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1 STAGE OF THE RESEARCH 

The main idea of our research is to develop an 
ensemble machine learning algorithm to accurately 
classify prostate cancer using RNA-Seq data. To 
date, many studies have focused on predicting 
prostate cancer using microarray data. These days, 
RNA-Seq is rapidly being used for cancer studies as 
an alternative to microarrays. Thus, new machine 
learning algorithms are needed to analyze RNA-Seq 
data, which have different characteristics compared 
to microarray data. The current PhD research has 
been running for one year and has focused on 
analyzing existing state-of-the-art normalization 
methods, gene expression data analysis, and 
ensemble methods. Besides that, we designed an 
ensemble feature selection algorithm to select 
relevant genes from the gene expression data. 
Moreover, we developed a “digital” gene expression 
data simulator for evaluating the performance of the 
proposed algorithms. The next step will be to 
construct an accurate ensemble prediction model to 
diagnose prostate cancer. Finally, the model will be 
fine-tuned based on feedback from medical doctors.  

2 OUTLINE OF OBJECTIVES 

The goal of this research is to accurately predict 
prostate cancer using RNA-Seq data. To ensure a 
systemic approach, the overall research problem is 
divided into a set of sub-problems: i) comparative 
analysis of normalization methods, ii) development 
of RNA-Seq simulators, and iii) ensemble algorithm 
design and implementation. The specific objectives 
in each sub-problem are as follows.  
 Provide a Clear Guideline for Choosing the 

Appropriate Normalization Methods. Bullard 
et al. (2010) indicated that the choice of 
normalization procedure has a decisive effect on 
identifying candidate genes. The aim of data 
normalization is to minimize the effects caused 
by technical variations, such as library size or 

sequencing depth, gene length, and GC-content. 
Various normalization methods have been 
developed. However, it is difficult to decide 
which normalization methods should be used 
among the various approaches. Therefore, 
comparative analysis of these normalization 
methods will improve the performance of final 
prediction.  

 Develop a Gene Expression Data Simulator. 
Various computational methods have been 
proposed, and new methods are continuously 
being developed for identifying candidate genes 
in gene expression data. One major problem with 
newly developed approaches is the issue of 
assessing accuracy and false positive rates in the 
absence of a so-called “gold standard.” Thus, 
using both simulated and real datasets to evaluate 
proposed methods will increase the reliability of 
the prediction model. 

 Propose an Ensemble Classification Algorithm. 
In general, ensembles of classifiers provide 
better classification accuracy than a single 
predictor. The main characteristic of expression 
data is high dimensionality. Thus, we need to 
consider both dimension reduction techniques 
that identify a small set of genes and ensemble 
classification methods to achieve better learning 
performance.  

3 RESEARCH PROBLEM 

Cancer is a class of complex genetic diseases 
characterized by out-of-control cell growth. Cancer 
classification has been a crucial topic of research in 
cancer treatment. For the last decade, microarray 
data have been widely used to classify the different 
types of human cancers (Kim et al., 2013). Recently, 
the emergence of next-generation sequencing (NGS) 
technology has brought significant changes in many 
biological and medical applications (Metzker, 2010; 
Lee et al., 2013; Shon et al., 2013). Whole 
transcriptome shotgun sequencing, also known as 
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RNA-Seq, is often being used for cancer studies as 
an alternative to microarrays (Rapaport et al., 2013). 
Generally, an RNA-Seq analysis pipeline consists of 
the following procedures. An RNA sample is 
converted to cDNA fragments or RNA fragments 
with adapters and sequenced on a high-throughput 
sequencing platform, such as Illumina or Roche 454. 
As a result, millions of short reads (30-400 bp) are 
produced. Next, these short reads are mapped back 
to a reference genome or transcriptome. After that, 
the expression levels are estimated for each gene. 
Then, the count data are normalized. Finally, a 
machine learning technique is adopted to identify 
candidate genes. However, several issues still exist 
in RNA-Seq data analysis. Various normalization 
methods have been developed for removing the bias 
of RNA-Seq experiments. However, there is no clear 
guideline as to how the normalization procedure 
affects downstream analysis. Thus, it is difficult to 
decide which normalization methods should be used 
from among the various approaches. Moreover, 
there is not much work focused on machine learning 
approaches with RNA-Seq data for prostate cancer 
prediction.  

