
Speeding up Online POMDP Planning
Unification of Observation Branches by Belief-state Compression Via

Expected Feature Values

Gavin Rens
Centre for Artificial Intelligence Research, University of KwaZulu-Natal and CSIR Meraka, Pretoria, South Africa

Keywords: Online, POMDP, Planning, Heuristic, Optimization, Belief-state Compression, Expected Feature Values.

Abstract: A novel algorithm to speed up online planning in partially observable Markov decision processes (POMDPs) is
introduced. I propose a method for compressing nodes in belief-decision-trees while planning occurs. Whereas
belief-decision-trees branch on actions and observations, with my method, they branch only on actions. This is
achieved by unifying the branches required due to the nondeterminism of observations. The method is based
on the expected values of domain features. The new algorithm is experimentally compared to three other
online POMDP algorithms, outperforming them on the given test domain.

1 INTRODUCTION

Partially observable Markov decision processes
(POMDPs) (Monahan, 1982; Lovejoy, 1991) can ge-
nerate optimal policies that account for stochastic ac-
tions and partially observable environments. They are
also reward-based, accounting for an agent’s prefer-
ences (to guide its behavior). Unfortunately, optimal
POMDP policies are usually intractable to generate,
and they are even less practical when used in dynamic
environments.

A strategy for policy generation in dynamic en-
vironments that deals with this intractability iscon-
tinuous planningor agent-centered search(Koenig,
2001). Agents employing this strategy compute fu-
ture actions with onlylocal look-aheador forward-
search. Recently, algorithms for online planning have
been developed to deal with intractability of solving
POMDPs (Ross et al., 2008).

Two sources for the intractability of solving
POMDPs’ optimally are usually cited in the litera-
ture (Pineau et al., 2003). First is thecurse of di-
mensionality, which refers to (in the case of a model
with discrete states) a belief space having a dimension
equal to the number of states. For instance, a domain
modeled with 1000 states has a 1000-dimensional be-
lief space! Several researchers have suggested ways
to compress the state space in attempts to deal with
this problem (Poupart and Boutilier, 2003; Roy et al.,
2005; Li et al., 2007). Second is thecurse of his-
tory, which refers to the number of possible belief-

states which must be considered during planning, in-
creases exponentially with the planning horizon. Kur-
niawati et al. (2011) reduce the effective horizon in
robot motion planning by using a particular (offline)
point-based POMDP solver. He et al. (2011) tackle
the horizon problem for online planning for large sys-
tems that need predictions for actions many steps into
the future by usingmacro-actions. According to Rens
and Ferrein (2013), exponential growth of belief-state
size in the number of steps can be considered as
a third source of potential intractability in POMDP
algorithms—thecurse of outcomes. They investigated
several “fast and frugal” methods for reducing the size
of belief-nodes generated during online planning. The
most effective method was what they called themean-
as-thresholdmethod (explained in § 3).

The search space in online POMDP planning can
be thought of graphically as a finite tree (abelief-
decision-trees), where nodes in alternating tiers rep-
resent (i) belief-states branching on the agent’s choice
of actions to perform, respectively, (ii) perceptions
branching on the environment’s choice of which ob-
servation to supply. An agent’s belief-states can con-
tain anything from a few states to thousands of states
or more. Furthermore, given some action choice, ev-
ery possible observation results in a new belief-state.

I introduce a novel approximate algorithm to
speed up online POMDP planning by generating only
a single most expected state for every action con-
sidered, instead of generating a belief-state for every
possible observation for every action considered dur-

241Rens G..
Speeding up Online POMDP Planning - Unification of Observation Branches by Belief-state Compression Via Expected Feature Values.
DOI: 10.5220/0005165802410246
In Proceedings of the International Conference on Agents and Artificial Intelligence (ICAART-2015), pages 241-246
ISBN: 978-989-758-074-1
Copyright c 2015 SCITEPRESS (Science and Technology Publications, Lda.)

ing planning. The method unifies the branches which
are due to the nondeterminism of perceptions, thus
branching only on actions. The unification is based
on the expected values of domain features. The new
algorithm is experimentally compared to three other
online POMDP algorithms, outperforming them on
the given test domain—in some cases, significantly.

