
A Meta-architecture for Service-oriented Systems and Applications

Leszek A. Maciaszek1,2, Tomasz Skalniak1 and Grzegorz Biziel1
1Wrocław University of Economics, Komandorska 118/120, 53-345 Wrocław, Poland

2Macquaire University, Sydney, Australia
leszek.maciaszek@mq.edu.au, {tomasz.skalniak, grzegorz.biziel}@ue.wroc.pl

Keywords: Meta-architecture, Architectural Design, Service-oriented Systems and Applications, System and Software
Complexity, Dependency Relationships, Software Quality, Software Adaptability, Holon Abstraction.

Abstract: The paper proposes a new meta-architecture as a reference model for developing service-oriented systems
and applications. The seven-layer meta-architecture is called STCBMER (Smart Client - Template - Bean -
Controller - Mediator - Entity - Resource). The purpose of it is to reduce software complexity and ensure the
quality of adaptability defined as the degree to which an information system or application is difficult to
understand, maintain and evolve. The main difficulty stems from complex interactions (dependencies)
between system elements. The dependencies can be minimized if the system under development adheres to
the architectural design and can be verified by analysing the implementation code. The paper reinforces the
proposition that an architectural intent for adaptive complex systems requires some sort of hierarchical
layered structure (according to the holon abstraction as an approach to restraining software complexity).

1 INTRODUCTION

The main concern and objective of software
architectural design is to manage complexity in
resulting systems and applications. Software
complexity must not be higher than the complexity
of the problem domain addressed by the software. If
it is higher, we say that the software solution is over-
complex (unnecessarily complicated). The main
condition for lowering software complexity is to
base its architectural design on a complexity-
minimizing architectural framework or reference
model (i.e. a meta-architecture).

Complexity is an axiomatic, but relative concept,
which can only be properly interpreted by its
relation to its contrary notion of simplicity (Agazzi,
2002). Something is complex because it is not
simple, and vice versa.

Complexity is also a multi-faceted concept –
what is complex from one point of view may be
simple from another point of view. In other words,
complexity is the combination of several attributes,
which need to be examined separately “so that we
can understand exactly what it is that is responsible
for the overall “complexity”. Nevertheless,
practitioners and researchers alike find great appeal
in generating a single, comprehensive measure to
express “complexity”” (Fenton and Pfleeger, 1997).

In our opinion, a complexity measure, if one can
be generated, should be seen as an overriding
measure of systems and software quality. Therefore,
complexity is a derivative of characteristics
constituting system/application quality. As noted by
Robert Glass (2005) “the task of building quality
into software is almost the same as the task of
making it maintainable” (or adaptable in our
parlance).

The SQuaRE standard (ISO, 2011) identifies
eight quality characteristics, of which the quality of
maintainability represents the instrumentation side
of complexity. The standard identifies further five
sub-characteristics of maintainability: modularity,
reusability, analysability, modifiability, and
testability. We believe that a better term for these
sub-characteristics is adaptability (or adaptiveness)
rather than maintainability. Adaptability is a broader
concept combining understand-ability as a
precondition of maintainability and maintainability
as a precondition of evolve-ability.

System/software adaptability is underpinned by
its complexity, measured as the count of (permitted)
dependency relationships in the system/software,
where: “A dependency is a relationship that signifies
that a single or a set of model elements requires
other model elements for their specification or
implementation. This means that the complete

20
Maciaszek L., Skalniak T. and Biziel G.
A Meta-architecture for Service-oriented Systems and Applications.
DOI: 10.5220/0005423900200028
In Proceedings of the Fourth International Symposium on Business Modeling and Software Design (BMSD 2014), pages 20-28
ISBN: 978-989-758-032-1
Copyright c© 2014 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

semantics of the depending elements is either
semantically or structurally dependent on the
definition of the supplier element(s).”(OMG, 2009).

In our research, we address the last of the five
deep questions in computing identified by Jeannette
Wing (2008): “(How) can we build complex systems
simply?”. We have argued that a valid answer to this
question is to construct system/software according to
dependency-minimizing meta-architecture (e.g.
Maciaszek and Liong, 2005).