In general, ensembles of classifiers provide 
better classification accuracy than a single predictor. 
To improve classification accuracy, ensemble 
methods, also known as classifier combinations, first 
generate a set of base classifiers from training data 
and then perform actual classification by combining 
the results of base classifiers. To achieve better 
accuracy in the combined set of multiple classifiers, 
each base classifier should be diverse and 
independent. When it comes to building each base 
classifier, ensemble classifier generation methods 
can be broadly categorized into four groups 
(Rahman and Verma, 2013): i) by selecting different 
subsets of instances from a training set to build each 
base classifier, ii) by choosing different subsets of 
features from the input features to construct each 
base classifier, iii) by basing the selection on 
different categories of class labels to build each base 
classifier, and iv) by manipulating the learning 
algorithm. Theoretical and empirical results (Tumer 
and Oza, 1999) indicate that the most effective 
method of achieving independence on high-
dimensional data is by training base classifiers on 
different feature subsets (Bryll et al., 2003; Bashir et 
al., 2012). The basic idea of a feature subset–based 
ensemble is simply to give each classifier a different 
projection of the training set (Rokach, 2008). 
Especially for high-dimensional data, adopting 
independent feature subsets for ensemble generation 
has been shown to be more efficient (Rokach, 2010) 

compared with manipulating the training samples. 
This may be due to the following: i) a feature subset-
based ensemble can perform faster due to the 
reduced size of input space; or ii) it can reduce the 
correlation among the classifiers. 

4 STATE OF THE ART 

4.1 Gene Expression Data Analysis 

Much research has been performed on analyzing 
microarray gene expression data for cancer 
classification over the past several years. For 
example, Fujibuchi and Kato (2007) proposed the 
maximum entropy kernel, which they applied in the 
field of support vector machine (SVM) classification 
of microarray data. For classifying a leukemia 
dataset, Cho and Ryu (2002) proposed an ensemble 
classifier trained from a subset selected using SNR 
measurement. Cho and Won (2007) also proposed 
an ensemble model. Hsu et al. (2011) introduced a 
hybrid feature selection model based on information 
gain and F-score, and performed the classification 
task using SVM. Dettling and Buhlmann (2003) 
modified the boosting classifiers and applied 
Wilcoxon’s two-sample test to select discriminative 
genes on the breast and lymphoma dataset. Lee et al. 
(2005) noted that SVM with a BSS/WSS feature-
ranking criterion outperforms other classifiers on a 
lymphoma dataset. Liu et al. (2010) proposed an 
ensemble gene selection method based on 
normalized conditional mutual information and 
evaluated their method on a central nervous system 
(CNS), lymphoma and prostate dataset with a Naïve 
Bayes classifier and a k-nearest-neighbor classifier. 
Kanna and Ramaraj (2010) used a correlation-based 
memetic feature selection algorithm to select genes 
on a CNS and leukemia dataset. Tan and Gilbert 
(2003) and Yeh (2008) also worked on CNS 
datasets, and Yang et al. (2006) proposed two gene 
selection methods that were not affected by 
unbalanced sample class sizes. Yang et al. (2009) 
introduced a hybrid feature selection method based 
on information gain and a genetic algorithm. 

4.2 Ensemble Methods 

4.2.1 Bagging 

Bagging (Breiman, 1996) is a method for generating 
multiple versions of classifiers and using these to get 
an aggregated classifier. Each base classifier is 
generated by different bootstrap samples. Algorithm 
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1 shows the bagging algorithm (Bauer and Kohavi, 
1999). The algorithm takes training data D, inducer 
I, and the number of bootstrap samples N as input, 
and then produces an ensemble classifier that is the 
combination of the classifiers trained from the 
multiple bootstrap samples. D is obtained by 
repeatedly sampling instances from a data set 
according to probability distribution (line 2). Since 
the sampling is done with replacement, some 
instances may appear several times in the same 
training set, while others may not. Consequently, N 
bootstrap samples, D1, D2, ..., DN, are generated, 
from which a classifier Ci is trained by using each 
bootstrap sample Di (line 3). Finally, a combined 
classifier C* is built from C1, C2, …, Ci, and C* 
predicts the class label of a given instance x by 
counting votes (line 5). 
 

