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asymmetric with a polarity of DC v
as shown in Fig. 2. A wide ne
(NDR) region (Point A) is suitable
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Usually, the RTD is integrate
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The antenna-integrated RTD chip i
coplanar waveguide substrate w
connector via bonding wire as show

 

Figure 2: DC I-V characteristics of the 
points for transmitter (A) and receiver (
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Figure 4: Photograph of the RTD
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becomes maximum at the peak vo
the NDR region as expected. In the
output voltage becomes unstable a
increases.  
 

Figure 5: Relative responsivity and 
function of DC bias voltage. 
 
 

3.2 Receiver Modules 
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We conducted wireless transmission experiments 
using a frequency-multiplier-based transmitter and 
the RTD receiver. Figure 9 depicts a schematic 
diagram of the experimental setup. The output signal 
from the up-converter, which mixes  the RF signal 
from a synthesizer (32–36 GHz) and the digital 
signal from a pulse-pattern generator, is multiplied 
by nine times to generate THz signals at 288–324 
GHz. THz signals are radiated into the free space by 
a horn antenna (25 dBi), and are detected by the 
RTD receiver module. Demodulated signals are 
amplified and re-shaped by a preamplifier and a 
limiting amplifier, respectively.  

Figure 10 shows bit error rate (BER) 
characteristics and eye diagrams. Error-free 
(BER<10-11) transmission has been confirmed up to 
the bit rate of about 11 Gbit/s.  Currently, the 
maximum bit rate is limited by the modulation 
bandwidth of the transmitter based on the frequency 
multiplier.  Our design of the receiver module 
ensures the bit rate of over 20 Gbit/s. 
 

 
Figure 9: Block diagram of wireless transmission 
experiment using a frequency-multiplier-based transmitter 
and the RTD receiver. 
 

 
Figure 10: Bit error rate characteristics and eye diagrams 
at 300 GHz. 

4 APPLICATIONS TO ALL RTD-
BASED TRANSCEIVERS 

For the operation of the RTD as a transmitter, the 
amplitude of the applied voltage is changed to 
perform the on-off keying (OOK) modulation as 
shown in Fig. 11. The amplitude of both the DC bias 
and RF modulation voltages was carefully adjusted 
so that the output power from the RTD became 
maximum (Mukai et al., 2011).  

 

 
Figure 11: Operation of the RTD as a transmitter with 
OOK modulation scheme. 

 
 

 
 
Figure 12: Experimental setup of proximity wireless 
transmission experiment using two sets of RTD modules.  
 
 

By using two sets of RTD modules without MgO 
lens (Fig. 3(b)), we conducted a close-proximity 
wireless transmission experiment, placing the two 
modules at a distance from a few millimeters to 
several tens of millimeters as shown in Fig. 12. For 
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the transmitter, the data signal (RF voltage) from the 
pulse-pattern generator was applied to the module 
with an appropriate DC bias voltage through a bias-
T. For the receiver, just a DC bias voltage was 
applied to the RTD to maximize the sensitivity. The 
demodulated baseband data signal was amplified 
with the preamplifier followed by the limiting 
amplifier. 

The oscillation frequency depends on the parallel 
inductance and capacitance of RTD chip, and the 
output power is proportional to the widths of the 
current and voltage of the NDR region (Asada et al., 
2008). The oscillation frequency and the output 
power of the RTD used for the experiments were 
approximately 300 GHz and several μW, 
respectively. 

 

 
Figure 13: BER characteristics plotted against the DC bias 
voltage and eye diagram at 1.5 Gbit/s.  
 

 
 
Figure 14: Demodulated eye diagram at 2.5 Gbit/s.  
 
 

Figure 13 shows a dependence of the BER on the 
applied DC bias voltage when the amplitude of the 
data signal was 160 mVp-p. At 0.85 V, an error-free 
transmission at 1.5 Gbit/s was achieved as shown in 
the eye diagram of Fig. 13. There were optimum DC 
bias voltages depending on the RF voltage 
amplitude. By carefully adjusting the DC bias 

voltage, the achieved maximum data rate was 2.5 
Gbit/s (Fig. 14), which is mainly limited by the 
frequency-dependent radiation pattern as discussed 
in Sec. 3.2, and the bandwidth of the packaging 
(Shiode et al., 2011, 2012). Use of RTD transceiver 
modules with MgO lens will increase the bit rate 
over 10 Gbit/s.   

5 CONCLUSIONS 

We have described a small and cost-effective 
transceiver module employing resonant-tunnelling 
diodes (RTDs) towards wide-spread consumer THz 
wireless applications such as a close-proximity 
instantaneous data transfer and a wireless 
interconnection.  

The RTD-based receiver module with MgO 
hyper-hemispherical lens has exhibited over 10-
Gbit/s performance at 300 GHz. Using the RTD-
based transmitter and receiver, a close-proximity 
wireless transmission at 2.5 Gbit/s has been 
demonstrated with an error-free condition. Future 
works should be placed on the increase of data rate 
and transmission distance by improving the 
packaging and the antenna structure, respectively. 
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