The rest of the paper is organized as follows.
Section 2 summarizes the PCBMER meta-
architecture and makes a case for adjusting and
extending it to suit modern service-based systems
and applications. Section 3 defines the "service
enterprise" viewpoint on complexity and change
management in systems and applications. This
section introduces a new meta-architecture Smart
Client - Template - Bean - Controller - Mediator -
Entity - Resource (STCBMER). The meta-
architecture refers to the technology-specific
frameworks (used and validated on a large e-
marketplace project in the domain of Ambient
Assisted Living (AAL), but not used here as a case
study for the lack of space). The related work, the
conclusion and the future work sections close the
paper's discussion, and they are followed by the list
of references.

2 A RECAP OF THE PCBMER
META-ARCHITECTURE FOR
ENTERPRISE INFORMATION
SYSTEMS

The architecture informs how system/software
elements are interlinked. It abstract away from
implementation and it omits information not related
to interactions between elements. There can be many
levels of architectural abstraction. We distinguish
between a meta-architecture as a desired holonic
structure and concrete instantiations of it in
system/software under development. Those concrete
instantiations (or architectures) must conform to the
chosen meta-architecture so that the complexity-
minimization objective is achieved.

A layered, ideally holonic-like structure is the
first sine qua non condition for an architectural
solution leading to the production of adaptive
systems. The PCBMER is our original meta-
architectural proposal for such architectural
instantiations. The second sine qua non is the use of
managerial dependency analysis tools to ascertain

adaptability in concrete instantiations. The DSM is
our managerial tool of choice for dependency
analysis.

An architectural division into layers, apart from
complexity reduction, has many other advantages.
Without much trouble we can exchange components
within a layer, e.g. within the Presentation layer we
can change HTML pages to dynamic JSP pages.
Moreover, a layer can only communicate with
neighbouring layers and only in a single-directional
way (i.e. cyclic references are not permitted). As a
result, changes in a layer do not require changes in
independent layers (i.e. layers that do not depend on
the modified layer).

Figure 1 illustrates the PCBMER meta-
architecture modelled in UML and showing layers as
UML packages. There are six layers: Presentation,
Controller, Bean, Mediator, Entity, Resource (e.g.
Maciaszek, 2007). Figure 1 shows also Utility Data
Sources (typically databases) accessible exclusively
from the Resource layer.

Figure 1: The original PCBMER meta-architecture.

The Presentation layer represents the graphical
user interface (GUI) objects on which the data
(beans) from the Bean layer can be rendered. It is
responsible for maintaining consistency in its
presentation when the beans change. So, it depends
on the Bean layer.

The Bean layer represents the data classes and
value objects that are destined for rendering on GUI.
Unless data is entered by the user, the bean data is
built up from the entity objects (the Entity layer).

The Controller layer represents the application
logic. Controller objects respond to the Presentation
requests resulting from user interactions with the
system.

A Meta-architecture for Service-oriented Systems and Applications

21

The Entity layer responds to Controller and
Mediator. It contains business objects retrieved from
the database or created for successive storage in the
database. Many entity classes are container classes
(i.e. they contain business objects and methods for
adding and removing objects as well as methods to
iterate over objects).

The Mediator layer mediates between Entity and
Resource classes. It manages business transactions,
enforces business rules, instantiates business objects
in the Entity layer, and in general manages the
memory cache of the application. Architecturally,
Mediator serves two main purposes. Firstly, to
isolate the Entity and Resource layers so that
changes in any one of them can be introduced
independently. Secondly, to mediate between the
Controller and Entity/Resource layers when
Controller requests data, but it does not know if the
data has previously been loaded from the database
into memory.

The Resource layer is responsible for all
communications with external persistent data
sources (databases, web services, etc.). This is where
the connections to the database servers are
established, queries to persistent data are
constructed, and the database transactions are
instigated.

The downward arrows between the PCBMER
layers signify acyclic dependency relationships.
Cyclic dependencies are the main characteristic of
over-complex systems and the culprit of the lack of
adaptability in such systems. The Downward
Dependency Principle (DDP) and the Cycle
Elimination Principle (CEP) are two main
architectural principles of PCBMER (Maciaszek and
Liong, 2005).

The DDP principle ensures that all message
dependencies (function calls) have downward
direction (message dependencies signify tightly
coupled communication, such as in Remote Method
Invocation (RMI) - not to be confused with
asynchronous messaging, such as in Java Messaging
Service (JMS)).