Algorithm 1 Bagging 

Input: training data D, Inducer I, number of bootstrap 
samples N 

1. for i = 1 to N { 

2. D = bootstrap sample from D (sample 
with replacement) 

3. Ci = I(D) 

4. } 

5. 



yxCiYy

i

xC
)(:

1maxarg)(*  

Output: Aggregated classifier C* 

4.2.2 Boosting 

Boosting (Freund and Schapire, 1996) is also a 
widely used ensemble method developed to improve 
the performance of learning algorithms that generate 
multiple classifiers and vote on them. Unlike 
bagging, boosting assigns a weight to each training 
instance and may adaptively change the weight at 
the end of each boosting round. AdaBoost is an 
improved boosting algorithm, with the pseudo code 
shown in Algorithm 2. The algorithm takes as input 
training data D containing m instances, inducer I, 
and iteration parameter N, and then outputs a 
combined classifier. Initially, all of the instances are 
equally assigned the same weight (line 1). Then, the 
algorithm gradually constructs classifiers by 
modifying the weights of training instances based on 
the previous classifier's performance (lines 2-9). 
This is accomplished by computing the new 
classifier while putting more emphasis on those 
objects previously found to be difficult to accurately 
classify. After generating each classifier, a 

proportion of the incorrect classification rate is 
calculated (line 4). If the weighted error is larger 
than 0.5, the current D will be set to a bootstrap 
sample with weight 1 for every instance. Otherwise, 
the weight of correctly classified instances will be 
updated by a factor inversely proportional to the 
error (lines 6-8). In other words, if the current 
classifier finds a certain object difficult to classify, 
then that object will be assigned a greater weight for 
the next iteration. Conversely, if an object is found 
to be easy to classify, then it will have less weight in 
the next iteration. Finally, the classifiers are 
combined using a weighted voting scheme (line 10). 
 

Algorithm 2 AdaBoost 
Input: training data D, size m, Inducer I, number of 
iterations N 
1. D = D with instance weights assigned at 1 

2. for i = 1 to N { 

3. Ci = I(D) 

4. 




jjij yxCDx

i xweight
m

)(:'

)(
1  

5. 

      If 2/1i , set D to a bootstrap sample 

from D with weight 1 for 
every instance and go to 
step 3 

6.       )1/( iii    

7. 

      For each 'Dx j  , if jji yxC )( then

ijj xweightxweigh  )()(

 

8. 
      Normalize the weights of instances so the 

total weight of D is m 
9. } 

10. 



yxCiYy

i

xC
)(:

1
logmaxarg)(*


 

Output: Aggregated classifier C* 

4.2.3 Random Forest 

Random forest is an ensemble classification method 
that consists of multiple unpruned decision trees. 
Unlike bagging, random forest forms bootstrap 
samples by randomly partitioning the original 
feature space instead of using the whole input 
features. As shown in Algorithm 3, to construct 
individual decision trees, bootstrap samples are 
selected from the training instances, with 
replacement (line 2). Then, a classification and 
regression tree (CART) algorithm is applied to grow 
the decision tree. At the node selection stage, it 
decides the best splitting node from a randomly 
selected subspace of m features (lines 3-4). 
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Algorithm 3 Random forest 

Input: training data D, number of selected variables m, 
number of trees N 

1. for i = 1 to N { 

2. D = bootstrap sample from D (sample 
with replacement) 

3. S size of m= S (S will be randomly 
selected from original input space) 

4. Ci = I(D, S) (I: Classification and 
regression tree) 

5. } 

6. 



yxCiYy

i

xC
)(:

