
Comparison of Data Management Strategies for Multi-Tenant Database
Cluster

Evgeny Boytsov and Valery Sokolov
Department of Computer Science,Yaroslavl State University, Yaroslavl, Russia

{boytsovea, valery-sokolov}@yandex.ru

Keywords: Databases, SaaS, Multi-tenancy, Data Management Strategies.

Abstract: This paper discusses the problem of tenant data distribution in a multi-tenant database cluster - the concept
of reliable and easy to use data storage for high load cloud applications with thousands of customers, based
on ordinary relational database servers. The formal statements of the problem for cases with and without data
replication are given and a metric for evaluating the quality of data distribution is proposed. The proposed
metric is compared with ad-hoc data management strategies using an experiment at the imitation model of the
multi-tenant database cluster and the result of the experiment is provided and summarized.

1 INTRODUCTION

One of recent main trends in the software develop-
ment industry is the propagation of cloud technolo-
gies and corresponding change of the main architec-
tural paradigm in an enterprise segment of the market.
This tendency leads to the increase of the software
complexity, since a typical cloud application consists
of tens and even hundreds distributed web-services
interacting with each other. One of the most signif-
icant aspects of software design is a data-storage sub-
system. This subsystem should provide high perfor-
mance, fault-tolerance and reliable tenants data isola-
tion from each other. Modern software development
techniques tend to solve these tasks by designing an
additional layer of application logic at the level of
application servers. Such approaches are discussed
in many specialized papers for application developers
and other IT-specialists (Chong and G., 2006; Candan
et al., 2009). This paper is devoted to an alternative
concept of a multi-tenant database cluster which pro-
poses the solution of the above problems at the level
of a data storage subsystem.

One of the main challenges when implementing
such a system is to choose the most efficient data man-
agement strategy which will provide the best distribu-
tion of the query flow among database servers within
the cluster. In this context, the word ”best” implies a
number of questions that can be answered in differ-
ent ways. An optimization can be done by various
criteria and we need to use some consumer character-
istics to evaluate the observed quality of service. The

average cluster response time, the total amount of re-
quired resources within the given service level agree-
ments (SLA’s) or something else can be used as such
characteristics. Often These characteristics are often
difficult to evaluate and sometimes they conflict with
each other. Besides, many of the above characteristics
can be evaluated only when the distribution of clients
has been already done. So far, an additional metric is
required which has a direct correlation with the above
consumer characteristics and can be used to find the
optimal tenant distribution. This paper discusses one
approach to choosing such a metric and compares its
results with ad-hoc data management strategies.

2 BACKGROUND

The problem of providing a reliable and scalable data
storage for cloud applications was discussed in sev-
eral works. Usually, NO-SQL databases are used as
cluster nodes. In particular, the problem of tenant mi-
gration in a multi-tenant environment was studied and
the protocol to implement such a migration was pro-
posed in (Elmore et al., 2011). Other researches were
devoted to minimizing an owning cluster consisting of
NO-SQL in-memory databases in IaaS environment
(Schaffner et al., 2013; Yang et al., 2008). The algo-
rithm of tenant distribution for minimizing expenses
with respect to SLA’s was proposed in (Lang et al.,
2012).

A multi-tenant database cluster (Boytsov, 2013)

217
Boytsov E. and Sokolov V.
Comparison of Data Management Strategies for Multi-Tenant Database Cluster.
DOI: 10.5220/0005426302170222
In Proceedings of the Fourth International Symposium on Business Modeling and Software Design (BMSD 2014), pages 217-222
ISBN: 978-989-758-032-1
Copyright c© 2014 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



discussed in this paper is a concept of a data storage
subsystem for cloud applications. It is an additional
layer of abstraction over ordinary relational database
servers with a single entry point which is used to pro-
vide the isolation of cloud application customers data,
load-balancing, routing the queries among servers and
fault-tolerance. The main idea is to provide an ap-
plication interface which has most in common with
the interfaces of the traditional RDBMS (relational
database management system).