Higher PCBMER layers depend on lower layers,
but not vice versa (at least not from the viewpoint of
message dependencies). As a result, managing
change in lower layers is more troublesome and we
need to endeavour to apply extra care to designing
lower layers, so that they are more stable (i.e. more
resilient to changes).

The DDP principle is further constrained by the
Neighbour Communication Principle (NCP). This
principle ensures that objects can communicate with
distant layers only by utilizing chains of message

passing through neighbouring layers. Occasional
claims in the literature that such message passing
impacts performance are misguided, in particular in
the context of enterprise information systems in
which performance is invariably related to
input/output data transfers to/from databases
(performance penalty of in-memory processing is
negligible in this context).

The CEP principle demands that cycles of
messages are disallowed between objects. The
principle applies to objects of any granularity
(methods, classes, components, services, packages,
subsystems, etc.). This does not mean that call-backs
are disallowed. It just means that call-backs must be
implemented using other than straight message
passing techniques. The two principal techniques are
event processing and the use of interfaces,
sometimes combined to achieve a desired effect.
Additionally, clustering and de-clustering of objects
can result in elimination of some cycles. Maciaszek
and Liong (2005) contains a detailed description of
cycle-elimination techniques.

The Upward Notification Principle (UNP) is a
separately-listed principle to counteract the stringent
DDP rule and to enforce the CEP principle in
communications between layers. This principle
requires that lower layers rely on event processing
(publish/subscribe protocols) and interfaces to
communicate with objects in higher layers.

The PCBMER meta-architectural framework has
been created for and validated in development of
large scale "stovepipe" enterprise information
systems and applications. The software production
in such projects is entirely in the hands and minds of
the software development team. However, modern
software production is not "stovepipe" any more.
Software development projects are not standalone
undertakings - they are endeavours in systems
integration. Complexity management and delivery of
adaptable solutions takes on a new dimension.

Firstly, the shift from systems development to
systems integration manifests itself on the software
level by the shift from synchronous message passing
to asynchronous event processing (Maciaszek,
2008a). This has an obvious business explanation.
Integration implies dependency on the code that is
not our own and not under direct control of the
developers (or rather integrators, to be precise).
Frequently, this is the code of our business partners
who are unlikely to open it up for synchronous
message passing from/to our code. But even in case
of the integration projects within the same
organization, the independent nature of separate
business processes (and the software supporting

Fourth International Symposium on Business Modeling and Software Design

22

them) is unlikely to permit or warrant synchronous
interoperability. Moreover, whether integrating with
external systems or with internal systems,
synchronous message passing typically would
require some level of intervention in the source code
of the system we integrate with. Clearly, this is
almost never an option.

Secondly, and related to the systems integration
issue, another paradigm shift has been observed in
modern software production - the shift from in-
house software ownership to trusted provisioning of
service-based systems and applications. Grounded in
the Service Oriented Architecture (SOA) model of
computation, this shift has created a new dimension
to our understanding of software complexity and
delivery of adaptable Software as a Service (SaaS)
solutions. The first and foremost concern are the
implications for architectural design of such systems
and applications. This is discussed next.

3 THE STCBMER
META-ARCHITECTURE FOR
SERVICE ENTERPRISE

Founded on cloud computing, the SaaS phenomenon
exerts new business and pricing models for using
information systems without owning them. Service-
oriented systems have emerged as a new scientific
abstraction allowing orchestration of service
resources and processes according to value
propositions (co-creation of value).

Service systems and applications have become a
commodity - like telephone, water, energy, gas, etc.
Associated with this observation, several
dichotomies have emerged. On one hand, software
products are servitized; on the other hand, software
services are productized (Cusumano, 2008). On one
hand, vendors of Component of the Shelf (COTS)
enterprise information systems use Internet as a
service delivery mode; on the other hand,
productized services are delivered over Internet as
enablers and productivity enhancers in the service
economy.

The above dichotomies have posed new
challenges on the very idea of complexity and
change management in a modern-age service
enterprise. The responsibilities for complexity and
change management have shifted to producers and
suppliers/vendors of service systems and
applications, but much of the risk is endured by the
enterprises receiving/buying the services. It comes
as no surprise that enterprises seek to alleviate the

risks and try not to lose control over their own
destiny.