1maxarg)(*  

Output: Aggregated classifier C* 

5 METHODOLOGY 

5.1 Normalization 

As mentioned above, the choice of normalization 
procedure has a decisive effect on identifying 
differentially expressed genes. The aim of data 
normalization is to minimize the effects caused by 
technical variations, such as library size or 
sequencing depth, gene length, and GC-content. In 
general, a larger sequencing depth results in higher 
counts, which means that the observed counts are 
not directly comparable between different samples 
(Soneson and Delorenzi, 2013). Likewise, long 
genes tend to be mapped to a larger number of reads. 
These systematic variations make it difficult to 
capture true differential expression. Several 
normalization methods have been developed, such as 
Total Count, Upper Quality, Median, Trimmed 
Mean of M values (TMM), Quartile, the Reads Per 
Kilobase per Million mapped reads (RPKM), and 
RSEM, to reduce the biases existing in RNA-Seq 
analysis. Thus, these methods will be carefully re-
evaluated by comparing the correlations with qRT-
PCR data. 

5.2 Simulation 

To obtain a reliable prostate prediction model, the 
proposed methods will be tested on both real and 
simulated data. Thus, we developed a gene 
expression data simulator. As input, the simulator 
simply takes several parameters, such as number of 
samples in condition 1, the number of samples in 
condition 2, the number of genes, the number of 

differentially expressed genes, the number of co-
expressed genes, the number of highly expressed 
genes, and the number of zero count genes, 
distribution types, and distribution parameters. Then, 
simulated data is generated as output. 

5.3 Ensemble Gene Selection 

In our previous work (Piao et al., 2012), we 
proposed a hybrid feature selection algorithm and 
demonstrated that there are lots of feature subsets 
with good discriminative capability, and the 
proposed algorithm was more efficient than FCBF 
and other feature selection mechanisms for gene 
expression data analysis. While the goal of our 
previous work was to find the best feature subset 
that is most relevant to the target, there needs to be 
an additional goal of finding a set of feature subsets. 
Therefore, we extend our previous work to generate 
a set of feature subsets by considering the relevance 
and redundancy of the features. 

5.4 Ensemble Construction 

Over the past few years, SVM has been widely used 
for classification because of its good performance on 
high-dimensional data. SVM was developed to solve 
the problems occurring in applications like 
handwritten digit recognition, object recognition, 
text classification, cancer diagnosis, and 
bioinformatics. Hence, we use SVM as the base 
classifier in our ensemble method. The goal of SVM 
is to find a hyper-plane with a maximal margin (the 
distance between two groups of data points) as 
defined and illustrated in Figure 1. Given some data 
points that are assumed to be divided into two 
groups (circles and squares), the hyper-plane can be 
written as: 
 

0bxw   (3) 
 

1 bxw  ,  
||||

2
arg

w
inm   (4) 

 

 
Figure 1: Example of support vector machine. 
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Hence, the learning task in SVM can be formalized 
as the following constrained optimization problem: 
 

2

||w||
min

2

w  (5) 

 

n ..., 2, 1,i 1,b)x(wy subject to ii   (6) 
 

This is also known as a convex optimization 
problem, which can be solved by using the standard 
Lagrange multiplier method: 
 





N

1i
iii

2
p 1)-b)x(w(y-||w||

2

1
L   (7) 

 

where parameters σ௜  are called the Lagrange 
multipliers. With the Lagrange multipliers, the 
decision function can be written as follows: 
 

b)x),K(xysgn(f(x) ii

n

1i
i  



  (8) 

 

Additionally, the results of each classifier are 
combined by majority voting, and classification of 
unknown data is performed based on the class label 
to obtain the most frequent votes. The mathematical 
function of our ensemble method with k classifiers 
can be written as: 
 

))c ,(x)(fmax( argclass(x) i
k

k  (9) 

6 EXPECTED OUTCOME 

At the end of this PhD research, a new ensemble 
classification method will be available for predicting 
prostate cancer from RNA-Seq data. Moreover, a 
complete gene expression data simulator will be 
developed. The simulator may help to research non-
parametric methods for cancer classification. The 
research will lead to new insights for understanding 
prostate cancer by identifying candidate genes from 
high-dimensional gene expression data. If this is 
proven successful, our approach could be applied to 
other types of disease.  
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