A multi-tenant cluster consists of a set of ordinary
database servers and specific control and query rout-
ing servers. The query routing server is a new element
in a chain of interaction between application servers
and database servers. In fact, this component of the
system is just a kind of a proxy server which hides
the details of the cluster structure, and whose main
purpose is to find an executor for a query and route
the query to him as fast as possible.

The data distribution and load balancing server is
the most important and complicated component of the
system. Its main functions are:
• initial distribution of tenants data among servers

of a cluster during the system deployment or ad-
dition of new servers or tenants;

• management of tenant data distribution based on
the collected statistics including the creation of
additional data copies and moving data to another
server;

• diagnosis of the system for the need of adding new
computing nodes and storage devices;

• managing the replication.
This component of the system has the highest value,
since the performance of an application depends on
the success of its work.

The flow of incoming queries of the multi-
tenant database cluster can be divided into N non-
intersecting and independent sub-flows for each ten-
ant λi, i ∈ 1, ..,N:

Λ =
N

∑
i=1

λi (1)

The study of statistics on existing multi-tenant cloud
applications shows that there is a significant depen-
dency between the size of data, that the client stores
in the cloud, and intensity of client query flow. The
analysis of the statistics also shows that the above
tendency is not comprehensive and there are clients
within the cluster having the intensity of the query
flow that does not match the size of the stored data.
The client query flow can be divided into two sub-
flows: read-only queries and data-modifying queries.

λi = λiread +λiwrite (2)

Another obvious characteristics of the query flow
is an average duration µ of a query at the server. This
value has a significant impact on the quality of load-
balancing, since it affects the formation of the clus-
ter total load. As we know from the queueing the-
ory, if Λµ > B, where B is a bandwidth of the cluster,
the cluster will fail to serve the incoming flow of re-
quests. It is also known that intensities of incoming
query flows change during the lifetime of the applica-
tion, that is λi = λ(t), i ∈ 1, ..,N.

3 THE LOAD-BALANCING
PROBLEM WITH CONSTANT
FLOW OF QUERIES

In the work, we discuss the load-balancing of the clus-
ter in a case when flows of incoming queries have a
constant intensity, i.e. λi = const, i ∈ 1, ..,N. The so-
lution of this problem can be considered as a solution
of the general problem at the point.

3.1 Clusters without Replication

We start our discussion with clusters without data
replication (that is, such clusters do not provide fault-
tolerance). For simplicity, we assume that µ = 1 (or,
equivalently, the bandwidth of each server in the clus-
ter is divided by µ). Let C be the multi-tenant database
cluster that consists of database servers (S1, ..,SM),
for each of which we know the following values:

1. λ̄i, i∈ 1, ..,M - the bandwidth of the i−th database
server;

2. v̄i, i ∈ 1, ..,M - the capacity of the i− th database
server.

There are also N clients, comprising the set T , for
each of which we also know two values:

1. λ j, j∈ 1, ..,N - the intensity of the j-th client query
flow;

2. v j, j ∈ 1, ..,N - the data size of the j-th client.

We call the M×N matrix D a distribution matrix (of
clients at the cluster), if D satisfies the following con-
straints and conditions:

1. di, j = 1, when data of the j-th client are placed at
the i-th server, and xi, j = 0 otherwise;

2. ∀ j ∈ 1, ..,N ∃!i ∈ 1, ..,M : di, j = 1 - the data of
each client are placed at a single server;

3. ∀i ∈ 1, ..,M ∑N
j=1 di, jv j ≤ v̄i - the total data size

at each server is less than or equal to the server
capacity;

Fourth International Symposium on Business Modeling and Software Design

218



4. ∀i ∈ 1, ..,M ∑N
j=1 di, jλ j ≤ λ̄i - total query flow in-

tensity at each server is less than or equal to the
server bandwidth.

We call the matrix D̃ the optimal matrix of distribu-
tion of clients set T at the cluster C, if for a function
f (C,T,D) the following condition is met:

f (C,T, D̃)=min{ f (C,T,D) : D−distribution matrix}
(3)

The function f in this definition is the measure
of load-balancing efficiency among the servers of
the cluster. The problem of effective cluster load-
balancing in this formulation reduces to finding the
optimal distribution matrix for a given cluster C, a set
of clients T and a measure of efficiency f .

