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Abstract: XML has become a widespread format for data exchange over the Internet. The current state of the art in
querying XML data is represented by XPath and XQuery, both of which define binary predicates. In this
paper, we advocate that binary selection can at times be restrictive due to very nature of XML, and to the
uses that are made of it. We therefore suggest a querying framework, called FXPath, based on fuzzy logics.
In particular, we propose the use of fuzzy predicates for the definition of “vaguer” and “softer” queries. We
also introduce a function called “deep-similar”, which aims at substituting XPath’s typical “deep-equal”. Its
goal is to provide a degree of similarity between two XML trees, assessing whether they are similar both
structure-wise and content-wise. In this paper we present the formal syntax and semantics of FXPath, and
discuss implementation issues.

1 INTRODUCTION

The principal proposals for querying XML docu-
ments have been XPath and XQuery. Both XPath and
XQuery divide data into those which fully satisfy the
selection conditions, and those which do not. How-
ever, binary conditions can be —in some scenarios—
a limited approach to effective querying of XML data.
The reasons behind such a statement lie in the very
nature of XML. Even though a standard for defining
how data must be structured within an XML file ex-
ists, namely the XML Schema, it is often the case that
end users have to work with data that does not have
a schema, or for which a schema is not known at the
moment of the query.

A few considerations can be made to justify this
claim. First of all, even when XML schemas do exist,
data producers do not always follow them precisely.
Second, users often end up defining blind queries, ei-
ther because they do not know the XML schema in
detail, or because they do not know exactly what they
are looking for.

In this paper, we give a formal semantics and an
implementation to a framework (Campi et al., 2006;
Braga et al., 2002) for querying XML data that goes
beyond binary selection, and that allows the user
to define “vaguer” and “softer” selection conditions.
The main idea is that the constraint evaluation pro-
duces a fuzzy subset, and associates a numeric value

to each information item (i.e., the membership de-
gree). The extensions introduced to XPath can be
divided into three main strains: fuzzy axis naviga-
tion, fuzzy predicate evaluation, and the fuzzy func-
tion “deep-similar”.

In this paper we use a simple library-based case
study for the evaluation of FXPath shown in Figure 1.
For example, a simple fuzzy query on such a data set
could be used to find all the books that were published
near to the year 2000. To do so we state a predicate
on a book’s “year” attribute. Since the attribute is a
number we use the fuzzy comparator “=”. We might
retrieve books published in the year 2000, 2001, 2002,
etc.

<!--RankingDirective RankingValue="1.0"-->
<Book year="2000"><title>t1</title>
</Book>
<!-- /RankingDirective -->
<!-- RankingDirective RankingValue=".8"-->
<Book year="2001"><title>t2</title>
</Book>
<!-- /RankingDirective -->

Notice the presence of a ranking directive in-
serted as a comment that contains each result’s rank-
ing value, i.e., a value from the set [0;1]. The closer
it is to 1, the better the returned item satisfies the con-
dition (i.e. having been published in a year near the
year 2000).
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<bib> <!-- Tree K -->
<book year="2001"> <!-- K1 -->

<title>TCP/IP Illustrated</title>
<author><last>Stevens</last><first>W.</first></author>
<publisher>Addison-Wesley</publisher>
<price> 65.95</price>
<section id="intro" difficulty="easy" > <!-- S1 -->
<title>Introduction</title>
<p>Text ... </p>
<section> <title>Audience</title> <!-- S2 -->

<p>Text ... </p> </section>
<section> <!-- S3 -->
<title>Web Data and the Two Cultures</title>
<p>Text ... </p>
<figure height="400" width="400">

<title>Client/server architecture</title>
</figure>

<p>Text ... </p>
</section>

</book>
...

</bib>

Figure 1: Running example.

2 RELATED WORK

Fuzzy sets have been shown to be a convenient way
to model flexible queries in (Bosc et al., 1994). Many
attempts to extend SQL with fuzzy capabilities have
been undertaken in recent years. (Bosc et al., 1995)
describes SQLf, a language that extends SQL by in-
troducing fuzzy predicates that are processed on crisp
information.