The required preliminaries are reviewed in Sec-
tion 2. Section 3 presents the four algorithms which
will be compared with each other, including the new
proposed algorithm. In Section 4, I test the algorithms
on a simple grid-world domain. Some concluding re-
marks are made in the last section.

2 PRELIMINARIES

In a partially observable Markov decision process
(POMDP), the agent can only predict with a likeli-
hood in which state it will end up after performing an
action. And due to imperfect sensors, an agent must
maintain a probability distribution over the set of pos-
sible states.

Formally (Kaelbling et al., 1998), a POMDP is
a tuple〈S,A,T,R,Z,O,b0〉 with a finite set of states
S = {s1, s2, . . . , sn}, a finite set of actionsA =
{a1,a2, . . . ,ak}, the state-transition function, where
T(s,a,s′) is the probability of being ins′ after per-
forming actiona in states, thereward function, where
R(a,s) is the reward gained for executinga while in
states, a finite set of observationsZ= {z1,z2, . . . ,zm};
theobservation function, whereO(s′,a,z) is the prob-
ability of observingz in states′ resulting from per-
forming actiona in some other state; andb0 is the
initial probability distribution over all states inS.

A belief-stateb is a set of pairs〈s, p〉 where each
states in b is associated with a probabilityp. All
probabilities must sum up to one, hence,b forms a
probability distribution over the setSof all states. To
update the agent’s beliefs about the world, a state es-
timation functionSE(z,a,b) = bn is defined as

bn(s
′) =

O(s′,a,z)∑s∈ST(s,a,s′)b(s)
Pr(z|a,b)

, (1)

wherea is an action performed in ‘current’ belief-
stateb, z is the resultant observation andbn(s′) de-
notes the probability of the agent being in states′ in
‘new’ belief-statebn. Note thatPr(z|a,b) is a nor-
malizing constant.

Let theplanning horizon h(also called thelook-
ahead depth) be the number of future steps the
agent plans ahead each time it selects its next action.
V∗(b,h) is theoptimalvalue of future courses of ac-
tions the agent can take with respect to a finite hori-
zonh starting in belief-stateb. This function assumes

that at each step, the action which will maximize the
state’s value will be selected.V∗(b,h) is defined as

max
a∈A

[

ρ(a,b)+ γ ∑
z∈Z

Pr(z|a,b)V∗(SE(z,a,b),h−1)
]

,

where ρ(a,b) is defined as∑s∈SR(a,s)b(s), 0 ≤
γ < 1 is a factor to discount the value of future
rewards andPr(z|a,b) denotes the probability of
reaching belief-statebn = SE(z,a,b). While V∗ de-
notes the optimal state value, functionQ∗ denotes
the optimal action value: Q∗(a,b,h) = ρ(a,b) +
γ∑z∈Z Pr(z|a,b)V∗(SE(z,a,b),h− 1) is the value of
executinga in the current belief-state, plus the total
expected value of belief-states reached thereafter.

Algorithm 1 is the basic online POMDP algorithm
to select the next best action. (at line 10 is a place-
holder for the best action so far returned by the algo-
rithm, but not used there.)

Algorithm 1: Basic.

Input : b: belief-state,h: horizon
Output : an action, the action’sQ value

1 b′: belief-state, initially empty;
2 if h= 0 then
3 return stop, 0

4 if h> 0 then
5 maxVal←−∞;
6 foreach a∈ A do
7 sum← 0;
8 foreach z∈ Z do
9 b′← SE(z,a,b);

10 ,V← Basic(b′,h−1);
11 sum← sum+Pr(z | a,b)V;

12 value← ρ(a,b)+ γ ·sum;
13 if value> maxValthen
14 maxVal← value;
15 bestAct← a;

16 return bestAct,maxVal;

3 ONLINE POMDP
ALGORITHMS

3.1 Mean as Threshold

The basic algorithm is augmented by compressing the
belief-states in a very simple and intuitive way. The
idea (Rens and Ferrein, 2013) is to reduce the size of a
belief-state by retaining only a small number of repre-
sentative states. As the number of states in a belief re-
duces, performing belief-update on the ‘compressed’
belief will be significantly faster.