3.2 Clusters with Replication

The usage of a master-slave replication allows to pro-
vide fault-tolerance and gives a chance to achieve a
better query flow distribution. When discussing clus-
ters with replication, we deal with multiple data in-
stances of the same tenant. In this case, we have to
take into account division of the tenants query flow
into read-only and data-modifying parts. Only the
server which hosts tenants master data-instance can
serve data-modifying queries.

To precise this situation, we need to add several
new features into our model. First of all, we need to
introduce the notion of a replication matrix. We call
a M×N matrix R a matrix of replication (of tenants
data instances at the cluster C) for the given matrix of
distribution D, if the following conditions are met:

1. Ri, j = 1, if a replica of data of the j-th tenant is
stored at the i-th server, and Ri, j = 0, otherwise

2. ∀i∈ 1, ..,M and j ∈ 1, ..,N : Di, j = 1 =⇒ Ri, j = 0
- if i-th server has a master copy of the tenant data,
it can not host a tenant data replica.

Obviously, clusters with replication have the same
service level requirements as its counterparts with-
out replication. The disk capacity restriction is trans-
formed into:

∀i ∈ 1, ..,M :
N

∑
j=1

di, jv j +
N

∑
j=1

ri, jv j ≤ v̄i (4)

It is much difficult to formulate the second restriction
on incoming flow intensities, since we don’t know ex-
actly the policy of query flow distribution among ten-
ant data instances. All we can say is that all data-
modifying queries are served at the master server.
Read-only queries can be served either by the mas-
ter server, or by slave servers, and the cluster control
system is free to choose any conformant strategy. It

can forward all read-only queries to the master server,
using replicas just to provide fault-tolerance, it can
route all such queries to replicas, somehow dividing
the flow among them, or it can use an intermediate
approach. These considerations lead us to the need to
define an additional function:

shr : (C,T,D,R)→ S, (5)
where S is a M×N matrix and Si, j ∈ [0,1]. This func-
tion takes the set of servers C, the set of clients T ,
and the distribution of tenants data instances among
servers within the cluster, which is described by ma-
trices D and R and maps it to the matrix of the read-
load share S. The read-load share matrix S has the
following requirements:
1. ∀ j ∈ 1, ..,N ∑M

i=1 si, j = 1 - the read-only flow
is completely distributed among tenant data in-
stances

2. ∀i ∈ 1, ..,M, j ∈ 1, ..,N : Di, j = 0∧Ri, j = 0 =⇒
Si, j = 0 - if the i-th server doesn’t host data in-
stance of the j-th tenant its load-share is equal to
0.

Having the matrix S introduced, we can formulate the
flow-intensity constraint as the following:

N

∑
j=1

(di, jλ jwrite +di, jλ jread si, j + ri, jλ jread si, j)≤ λ̄i,

∀i ∈ 1, ..,M

(6)

If we introduce the shorthand load(i, j) as
load(i, j) = di, jλ jwrite + di, jλ jread si, j + ri, jλ jread si, j
then we can rewrite (6) as

N

∑
j=1

load(i, j)≤ λ̄i,∀i ∈ 1, ..,M (7)

We call the combination of a distribution matrix D
and a replication matrix R sustainable to the fault of
k servers, if ∀i1, .., ik, il ∈ 1, ..,M the fault of servers
i1, .., ik and redistribution of the query flow among
servers left will produce tenant distribution (D̂, R̂),
where D̂ still conforms to the definition of the dis-
tribution matrix, and the combination (C,T, D̂, R̂) still
conforms to (7). In this paper, we omit the discussion
on the term ”redistribution of the query flow”, since in
general case it implies the definition of another func-
tion, which is responsible for election of a new master
data instance, when the existing master data instance
is placed at a failed server.

So we can finally formulate the load-balancing
problem for clusters with replication and the require-
ment of k-faults sustainability as finding a combina-
tion of matrices (D̃, R̃), which, together with the given
structure of the cluster C, the set of tenants T and
the read-load share function shr satisfies the follow-
ing conditions:

Comparison of Data Management Strategies for Multi-Tenant Database Cluster

219



1. (D̃, R̃) corresponds to k-server faults sustainable
distribution of tenants data instances

2. f (C,T,shr, D̃, R̃) = min{ f (C,T,shr,D,R)} for
some metric f

This problem reduces to the problem of cluster load-
balancing without replication when R = Θ. In this
case, the function shr can be removed from the prob-
lem, since there is no alternative for S = D, which
gives load(i, j) = di, jλ j as in (3).