The main objective and sine qua non in such
service enterprises must be to ensure the adaptability
of received service systems and applications. This in
turn implies a demand for a layered, modular and
dependency-minimizing architecture in such systems
and applications, so that the service enterprise can
understand, maintain and evolve its software
solutions. In this context, it does not matter if a
service system or application is delivered as a
complete SaaS solution or it is delivered as
componentized web services from which a system or
application is constructed. In all cases a level of trust
between providers and recipients of services is
necessary, and in all cases we need to ensure the
quality of adaptability in service solutions.

Interestingly, but also paradoxically, the service
systems and applications are built on the
technologies that, by their very nature, support
adaptability. The concepts such as loose coupling,
abstraction, orchestration, implementation neutrality,
configurability, discoverability, statelessness,
immediate access, etc. are exactly the ideas of
adaptable architectural design. In the remainder of
the paper, we propose a meta-architecture for
adaptable architectural design of SOA systems and
applications. The meta-architecture has evolved
from the PCBMER meta-architecture and it is called
Smart Client - Template - Bean - Controller -
Mediator - Entity - Resource (STCBMER).

The seven layers of the STCBMER meta-
architecture can be grouped into three main
architectural modules as shown in Figure 2. The
three modules - Smart Client Logic, Application
Logic, and Business Logic - work in different
address spaces separated by the technology of web
services. The SOA technology is responsible for
discovering web services, providing service binding,
and orchestrating an exchange of information
through web service interactions. The service
discovery dependencies can be realized through
WSDL (Web Services Description Language). The
service binding dependencies can be realized
through SOAP (Simple Object Access Protocol) or
REST (Representational State Transfer) invocations.

A Meta-architecture for Service-oriented Systems and Applications

23

Figure 2: The main modules of the STCBMER meta-
architecture.

Figure 3 shows the layered model of the
STCBMER meta-architecture. Layers are
represented as the UML packages. In the discussion
that follows we identify possible technologies for the
packages and sub-packages (based on the ones that
we have used in a specific instantiation of the meta-
architecture in a large project that has served as a
validation platform for our architectural vision).

The arrows between the STCBMER packages
and sub-packages signify message dependencies.
Figure 3 shows also the connectivity from the Smart
Client layer to a Web Browser as a typical user
interface and the connectivity from Resource to
Utility Data Sources.

The most independent and therefore most stable
layer is Resource. The Resource is a layer
responsible for communication with Utility Data
Sources (relational databases, NoSQL databases,
LDAP directories, etc.). It contains tools to
communicate with the database, manage database
sessions, construct database queries, etc. Being the
most stable layer, it allows easy switching between
data sources without making changes in higher
layers. The Resource connects to a data source,
constructs queries and allows building Entity objects
(by Mediator) based on various data sources. The
SQL-Alchemy framework is a possible technology
for the Resource layer.

The Entity layer contains two sub-layers: Entity
Object and Entity Object Adapter. The Entity Object
package holds business entities, which are mapped
(loaded) from data sources. They can be mapped
from one or more database tables or views using
well known mapping patterns.

ORM (Object-Relational Mapping) frameworks,
such as SQL-Alchemy, provide two ways of
defining concrete mappers: mapping can be defined
as an external class or it can be defined directly in an
entity object class. In theory, better and cleaner way
is to define the mapper as the external mapping
class. In practice, mapping directly in the entity
object class may be preferred because in the external

mapping all database relationships are added
dynamically to the entity object class and are not
directly visible in the code as accessible attributes
(when for example SQL-Alchemy is used).

Figure 3: The STCBMER meta-architecture.

The Entity Object Adapter package is a set of
classes, which represent entity objects which are
serialized and ready to send via a web service. Also
every entity object adapter class decides which
attributes of the original entity object should be
visible to external applications (web services
consumers). JSON-based (JavaScript Object
Notation) representation might be a good choice,

Fourth International Symposium on Business Modeling and Software Design

24

especially if the web service is built with a REST
Web Service. JSON is a native JavaScript type, so it
suits well web programming, and it is a reasonable
alternative to the XML (eXtensible Markup
Language).

