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1 OBJECTIVES 

The automatic detection of epileptic seizures from 
EEG recording is very important for clinical 
diagnosis and monitoring and has become an issue 
of major scientific and technological interest 
(Orosco et al., 2013). In this work, we use the 
spatio-spectral features extracted via multi-
dimensional Parallel Factor (PARAFAC) Analysis 
of the EEG for seizure detection. This subject-
specific approach only requires extracting one 
component that explains a seizure’s space-time-
frequency pattern. Then, a simple adaptive zero-
training technique (AZT) to classify the seizures, 
with the additional advantages of being fast and 
work online, is evaluated and compared with known 
pattern recognition methodologies (LDA, SVM, k-
Means), according to its accuracy, sensitivity and 
specificity on EEG recordings of two epileptic 
paediatric patients.  

2 METHODS 

Two epileptic paediatric EEG data are used for 
seizure detection. The first one (0.5h, 19 channels, 
sampling frequency of 200Hz) corresponds to a 
patient of the Center for Neurological Restoration, at 
Havana (www.ciren.cu), while the second (4h, 23 
channels, sampling frequency of 256Hz) 
corresponds to patient chb01 of the epilepsy CHB-
MIT scalp EEG database, available online at 
http://www.physionet.org/pn6/chbmit. 

2.1 PARAFAC Model 

The PARAFAC model is a multidimensional 
generalization of the Principal Component Analysis, 
with the advantage that the multilinear 
decomposition is unique under very mild conditions, 
without imposing orthogonality or statistical 
independence among components (Miwakeichi et 
al., 2004). In our case, the spectrograms of every 

channel of an EEG segment are arranged into a 3D 
array, indexed by time, frequency and electrodes 
(spatial dimension). PARAFAC decomposes this 
tensor into components, each with corresponding 
temporal, spectral and spatial signatures 
(Miwakeichi et al., 2004). The spatial and spectral 
signatures obtained from PARAFAC analysis of a 
pattern epileptic seizure, can be used for searching 
these characteristics in new EEG segments. As the 
epileptic activity can be explained by one or more 
components, it is important to choose the component 
better explaining the epileptic activity to be detected. 
In this work, we explore the option of taking the first 
component of PARAFAC “blindly”, which allows 
for a faster and more automatic procedure. EEG 
spectrograms and features (mean power ratio) were 
found following the same procedure as in (Martínez-
Montes et al., 2013). This was done for the same 
data sets using different segments’ length to test for 
the effect of this practical parameter which defines 
speed and computational load of the methodology. 
Table 1 summarizes the data used. 

Table 1: Number of seizure and non-seizure segments, for 
different segments’ length. 

Data Length = 2 s 4 s 6 s 10 s 

1 
Seiz/NonSeiz 30/957 19/475 14/315 11/187
Total  987 494 329 198 

2 
Seiz/NonSeiz 80/7120 42/3558 29/2371 19/1421
Total  7200 3600 2400 1440 

2.2 Seizure Detection 

LDA and SVM classifiers were used (10-fold cross-
validation) to detect seizures offline from the 
features of all segments, using every seizure 
segment as the pattern. In addition an ad-hoc binary 
threshold (mean power ratio of 0.5) and k-means 
clustering were used for comparison purposes. We 
also introduce a simple adaptive zero-training 
technique (AZT), based in the online classification 
of each segment by computing the probability to 
belong to two normal distributions that define the 
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Figure 1: Data 1 - Mean (thick) and Standard deviation 
(thin) ROC curves for the mean power ratio. For the 5 
classifiers the Mean and false/true positive rate Std bars 
for automatic thresholds are shown. The tables show the 
average Mean accuracy, sensitivity and specificity. 

 

Figure 2: Data 2 - Mean (thick) and Standard deviation 
(thin) ROC curves for the mean power ratio. For the 5 
classifiers the Mean and false/true positive rate Std bars 
for automatic thresholds are shown. The tables show the 
average Mean accuracy, sensitivity and specificity. 



 

seizure and non-seizure classes. Initial means and 
standard deviations are fixed to [1, 1] (seizure) and 
[0, 0.5] (non-seizure), then they are iteratively 
updated for an adaptive classification. 