4 SELECTION OF THE
EFFICIENCY MEASURE

What is the best way to measure the efficiency of
load-balancing among servers? Uniformity of the
load is a good criteria here; therefore, the target func-
tion, which will measure this characteristics should be
searched. The desired situation can be formulated in
the following way: the share of a total query flow at
each server should be as close as possible to the share
of this server in the total computational power of the
entire cluster. So, the function f can be written as
follows:

f =
M

∑
i=1

(
∑N

j=1 load(i, j)

∑N
j=1 λ j

− λ̄i

∑M
i=1 λ̄i

)2

(8)

With the measure of efficiency (8), the load-
balancing problem becomes a special case of the
generalized quadratic assignment problem (GQAP),
which in turn is a generalization of the quadratic as-
signment problem (QAP), initially stated in 1957 by
Koopmans and Beckmann(Beckman and Koopmans,
1957) to model the problem of allocating a set of n
facilities to a set of n locations while minimizing the
quadratic objective arising from the distance between
the locations in combination with the flow between
the facilities. The GQAP is a generalized problem of
the QAP in which there is no restriction that one loca-
tion can accommodate only a single equipment. Lee
and Ma(Lee and Ma, 2004) proposed the first formu-
lation of the GQAP. Their study involves a facility lo-
cation problem in manufacturing where facilities must
be located among fixed locations, with a space con-
straint at each possible location. The objective is to
minimize the total installation and interaction trans-
portation cost.

The QAP is well known to be NP-hard(Sahni and
Gonzalez, 1976) and, in practice, problems of moder-
ate sizes are still considered very hard. For surveys
on QAP, see the articles Burkard(Burkard, 1990),
and Rendl, Pardalos, Wolkowicz (Rendl et al., 1994).
An annotated bibliography is given by Burkard and

Cela(Burkard and Cela, 1997). The QAP is a classic
problem that still defies all approaches for its solution
and where problems of dimension n = 16 can be con-
sidered large scale. Since GQAP is a generalization
of QAP, it is also NP-hard and even more difficult to
solve.

The discussed multi-tenant database cluster load-
balancing problem deals with tens and hundreds of
database servers and tens and hundreds of thousands
of tenants. Due to NP-hardness of the GQAP, it is
obvious that such a problem can not be solved ex-
actly or approximately with high degree of exactness
by existing algorithm. So, we can conclude that to
solve the above load-balancing problem, we need to
suggest some heuristics that can provide acceptable
performance and measure its efficiency and positive
effect in comparison with other load-balancing strate-
gies.

5 MODELLING OF
DATA-MANAGEMENT
STRATEGIES

The above measure of efficiency of cluster load-
balancing is a heuristics which can be used to search
for an efficient tenant distribution. But does it corre-
late with consumer characteristics of the cluster and
lead to the better results than ad-hoc solutions, that
can be written by any programmer? To answer these
questions and to test the target function (8), several
experiments were conducted at the simulation model
of the cluster. The structure of the cluster with M
database servers of different bandwidth (M is a pa-
rameter of the experiment) was generated using the
modelling environment. At the initial moment, the
cluster had no clients. Each experiment within the
series consisted of 30 iterations with a selected com-
bination of simulation parameters.

5.1 The Description of the Experiment

The experiment was conducted for clusters with and
without replication. The model of the query flow was
configured in a way which provided progressive reg-
istration of new clients at the cluster and therefore the
corresponding increase of query flow intensity. Since
the computational power of the cluster is limited and
the total intensity of incoming query flow constantly
increases, it is obvious that the cluster will stop serv-
ing queries at some point of time. It is also obvi-
ous that if one load-balancing strategy allows to place
more clients than another one within similar exter-

Fourth International Symposium on Business Modeling and Software Design

220



nal conditions with the similar requirements to cluster
fault-tolerance, this load-balancing strategy is more
effective and should be preferred in real systems.