The Mediator layer is responsible for managing
business transactions and business rules as well as
loading and unloading business objects (entity
objects). This layer manipulates entity objects and
defines a kind of Facade pattern, which offers access
to them: getting, saving, creating, deleting, editing
and caching.

As a technology-specific example, the Mediator
could use the SQL-Alchemy or other ORM
framework to communicate with the Resource layer
(which also could be based on the SQL-Alchemy) to
load/unload entity objects. Entity objects
manipulation (the Mediator) could be available as a
set of simple Python functions as well as a set of
web services defined with the Pyramid web
framework (as in our platform of choice) and
accessible via the REST interface. Those functions
should be defined in the Business View sub-package
and are called “business views”.

To construct a web service (view) from a Python
function, a programmer can use a special decorator
(Decorator pattern) provided by the Pyramid
framework. Since all web methods (views) are
available via the REST (Representational State
Transfer) interface, every web service should be
accessible with a given URI (Uniform Resource
Identifier). Routing from a given URI to a specific
web service is done by the Pyramid itself. This
functionality in the STCBMER meta-architecture is
realized by the Business Web Service Definition
package (and analogously by the Application Web
Service Definition package in the Application
Layer).

In the SOAP-based web service the Business
Web Service Definition package should also build a
WSDL document describing the web API
(Application Programming Interface) of the
Business Logic. If the API is built as a REST
interface, this package should also define the
mappers (routes) from a specific URI to a given
view (web service). In the Pyramid web framework
all the routes are defined by programmers using
regex (regular expression) patterns. To serialize and
send business objects via the REST interface, the
Mediator uses the Entity Serializer. Every serialized
entity object is a JSON object, with structure defined
in the Entity Object Adapter package.

The Controller layer defines the application logic
(different from the Mediator's business logic). In our

technology-specific scenario, the application logic is
captured in a set of functions (Application View
sub-package) accessed as pure Python functions or
web services. Each function (web service) is called a
view (just like in the Mediator layer). The Controller
uses the Mediator to get entity object adapters to
create and operate on Bean objects. Mapping
between the Entity Object Adapter and the Bean
Object classes is done by the Application View
package. Because the Mediator is accessed via the
REST interface, there is a need to cover the REST
communication with a Facade component
responsible for a networking communication.

The Controller is equipped with the Application
Web Service Connector sub-package used by
application views to realize the Mediator
communication and orchestration. All web services
(views) are available through the REST interface.
This is why the Controller contains the Application
Web Service Definition sub-package, which can be
built with the Pyramid framework, and works in the
same way as an analogue package in the Mediator
layer.

Controller's views return different types of data.
Sometimes they pass prepared data to the Template
package (bean objects) to get from it an HTML
document. Sometimes views provide only pure bean
objects in the serialized (JSON) notation (bean
object adapters – analogously to entity object
adapters). This kind of data can be used by different
web services, for example JavaScript Controllers or
other applications.

In Figure 3 we present only one application
consuming the Business Layer (plus the Smart
Client application), but in the STCBMER model the
Business Layer can serve the business services (as
web services) to more than one application written
in various technologies.

The Bean layer is just a set of classes that define
application objects. Objects of those classes can be
used by the Template layer to generate the web
front-end (HTML, CSS, eventually JavaScript). But
in some cases Bean objects are just returned as a
result of invoking an application view (a web
service). In this case they are mapped by the Bean
Serializer to the bean object adapters. Bean objects
are defined dynamically by Controller views and can
be stored in JSON notation, which is close to a
native type of Dictionary in Python and it is a native
type for the JavaScript language. The JSON notation
is nowadays widely used in web systems because the
text representation of JSON objects (which in the
end is sent via HTTP) is quite lightweight and easy
to parse in various technologies.

A Meta-architecture for Service-oriented Systems and Applications

25

The Template layer is responsible for generating
a web front-end using Bean objects (prepared by the
Controller module in views). While views
(Controller) construct data to be displayed, the
Template is responsible for how data will be
displayed. In our technology-specific solution, the
Template layer uses the Mako template library
written in Python and is responsible for generating
HTML documents (sometimes with some additional
CSS and JavaScript, if the documents have to be
prepared dynamically). In general the Template
layer is used also to generate different types of
documents which might be needed by various
remote applications/systems.