Several approaches have been proposed to intro-
duce flexibility in semi-structured information pro-
cessing. An early technique (Damiani and Tanca,
2000) was based on fuzzy encoding of XML data
trees. A later paper (Amer-Yahia et al., 2002) pro-
posed an approach based on XML query rewriting,
supporting renaming and deletion of nodes in the
query. Hybrid techniques (Schlieder, 2002) have also
been proposed, where XML data are encoded and
queries are rewritten. A recent approach to this prob-
lem (Li et al., 2006) proposes a dynamic summariza-
tion and indexing method called FLUX.

In (Bosc et al., 2006) the authors propose to re-
lax failing queries, based on a notion of proximity. In
(Sanz et al., 2006) the authors tackle the problem of
highly heterogenous XML collections, in which data
pertaining to a certain domain are collected within
documents that are highly diverse in structure. In
(Sanz et al., 2008) the authors refine these concepts
and formally define them, they improve the algo-
rithms used for the matching, and analyze their com-
plexity.

Finally, we illustrate two cases in which fuzzy in-
formation retrieval is used within specific domains.

In (Bordogna et al., 2006) the authors present a news
filtering model based on fuzzy hierarchical catego-
rization. In (Bandini et al., 2006) the authors de-
scribe the architecture of a query answering system
for the domain of motor racing using fuzzy logic and
domain-specific knowledge.

(Amer-Yahia et al., 2004) presents FlexPath, an
attempt to integrate database-style query languages
such as XPath and XQuery and full-text search on tex-
tual content. FlexPath considers queries on structure
as a template, and looks for answers that best match
this template and the full-text search. Recently, in
(HadjAli and Pivert, 2008), a fuzzy technique to re-
duce the number of views that are satisfactory w.r.t.
the query is present.

3 FXPATH

3.1 Formal Semantics

The XML Path Language (XPath) uses a declara-
tive notation: each expression developed from this
notation describes the types of nodes that need to
be matched, based on the hierarchical relationships
existing between the nodes. We propose to extend
the XPath language definition with constructs for the
specification of fuzzy predicates and fuzzy subsets.
The effect is an increase and improvement of the re-
sults produced by the query evaluation. Figure 2
shows the syntax extensions over XPath.

The operational semantics of FXPATH, that can
be use straightforward to evaluate a query, are defined
over a “forest” F = fT1; : : : ;TjF jg of couples

Ti = (XMLTree;evaluation).

Given a couple T (or a sequence of cou-
ples), we use function tree(T1; :::;Tn) to obtain its
XMLTree (or the sequence of XMLTrees), and func-
tion value(T1; :::;Tn) to obtain an evaluation (or the
sequence of evaluations), i.e., a value (or a sequence
of values) in the set [0;1]. The execution of a generic
query q on a forest F results in the union of the execu-
tion of the query on all the “trees” in F . It can be ex-
pressed as: eval(q;F) = order cut(

SjF j
i=1 eval(q;Ti))

where order cut sorts the set of execution results, and
eliminates those that do not reach a certain threshold.

FXPath queries are executed recursively, in accor-
dance with the intrinsic recursiveness of their struc-
ture. The entrance point is function eval query, which
takes a syntactically correct FXPATH query and a
couple (XMLTree;evaluation), and returns a (possi-
bly empty) sequence of couples
(XMLTree;evaluation).
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[1] LocationPath ::= RelativePath | AbsolutePath

[2] AbsolutePath ::= ’/’ RelativePath? | ’//’ RelativePath

[3] RelativePath ::= Step | Step ’/’ RelativePath | Step ’//’ RelativePath

[4] Step ::= AxisSpecifier NodeTest ( ’[’ Predicate ’]’ )? | ’.’ | ’..’