5.2 Clusters without Replication

In this series of experiments the ratio between read-
only and data-modifying queries is not important,
since data replication is not used. Three load-
balancing algorithms were used during the experi-
ment.

The first algorithm tries to balance the load of the
cluster by balancing the amount of clients at each
server according to its bandwidth ratio. When de-
ciding on where to host a new client, this algorithm
calculates the ratio of the number of clients that are
hosted on the server to the bandwidth of the server
for all servers in a cluster and selects the one with
the minimal ration (if there are several such servers,
it randomly selects one of them). The algorithm takes
into account only those servers that have enough free
space to host a new client. This algorithm will be re-
ferred to as Algorithm wr1.

The second algorithm tries to balance the load of
the cluster by balancing the size of data that are stored
at each server according to its bandwidth ratio. When
deciding on where to host a new client, this algorithm
calculates the ratio of the total data size of clients that
are hosted on the server to the bandwidth of the server
for all servers in a cluster and selects the one with
the minimal ration (if there are several such servers,
it randomly selects one of them). Like the previous
algorithm, this algorithm also takes into account only
those servers that have enough free space to host a
new client. This algorithm will be referred to as Al-
gorithm wr2.

The third algorithm is based on the minimization
of the target function (8). For the sake of simplic-
ity, this algorithm was connected to the query gen-
erator information subsystem of the model to get ex-
act values of incoming query flow intensities for each
client. In reality, such an approach can not be im-
plemented and values of query flow intensities should
be obtained by some statistical procedures, but this
approach is applicable for experimental purposes and
testing the theoretical model. The main principle of
the algorithm is simple: it alternately tries to host a
new client at each server and computes the resulting
value of the target function (8). Finally, the client is
hosted at the server which gave the minimal value.
This algorithm will be referred to as Algorithm wr3.

All three algorithms were tested in the same en-
vironment, that is, with the same mean of query cost
and tenants activity coefficients distribution. The ex-

periment results are given in Table 1. The first two
columns show the parameters of the model and the
algorithm that were used in the particular experiment.
The third column shows the average amount of clients
which was hosted at the cluster when the model met
the experiment stop condition (one of the servers had
the queue with more than 100 pending requests). The
algorithm wr3 has shown better results than others for
all three models.

Table 1: The results of the first experiment series for clus-
ters without replication.

Algorithm N. of servers Avg. N. of tenants
wr1 7 385
wr2 7 278
wr3 7 387
wr1 9 520
wr2 9 373
wr3 9 523
wr1 15 834
wr2 15 578
wr3 15 844

5.3 Clusters with Replication

The same experiment setup was used for the case with
the replication. Since the previous series of experi-
ments showed the same results for clusters of differ-
ent sizes, in this series the size of the cluster was con-
stant and equal to 16. The ratio of query types was the
main parameter of the experiment instead of the clus-
ter size. Three load-balancing algorithms were used
during the experiment. Each algorithm was config-
ured to create two replicas of every data instance.

The first algorithm tries to balance the load of the
cluster by balancing the amount of clients at each
server according to the servers bandwidth ratio. This
algorithm is a generalization of the Algorithm wr1
from the first experiment series. When deciding on
where to host a new client and its replicas, this al-
gorithm calculates the ratio of the number of clients
that are hosted at the server to the bandwidth of the
server for all servers in a cluster, and selects the one
with minimal ration (if there are several such servers,
it randomly selects one of them). The same procedure
is applied for replicas (two in this case). The algo-
rithm takes into account only those servers that have
enough free space to host a new client or its replica.
This algorithm will be referred to as Algorithm r1.

The second algorithm divides the cluster into
groups of n servers, where n=Number of Required
Replicas + 1 (three in this experiment series). The
server with the largest bandwidth within the group is

Comparison of Data Management Strategies for Multi-Tenant Database Cluster

221



selected to be the ”master”, other n− 1 servers be-
come ”replicas”. When deciding on where to host a
new client, this algorithm calculates the ratio of the
usage for each group, and selects the group with min-
imal ration (if there are several such groups, it ran-
domly selects one of them). The algorithm takes into
account only those groups that have enough free space
to host a new client or its replica at every server within
the group. This algorithm will be referred to as Algo-
rithm r2.