The Smart Client layer consists of the JavaScript
Controller, JavaScript Template, JavaScript Bean
and JavaScript Web Service Connector. In our e-
marketplace project (not described here, as
mentioned in passing), all modules except the
JavaScript Web Service Connector are provided by
the Angular.js framework, which is based on the M-
V-VM (Model-View-ViewModel) pattern. This
pattern is used by a large number of web
frameworks, also by JavaScript frameworks,
working usually in a homogeneous memory
environment (all objects can access each other).

The ViewModel listens to the Model object
(usually as a Subscriber), and after triggering an
event, does some application logic (for example
changing the state of other Model objects). In the
end, the ViewModel can publish its own event
object, so that the View (which is usually a
Subscriber) could re-render the user interface based
on ViewModel attributes (which the ViewModel
defines for each Model – similar to the Adapter
pattern). Of course, the Angular.js framework is just
our platform of choice for the Smart Client layer in
our e-marketplace project and it could be realised
with different technologies based on various patterns
(M-V-VM is just an example).

The STCBMER meta-architecture is an
extension of the PCBMER meta-architecture to cater
for service-oriented systems and applications. Both
meta-architectures share the same complexity-
minimizing architectural principles. The four
principles discussed earlier (namely CEP, DDP,
UNP, and NCP) are all honoured by the STCBMER
meta-architecture.

4 RELATED WORK

The word "architecture" is an overloaded term in
computing. It is used to denote physical architectural

design as well as logical architectural design. In its
physical meaning, it refers to the allocation of
software components, and communication patterns
between them, to computing nodes forming
architectural tiers. In its logical meaning (as
addressed in this paper), it refers to the allocation of
software components, and communication patterns
between them, to computing packages forming
architectural layers. In between these physical and
logical meanings, there are various mixed uses of the
word "architecture", including SOA, ADL
(Architecture Description Language), Enterprise
Architecture, etc.

Although the term "architecture" is overloaded
and even overused in the literature, it comes as a
surprise that very little research has been reported on
layered architectural design for the development of
software systems and applications. While complete
meta-architectural proposals are difficult to find, the
literature is full of architectural guidelines and
patterns of which the Core J2EE Patterns (Alur et
al., 2003) and the PEAA (Patterns of Enterprise
Application Architecture) (Fowler, 2003) have made
most impact on our work.

The philosophical underpinning of structuring
our models of meta-architectures into hierarchical
layers comes from the holonic approach to science
as the most promising way to take control over
complexity of artificial systems (Koestler, 1967;
Koestler, 1980; Capra, 1982; Agazzi, 2002). Apart
from dismissing network structures as untenable for
construction of complex adaptive systems, the
holonic approach explains so called SOHO (Self-
regulating Open Hierarchic Order) properties in
biological systems. These properties provide a basis
for better understanding of human-made systems
and how adaptive complex systems should be
modelled.

Software complexity underpins all efforts to
achieve software quality. Software quality models
and standards, such as SQuaRE (ISO, 2011), tend to
concentrate on software product quality, but
recognize that it is not possible to produce a quality
product without having a quality process that defines
lifecycle activities. It is in the very nature of
software engineering that a major activity within a
software quality process is change management.

There is a growing body of research on service
change management (e.g. Wang and Wang, 2013),
but we do not know of published works that would
link change management in service-oriented systems
to architectural design as the crux of complexity
management and software adaptability.

Fourth International Symposium on Business Modeling and Software Design

26

Similarly with regard to software metrics - a
huge number of generic software metrics have been
proposed (e.g. Fenton and Pfleeger, 1997). There
exist also proposals of metrics targeting service-
oriented systems (e.g. Perepletchikov and Ryan,
2011). However, the metrics are not sufficiently
linked to the quality assurance processes that would
be enforcing architectural design in the software. In
other words, the metrics are reactive rather than
proactive.

The same observation applies to the DSM
method as a visualization of software complexity as
well as a vehicle for calculating complexity metrics
(Eppinger and Browning, 2012; Sangal et al., 2005).
The expressive power of DSM has been mostly used
for discovering complexity problems in the software,
and for fixing problems like cyclic dependencies,
but there is a lack of tangible results reporting
round-trip engineering use of DSM to control
software complexity.