3 RESULTS 

ROC curves (true positives vs. false positives), area 
under the curve (AUC), automatic thresholds and 
classification results (accuracy, sensitivity, 
specificity in tables) are shown in figures 1 and 2. In 
both figures, a region is plotted (zoom) for better 
visualizing the behaviour of automatic thresholds. 

The mean and standard deviation of ROCs 
(across all segments used as the pattern) for 
segment´s length of 2, 4, 6 and 10 seconds; together 
with the optimal cut-off point (nearest point to (0, 
1)) confirm the high potential of this feature for 
detection purposes. 

Table 2 shows a quantitative comparison of the 
goodness of the automatic thresholds derived from 
the classifiers, as measured by the Euclidean 
distance between their sensitivity/specificity and 
those of the best cut-off of the ROC for all seizure 
patterns and different segments’ length.  

Table 2: Mean ± Std of Euclidean distances between 
optimal cut-off and automatic thresholds. 

Method  2 s 4 s 6 s 10 s 

D
at

a 
1 

Binary 0.27±0.14 0.34±0.23 0.28±0.16 0.31±0.19
k-Means 0.21±0.11 0.29±0.20 0.21±0.12 0.23±0.19
LDA  0.21±0.11 0.20±0.11 0.20±0.10 0.17±0.08
SVM  0.23±0.11 0.37±0.25 0.33±0.23 0.34±0.23
AZT 0.02±0.01 0.08±0.06 0.16±0.09 0.27±0.01

D
at

a 
2 

Binary 0.36±0.26 0.36±0.25 0.33±0.20 0.31±0.18
k-Means 0.28±0.11 0.33±0.10 0.33±0.07 0.30±0.08
LDA 0.19±0.12 0.20±0.13 0.11±0.11 0.18±0.08
SVM  0.48±0.20 0.45±0.23 0.46±0.21 0.48±0.23
AZT 0.22±0.22 0.16±0.07 0.11±0.05 0.16±0.11

4 DISCUSSION 

The results illustrated in figures 1 and 2, show that 
AZT outperforms the other algorithms in terms of 
sensitivity (for small segments), while generally 
offering the smallest specificity. This is an attractive 
property for the clinical automatic scanning, when it 
is more important not to miss a seizure, although 
more false positives (FP) are introduced. While 
LDA, k-Means and SVM give stable results for 
different segments’ length, the AZT tended to have 
lower sensitivity for longer segments. AZT also 

showed smaller standard deviation for the true 
positive (TP) rate than the other methods, and the 
nearest pair of TP/FP to those defined by the optimal 
cut-off of the ROCs in average (Table 1). This 
means that the implicit thresholding in AZT offers a 
better compromise of sensitivity and specificity. 

One important limitation of the procedure 
followed here is that blind one-component 
PARAFAC decomposition may not always extract 
the epileptic activity. We tested that when this step 
was supervised to ensure using the correct 
component as the spatio-spectral pattern, the 
classification results with AZT improved in the 
worst cases (Table 3). This procedure is much 
slower and implies training the clinician in the 
correct use of the PARAFAC model. 

Table 3: Classification results for one 2-s long seizure 
pattern of Data 2. A) Using blind one-component 
PARAFAC. B) Using one PARAFAC component (out of 
3) that best characterized the seizure. 

Method  A) Sen Spe B) Sen Spe 
Binary  0.963 0.898 1.000 0.362 
k-Means 1.000 0.751 1.000 0.806 
LDA (linear) 0.838 0.976 0.813 0.991 
SVM (linear) 0.438 0.999 0.688 0.999 
AZT 0.963 0.518 0.938 0.941 

 

In summary, the uniqueness of the PARAFAC 
decomposition ensures the subject-specific 
characterization of seizures as well as the natural 
cleaning of the data by screening only for the 
activity of interest. The analysis exposed here 
corresponds to a segment by segment detection with 
just one pattern seizure, which can be done online 
and with low computational burden. The feature 
extracted via one-component blind PARAFAC is a 
good descriptor of pattern seizure (AUC>.97) and 
the proposed adaptive zero-training (AZT) online 
classification technique is a promising method for 
fast unsupervised seizure detection. Better results 
can be expected with visual selection of the epileptic 
component by a specialist. Finally, a more complete 
validation of this methodology is necessary in a 
larger epilepsy EEG database.  
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