[5] AxisSpecifier ::= AxisName ’::’ | ’@’ | ’{’ AxisName ’::’ ’}’ | ’{@}’ |

[6] AxisName ::= ’ancestor’ | ’ancestor-or-self’ | ’attribute’ | ’child’ | ’descendant’ | ’descendant-or-self’ |

’following’ | ’following-sibling’ | ’namespace’ | ’parent’ | ’preceding’ | ’preceding-sibling’ | ’self’

[9] Predicate ::= Predicate ’and’ Predicate | Predicate ’or’ Predicate | ’(’Predicate’)’ | ’not(’ Predicate ’)’ | CompExpr

[9bis] Predicate ::= ’{’ CompExpr ’}’

[10] CompExpr ::= Expr ( ’=’ | ’!=’ | ’<’ | ’>’ | ’<=’ | ’>=’ ) Expr | Expr

[14] Expr ::= (’-’)? Expr | Expr ( ’+’ | ’-’ | ’*’ | ’div’ | ’mod’ ) Expr | ’(’ Expr ’)’

| PrimaryExpr | LocationPath | Expr ’near’ Expr | ’{’ Expr ’}’

[15] PrimaryExpr ::= VariableReference | Literal | Number | FunctionCall

[16] FunctionCall ::= FunctionName ’(’ ( Expr ( ’,’ Expr )* )? ’)’

[35] FunctionName ::= Function names defined in XPath

[35bis] FunctionName ::= ’deep-similar’

[7] NodeTest ::= NameTest | NodeType ’(’ ’)’ | ’processing-instruction’ ’(’ Literal ’)’

[29] Literal ::= ’"’ [ˆ"]* ’"’ | "’" [ˆ’]* "’"

[30] Number ::= ( [0-9]* (’.’ [0-9]*)? )

Figure 2: EBNF specification of Fuzzy XPath.

(a)

(b)

(c)

Figure 3: Crisp and Fuzzy Membership Functions.

Figure 4: Crisp and Fuzzy Comparators.

The XML data on which the query is evaluated
are seen as global variables and the tree component of
the parameter T is the pointer to one of the nodes of
the XML tree. Notice that if the cardinality of the se-
quence is greater than one, function order cut is used.

Now we describe the evaluation of a generic
query. By definition an AbsolutePath is either
=RelativePath or ==RelativePath. Therefore,

eval query(AbsolutePath;T ) =
eval query(=RelativePath;T )

or

eval query(AbsolutePath;T ) =

eval query(==RelativePath;T )
These two evaluations, on the other hand, are equiva-
lent to the evaluation of the query’s components start-
ing from the root node of the tree pointed by T (given
by root(tree(T ))), i.e.,

eval query(=RelativePath;T ) =
eval query components(=RelativePath;

(root(tree(T ));value(T )))
and

eval query(==RelativePath;T ) =
eval query components(==RelativePath;

(root(tree(T ));value(T )))
and

eval query(RelativePath;T ) =
eval query components(=RelativePath;T )

Function eval query components takes as input a
query and a couple (XMLTree;evaluation), and re-
turns zero or more couples (XMLTree;evaluation).
Once again, if a sequence is returned, the behavior is
as in the case of eval query (i.e, function order cut is
used). Query components are evaluated recursively,
and the recursive step depends on the structure of the
query. Our base case is the empty query, for which

eval query components(;T ) = T
The evaluation of a query structured as =RelativePath
(or ==RelativePath) can be substituted with the evalu-
ation of =stepAbsolutePath (or ==stepAbsolutePath).
This is a direct consequence of how the syntax is de-
fined. Therefore

eval query components(=RelativePath;T ) =
eval query components(=stepAbsolutePath;T )
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For the same reason it is also true that
eval query components(RelativePath;T ) =

eval query components(stepAbsolutePath;T )
Likewise, since an AbsolutePath is either a

=RelativePath (or a ==RelativePath), the substitution
can also take place the other way around. Therefore,
it is also true that

eval query components(AbsolutePath;T ) =
eval query components(=RelativePath;T )

At this point the evaluation of a query of the form
stepAbsolutePath

can be achieved evaluating a query of the form
AxisSpecNodeText[Pred]AbsolutePath