5 CONCLUSION

The introduction and description of the STCBMER
meta-architecture is a contribution of this paper.
When we started working on a meta-architecture
proposal for service-oriented systems and
applications, we expected a notable departure from
our PCBMER meta-architecture developed for
conventional enterprise systems. It has turned out
that STCBMER and PCBMER are similar.

The STCBMER introduces one new layer built
with JavaScript and few new sub-packages. A web
browser is now an explicit part of the new model.

The Entity and the Bean layers are now defined
with more details. Each consists of two sub-
packages: one containing the real objects (the Entity
Object and the Bean Object) and the second
representing objects ready to send via a web service
interface (the Entity Object Adapter and the
Application Object Adapter).

To map business/application objects to proper
adapters, special packages are introduced: the Entity
Serializer and the Bean Serializer. Since the
communication between the Smart Client Logic, the
Application Logic and the Business Logic is
organized with a web service technology, special
web service packages are introduced. The first type
of packages needed to organize a web service
communication, are packages which contain the API
definition: the Business Web Service Definition and
the Application Web Service Definition. Those
packages define how the API of each layer looks

like. The second type of packages are web service
connectors: the JavaScript Web Service Connector
and the Application Web Service Connector.

Some differences between STCBMER and the
PCBMER can be noticed in dependency
relationships. New dependencies exist to reflect the
fact that the new meta-architecture works in a web
service environment. For example in the PCBMER
the direct dependency between Controller and the
Entity (Controller’s objects construct Bean objects
from the Entity objects) is in the STCBMER defined
as a dependency between the Controller package and
the Entity Object Adapter package. But since the
Entity Object Adapter is a sub-package of the Entity
package, dependency between the Controller and the
Entity layers still exists.

Other differences can also be noticed – not in the
architecture definition but in default technical
environment. The PCBMER has not been defined to
work in a web environment, or in a service-oriented
model. The STCBMER is an elaborated version of
PCBMER designed to be able to work in those
environments.

6 FUTURE WORK

The STCBMER meta-architecture proposed in this
paper has been validated in the field on a large
project for the e-marketplace domain. However, the
usability of the meta-architecture is only a partial
proof of its value. In the follow-up research we need
to develop concrete metrics that can be used to
measure complexity of comparable versions of
software designs and systems built according to the
STCBMER framework.

The metrics will measure dependency
relationships in software. To this aim, we first need
to classify all kinds of dependencies in service-
oriented systems and applications that have a clear
impact on software complexity. At the beginning we
will concentrate on coarse-grained dependencies:
message dependencies (addressed in this paper, but
not in the context of metrics), event dependencies
and interface dependencies. For the service-oriented
systems and applications, a special attention will
need to be placed on the interface dependencies as
they constitute the essence of web services. As an
important aspect of our future research, we will need
to discuss the strengths/weights of various kinds of
dependencies on the complexity and adaptability of
software.

We stress that the complexity metrics are not
absolute measures – their value is only in

A Meta-architecture for Service-oriented Systems and Applications

27

comparison to other (previous) versions of
system/application architectural designs and in
successive versions of software products. In
Maciaszek (2008b) we discussed the ways of using
DSM (Dependency Structure Matrix) for the
analysis and comparison of system/software
complexity. Today many tools exist that support the
DSM method and that additionally integrate with
popular IDE-s, such as Eclipse, Visual Studio or
IntelliJ.

The tool support is important here as the
complexity management has both forward and
reverse-engineering dimension. The software needs
to be forward-engineered according to its
architectural design, but we also need to validate the
code conformance with the architectural principles.

Contemporary tools offer visualization of
dependencies in the code-base not just at particular
levels, such as method-to-method, class-to-class,
directory-to-directory, but also across levels, such as
function-to-type, namespace-to-class, jar-to-method.
One of such tools is Structure101 (Structure, 2014).

Structure101 and most other tools are
predominantly reverse engineering tools, more
reactive than proactive. Structure101 provides,
however, a specialized module, called Architecture
Development Environment (ADE), to define
architectural rules and guide conformance inside an
IDE. The “proactivity” remains at the architecture
(instantiation) level and meta-architecture is offered
by the tool itself, but we plan to use ADE to define
the STCBMER principles for various industrial
studies and software development projects.

