  73  59 

4 

a  30  1831  874  1214  89  61 

b  0  ‐  ‐  ‐  ‐  ‐ 

c  40  4165  343  1982  236  105 

5 

a  20  5345  123  2734  274  126 

b  20  5036  4318  4677  235  222 

c  10  4210  4210  4210  207  207 

  
our VNS, even it failed to solve level 4 label b 
within 10 tries, but it shows an acceptable rate of 
success equal to 30% and 40% for labels a and c 
respectively. The worst results are in level 5 with 
only 10% successfully, the most difficult level (level 
5) needs average of iterations between 2000 and 
4000 to solve it 2 times out of 10 in a and b. 

5.1 Comparing with HS 

Harmony Search (HS) algorithm is tested with five 
Sudoku instances in (Satyendra and Saumi, 2013). 
Table 3 shows that our algorithm outperform HS in 
most of the experiments except the first problem 
which is supposed to be the easier one among 5 
problems. Our algorithm can solve this problem only 

Table 3: Comparing VNS with HS. 

# problem  
HS  VNS 

Success Rate % Success Rate %  time avg

1  100  30  14.4 

2   ‐  90  1.7 

3  35  100  0.051 

4  15  40  19.9 

5  10  90  27.5 

3 times out of 10 tries. Interestingly, we can solve 
instance of level 3 in very short time with average of 
51 ms in rate of success equal to 100%. It seems not 
to be so difficult or at least it has medium difficulty 
because it has 52 fixed cells which seems to be solve 
easily even by human. It’s clear that our algorithm 
outperforms HS in success rate with fast average 
time equal to 12.65 second.  

5.2 Comparing with CA and GA 

Finally, we compare our results with the results of 
CA (Mantere and Koljonen, 2008), and NGA 
(Xiuqin, Yongda and Ruichu, 2012) in Table 4. 
Because that our algorithm is a trajectory-based 
metaheuristic and their algorithms are population-
based algorithms, we think it’s not fair to comparing 
number of generations with our number of iterations 
as a comparing criterion. Instead, we believe rate of 
success is important criterion as well as it is 
common criterion between different algorithms. The 
values in the table stand for success of rate in 
finding optimal solution (fitness 0). As example the 
first value under column (a) of CA algorithm means 
the CA can solve the instance (a) 56 times out of 
100, or the success rate is 56%. In NGA algorithm, 
(<10) means that in 100 times trying, it can solve the 
instance less than 10 times. From Table 4 we can 
conclude that our algorithm gives us very 
competitive results. The bold numbers mean the best 
results in this table. It’s clear that our algorithm have 
higher results in 10 instances and competitive results 
in general. 

Table 4: Comparison between CA, NGA and VNS in 
terms of success rate. 

CA NGA VNS 

#
  

a b c a b c a b c 

1 
5
6 

7
6 

4
6 

10
0 

10
0 

100 100 90 80 

2 
4
2 

2
2 

2
2 

40 30 40 90 80 30 

3 
4
2 

1
9 

1
7 

20 10 30 80 20 20 

4 7 7 
1
3 

10 20 
<1
0 30 0 40 

5 4 8 9 
<1
0 

<1
0 

<1
0 20 20 10 

6 CONCLUSIONS 

In this paper, we propose a VNS-based algorithm for 
solving the Sudoku problem and examine the 
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performance of our algorithm based on solution 
quality. Well-known variation of VNS which is the 
combination of VNS and VND is implemented and 
tested on three different levels Sudoku problems. 
The proposed algorithm gives competitive results in 
easy level and promising results in medium levels 
problems. 

This is a preliminary work on the Sudoku. In the 
future we would like to improve our proposed VNS 
algorithm by testing new combination of 
neighborhood structures and other variation of VNS: 
Reduced VNS in local search phase to improve 
solution quality and execution time.   
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