This is due to the fact that a single XPath step is made
up of a axis specification, a node text, and a predicate.
The evaluation of such a query is achieved by using
the axis specification and the node text to select a set
of nodes from the current tree, and then applying the
predicate to this set. This is why

eval query components
(AxisSpecNodeText[Pred]AbsolutePath;T ) =
eval query components([Pred]AbsolutePath;

eval on tree(=AxisSpecNodeText;T ))
where function eval on tree takes a navigation in-
struction and performs it on a tree. Similarly,

eval query components
(=AxisSpecNodeText[Pred]AbsolutePath;T ) =
eval query components([Pred]AbsolutePath;

eval on tree(=AxisSpecNodeText;T ))
and

eval query components
(==AxisSpecNodeText[Pred]AbsolutePath;T ) =

eval query components([Pred]AbsolutePath;
eval on tree(==AxisSpecNodeText;T ))

More details regarding function eval on tree will be
given shortly. In the meanwhile, once the navigation
step has been completed, the predicate is evaluated,
and after this evaluation the next step in the query is
taken. Indeed,
eval query components([Pred]AbsolutePath;T ) =

eval query components(AbsolutePath;
eval query components(Pred;T ))

The evaluation of the predicate on a tree returns zero
or more of couples (XMLTree;evaluation), and is
given by

eval query components(pred;T ) =
(tree(T );min(value(T );eval predicate(pred; tree(T ))))

It is calculated as the minimum between the value as-
sociated with the tree and the evaluation of the predi-
cate on that tree, as given by function eval predicate.

The three functions

eval on tree(AxisSpecNodeText;T )

eval on tree(=AxisSpecNodeText;T )

eval on tree(==AxisSpecNodeText;T )

use the appropriate crisp navigation functions to
choose a finite set of nodes from the current tree. In-
deed, it is not limited to nodes that satisfy the axis
relationship in a crisp sense, but extends the set with
nodes that satisfy the relationship in a “fuzzy” sense.

The function eval returns the evaluation (i.e., a
value in the set [0;1]) of a predicate on a given tree
K. The evaluation of the disjunction (or) of two pred-
icates is the highest evaluation amongst the two, the
evaluation of the conjunction (and) of two predicates
corresponds to the minimum evaluation amongst the
two, and negation follows the typical fuzzy definition.
If the predicate is a path expression p of any kind (ab-
solute or relative),

eval predicate(p;K) =
max(value(eval query component(p;(K;1))))

where function max returns the maximum evalua-
tion. Regarding the evaluation of comparators, we
distinguish between crisp version and fuzzy ver-
sion. The crisp version returns 1 if the compara-
tor is satisfied, and 0 if it is not. Fuzzy com-
paratorsreturn a value in the set [0;1] depending on
the comparator’s membership function (defined by
µ). Chosen an expression (e.g., expr2), µ is cali-
brated using the expression’s evaluation (in this case
eval expr(expr2;K)), and evaluated against the other
expression (in this case eval expr(expr1;K)). For
example, if eval expr(expr2;K) returns a numerical
value 3, and we are dealing with the fuzzy compara-
tor f>g, membership function µ may be defined in or-
der to return 1 if eval expr(expr1;K) is greater than
3, and a value in the set [0;1] if it is lesser than 3, de-
pending on how far eval expr(expr1;K) is from that
value (see Figure 4).

Function eval expr takes as input two parameters:
an expression, as defined by the grammar and a tree
K and returns a tree (more often just a leaf). The dif-
ferent cases are defined as follows:

eval expr(expr1 op expr2);K) =
eval expr(expr1;K)op eval expr(expr2;K)

eval expr((expr);K) = eval expr(expr;K)

eval expr(�expr;K) =�eval expr(expr;K)

eval expr(variableRe f erence;K) =
val(variableRe f erence)

where the function val returns the content of its argu-
ment.

eval expr(Literal;K) = val(Literal)
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eval expr(Number;K) = Number

eval expr(FunctionCall;K) =
eval expr(FunctionName(expr1; :::;exprn);K) =

f unction(eval expr(expr1;K); : : :)

where f unction is the XPath function being called.
If the expression is a path p of any kind (absolute or
relative)

eval expr(path;K) =
tree(max value(eval querycomponent(p;(K;1))

where function max value returns the couple

(XMLTree;evalution)

with the maximum evaluation.
Notice that when pred is a number, it must be

treated differently. Indeed, its semantics requires that
we select the n� th child of the current node.