REFERENCES

Agazzi, E., 2002. What is Complexity? In Agazzi, E.,
Montecucco, L. (Eds) Complexity and Emergence.
Proceedings of the Annual Meeting of the
International Academy of the Philosophy of Science,
pp. 3-11, World Scientific.

Alur, D., Crupi, J., Malks, D., 2003. Core J2EE Patterns:
Best Practices and Design Strategies, 2nd ed.,
Prentice Hall.

Capra, F. (1982): The Turning Point. Science, Society, and
the Rising Culture. Flamingo.

Cusumano, M.A., 2008. The Changing Software Business:
Moving from Products to Services, IEEE Computer,
January, pp.20-27.

Eppinger, S.D., Browning T.R., 2012. Design Structure
Matrix Methods and Applications, The MIT Press.

Fenton, N.E., Pfleeger, S.L., 1997. Software Metrics. A
Rigorous and Practical Approach, 2nd ed., PWS
Publishing Company.

Fowler, M., 2003. Patterns of Enterprise Application

Architecture, Addison-Wesley.
Glass, R.L., 2005. The Link Between Software Quality

and Software Maintenance. IT Metrics and
Productivity Journal, November, p.29.

ISO, 2011. International Standard ISO/IEC 2510: Systems
and Software Engineering - Systems and Software
Quality Requirements and Evaluation (SQuaRE) -
System and Software Quality Models, ISO/IEC.

Koestler, A., 1980. Bricks to Babel, Random House.
Koestler, A., 1967. The Ghost in the Machine, Penguin

Group, London.
Maciaszek, L.A., 2008a. Adaptive Integration of

Enterprise and B2B Applications. In Filipe, J.,
Shishkov, B., Helfert, M. (Eds), ICSOFT 2006, CCIS
10 Springer-Verlag.

Maciaszek, L.A., 2007. An Investigation of Software
Holons - The 'adHOCS' Approach. In Argumenta
Oeconomica Vol.19, No.1-2, pp.1-40.

Maciaszek, L.A., 2008b. Analiza struktur zależności w
zarządzaniu intencją architektoniczną systemu
(Dependency Structure Analysis for Managing
Architectural Intent), In Huzar, Z., Mazur, Z. (Eds),
Inżynieria Oprogramowania – Od Teorii do Praktyki,
pp.13-26, Wydawnictwa Komunikacji i Łączności,
Warszawa.

Maciaszek, L.A., 2009. Architecture-Centric Software
Quality Management, In Cordeiro, J., Hammoudi, S.,
Filipe, J. (Eds), Web Information Systems and
Technologies, WEBIST 2008, LNBIP 18, Springer.

Maciaszek, L.A., 2006. From Hubs Via Holons to an
Adaptive Meta-Architecture – the “AD-HOC”
Approach. In Sacha, K. (Ed.), IFIP International
Federation for Information Processing, Vol. 227,
Software Engineering Techniques: Design for Quality,
pp.1-13, Springer.

Maciaszek, L.A., Liong, B.L., 2005. Practical Software
Engineering. A Case-Study Approach. Addison-
Wesley.

OMG, 2009. Unified Modeling Language™ (OMG UML),
Superstructure, Version 2.2.

Perepletchikov, M., Ryan, C., 2011: A Controlled
Experiment for Evaluating the Impact of Coupling on
the Maintainability of Service-Oriented Software,
IEEE Trans. On Soft. Eng., Vol. 37, No. 4, pp.449-465

Sangal, N. Jordan, E. Sinha, V., Jackson, D., 2005. Using
Dependency Models to Manage Complex Software
Architecture, In Procs. OOPSLA’05, pp.167-176,
ACM.

Structure, 2014. Structure101, http://structure101.com/,
viewed February 2014.

Wang Yi., Wang Ying (2013). A Survey of Change
Management in Service-Based Environments, In
SOCA, pp.259-273, Springer

Wing, J.M., 2008. Five Deep Questions in Computing.
Comm. of the ACM, Vol. 51, No.1, pp.58-60.

Fourth International Symposium on Business Modeling and Software Design

28