The third algorithm is a generalization of the Al-
gorithm wr3. For every incoming request, it finds the
best placement of master data instance and its repli-
cas in terms of minimization of the function (8). The
kind of branch and bounds algorithm is used to find
the best solution for a current tenant. This algorithm
will be referred to as Algorithm r3.

The experiment results are given in Table 2. The
first two columns show the parameters of the model
(ratio between read-only and data-modifying queries)
and the algorithm was used in the particular experi-
ment. The third column shows the average amount
of clients which was hosted at the cluster when the
model met the experiment stop condition, which was
the same as in the first experiment series. The algo-
rithm r3 has shown better results than others for all
three ratios of query types.

Table 2: The results of the first experiment series for clus-
ters with replication.

Algorithm RO/W Avg. N. of tenants
r1 70/30 724
r1 50/50 723
r1 30/70 666
r2 70/30 682
r2 50/50 610
r2 30/70 448
r3 70/30 564
r3 50/50 530
r3 30/70 494

6 CONCLUSION

The experiment has shown that the load-balancing
strategy based on the analysis of incoming query
flows intensities is more effective than ad-hoc strate-
gies. This fact leads to the conclusion that the above
theoretical concepts are correct and can be applied to
construct more complicated load-balancing strategies
which take into account more factors and can be used
in more complicated environment. Especially inter-
esting questions to study are:

• how to determine the incoming query flow inten-
sity of the client in a real environment;

• what algorithms can be used to find a better solu-
tion for the clients assignment problem;

• are all solutions of the clients assignment prob-
lem equally valuable when intensities of incoming
query flows are not constant;

• what strategy should be used to relocate client
data when the load balancing subsystem decides
to do so.

All these questions are crucial in implementing effi-
cient load-balancing strategy for the cluster.

REFERENCES

Beckman, M. and Koopmans, T. (1957). Assignment prob-
lems and the location of economic activities. Econo-
metrica, 25:53–76.

Boytsov, E. (2013). Designing and development of the imi-
tation model of a multi-tenant database cluster. Mod-
eling and analysis of information systems, 20.

Burkard, R. (1990). Locations with spatial interactions: The
quadratic assignment problem. Discrete location the-
ory, pages 387–437.

Burkard, R. and Cela, E. (1997). Quadratic and three-
dimensional assignment problems. pages 373–392.

Candan, K., Li, W., Phan, T., and Zhou, M. (2009). Fron-
tiers in information and software as services. In Pro-
ceedings of ICDE, pages 1761–1768.

Chong, F. and G., C. (2006). Architecture strategies for
catching the long tail.

Elmore, A., Das, S., Agrawal, D., and El Abbadi, A. (2011).
Zephyr: Live migration in shared nothing databases
for elastic cloud platforms. In SIGMOD Conference.

Lang, W., Shankar, S., Patel, J., and Kalhan, A. (2012). To-
wards multi-tenant performance slos. In ICDE.

Lee, C.-G. and Ma, Z. (2004). The generalized quadratic
assignment problem. Technical report, University of
Toronto, Department of Mechanical and Industrial En-
gineering, Toronto, Canada.

Rendl, F., Pardalos, P., and Wolkowicz, H. (1994). The
quadratic assignment problem: A survey and recent
developments. In Proceedings of the DIMACS Work-
shop on Quadratic Assignment Problems, volume 16,
pages 1–42. American Mathematical Society.

Sahni, S. and Gonzalez, T. (1976). P-complete approxima-
tion problems. Journal of ACM, 23(3):555–565.

Schaffner, J., Januschowski, T., Kercher, M., Kraska, T.,
Plattner, H., Franklin, M., and Jacobs, D. (2013).
Rtp: Robust tenant placement for elastic in-memory
database clusters. In SIGMOD Conference.

Yang, F., Shanmugasundaram, J., and Yerneni, R. (2008).
A scalable data platform for a large number of small
applications. Technical report, Yahoo! Research.

Fourth International Symposium on Business Modeling and Software Design

222