3.2 Function Deep-similar

In FXPath we have added a new function called
deep� similar. It is a fuzzy version of the classical
XPath function deep� equals. A formal definition
follows.

Definition 1 (Deep-similar). Given two XML trees T1
and T2, deep-similar(T1, T2) is the function that re-
turns their degree of similarity as a value contained
in the set [0;1]. This degree of similarity is given as 1
- (the cost of transforming T1 into T2 using Tree Edit
Operations). Therefore, if two trees are completely
different, their degree of similarity is 0; if they are
exactly the same —both structure-wise and content-
wise— their degree of similarity is 1.

The tree operations that can be used to transform
the tree are defined as follows:

Definition 2 (Insert). Given an XML tree T, an XML
node n, a location loc (defined through a path expres-
sion that selects a single node p in T), and an integer
i, Insert(T, n, loc, i) transforms T into a new tree T 0 in
which node n is added to the first level children nodes
of p in position i. The cost of the Insert edit operation
corresponds to the weight that the node being inserted
has in the destination tree.

Definition 3 (Delete). Given an XML tree T, and a
location loc (defined through a path expression that
selects a single node n in T), Delete(T, loc) transforms
T into a new tree T 0 in which node n is removed. The
cost of the Delete edit operation corresponds to the
weight of the node being deleted from the source tree.

Definition 4 (Modify). Given an XML tree T, a lo-
cation loc, and a new value v, Modify(t, loc, v) trans-
forms T into a new tree T 0 in which the content of node

Figure 5: Fuzzy XPath client interface.

n is replaced by v. The cost of the Modify edit oper-
ation can be seen as the deletion of a node from the
source tree, and its subsequent substitution by means
of an insertion of a new node containing the new
value. This operation only modifies the node content,
so it is necessary to consider the similarity existing
between the node’s old and new term. This is achieved
using Wordnet’s system of hypernymys. The cost
is therefore k �w(n)� (1�Sim(n;destinationNode)),
where w(n) is the weight the node being modified has
in the source tree, the function Sim gives the degree of
similarity between node n and the destination value,
and k is a constant (0.9).

Definition 5 (Permute). Given an XML tree T, a lo-
cation loc1 (defined through a path expression that
selects a single node n1 in T), and a location loc2
(defined through a path expression that selects a sin-
gle node n2 in T), Permute(T, loc1, loc2) transforms
T into a new tree T 0 in which the locations of nodes
n1 and n2 are exchanged. The Permute edit opera-
tion does not modify the tree’s structure. It only mod-
ifies the semantics that are intrinsically held in the
order the nodes are placed in. Therefore, its cost is
h� [w(a)+w(b)], where w(...) is the weight of a node
and h is a constant (0.36).

4 TOOL

FXPath is fully implemented within a graphical en-
vironment shown in Figure 5 whose goal is to sim-
plify the definition of queries, making the designer’s
job less error prone. Figure 6 shows how the execu-
tion proceeds. A query is sent to the engine, where
it goes through multiple steps before returning the re-
sult set. First of all, the query is parsed and translated
into a set of crisp queries that can be managed by a
standard XPath engine. Since new fuzzy predicates
can be added to the tool at any time, each predicate
is associated with a set of rules for performing the
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Figure 6: Fuzzy XPath client architecture.

translation. The results of the crisp queries are then
passed to a fuzzy predicate evaluator. The informa-
tion needed by this component is also contained in an
extensible set of fuzzy rules. Once the fuzzy predi-
cates have been evaluated, the results are sorted and
filtered to produce the end results.

5 CONCLUSION

We have presented a framework for querying semi-
structured XML data based on key aspects of fuzzy
logics. Its main advantage is the minimization of the
silent queries that can be caused by (1) data not fol-
lowing an appropriate schema faithfully, (2) the user
providing a blind query in which he does not know the
schema or exactly what he is looking for, and (3) data
being presented with slightly diverse schemas. This
is achieved through the use of fuzzy predicates, and
fuzzy tree matching. In our future work, we are in-
terested in extending the approach to the XQuery lan-
guage, in order to achieve a fully-fledged fuzzy query-
ing language for XML data sets.
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