For each belief-node generated in the belief-
decision-tree, asubsetof states with probabilities

ICAART�2015�-�International�Conference�on�Agents�and�Artificial�Intelligence

242

above a certain threshold are retained. Using the mean
µb of the probabilities of the states inb as a threshold
seems to be a reasonable heuristic for selecting states
with probabilitiesrelativelyhigh compared to all the
states in the node. They define the setmp(b) of most
probablestates of a setb as {〈s, p〉 ∈ b | p ≥ µb}.
The mean-as-threshold (MT) method is then to re-
placeb′ ← SE(z,a,b) at line 9 of Algorithm 1 by
b′ = mt(SE(z,a,b)), where

mt(b)= {〈s, p/α〉 | (s, p)∈mp(b),α= ∑
〈s,p′〉∈mp(b)

p′}.

3.2 Monte Carlo Sampling

Every action leads to a set of observations with a
probability distribution related to the likelihood of the
observation being perceived. Given an action, the
belief-state in which it was performed and a possible
observation, a new belief-state can be generated. In-
stead of expanding the belief-nodes for each observa-
tion associated with each action at each stage during
planning, a relatively small subset of nodes can be ge-
nerated from a relatively small subset of observations
sampled.

In the approach of McAllester and Singh (1999),
the probabilitiesPr(z | a,b) are approximated us-
ing the observed frequencies in the sample: Let
ZS

c(a,b) = {z1,z2, . . . ,zc} bec samples obtained from
Z proportional toPr(· | a,b). Let Nz(ZS

c(a,b)) be
the number of times observationz occurs inZS

c(a,b).

Then Nz(ZS
c (a,b))
c is an estimate ofPr(z | a,b).

Whereas computing

Pr(z | a,b) = ∑
s′∈S

O(s′,a,z)∑
s∈S

T(s,a,s′)b(s)

exactly is inO(|S|2), estimating it by looking at the
frequency ofz’s occurrence in the set of samples is
only in O(log|S|+ log|Z|). McAllester and Singh
(1999) relate sample sizec to the optimality of this
approximation in a theorem. Determining a desirable
value forc theoretically is beyond the scope of this
paper. “[...] a few samples is often sufficient to ob-
tain a good estimate as the observations that have the
most effect onQ∗(b,a) (i.e. those which occur with
high probability) are more likely to be sampled” (Ross
et al., 2008). In the experiments, I found that using
even only one sample produces good returns. Plan-
ning time becomes impractical when using more than
three or four samples.

A disadvantage of this approach is that actions
cannot be pruned (Monte Carlo estimation is not guar-
anteed to correctly propagate the lower and upper
bounds up the tree). Thus, each action executable in a
belief-state must be considered. That means that the

Monte Carlo approach may be difficult to apply in do-
mains where the number of actions|A| is large (Ross
et al., 2008).

The Monte Carlo (MC) sampling approach is thus
to replace lines 7 to 10 of Algorithm 1 by

foreachz∈ ZS | Nz(Z
S
c(a,b))> 0 do

b′← SE(z,a,b)

,V←MC(b′,h−1,c)

sum← sum+
Nz(ZS

c(a,b))
c

V

where MC(· · ·) is the modified basic algorithm.

3.3 Real-Time Belief Space Search

Branch-and-Bound (BB) pruning is a general search
technique used to prune nodes that are known to be
suboptimal in the search tree, thus preventing the ex-
pansion of unnecessary lower nodes in lower parts of
the tree. To achieve this, an estimate is maintained on
the valueQ∗(a,b) of each actiona, for every belief-
nodeb in the tree. These estimates are computed by
first evaluating an upper bound heuristic for the fringe
nodes (at the fixed depthD) of the current tree. The
bound is then propagated to parent nodes according to
the following equation:

δ(b,h) =
{

Hr(b), if h= 0
∆(b,h), otherwise

with ∆(b,h) is defined as

max
a∈A

[ρ(a,b)+ γ ∑
z∈Z

Pr(z | a,b)δ(SE(z,a,b),h−1)],

where heuristic functionHr(b) is an over-optimistic
estimate onV∗(b). Similarly, heuristic function
Hr(a,b) is an over-optimistic estimate onQ∗(a,b).
Of course,Hr(b) and Hr(a,b) are domain-specific
functions.

The idea behind Branch-and-Bound pruning is as
follows. If a given actiona in a beliefb has an upper
boundHr(a,b) which is lower than the current value
of b determined so far usingδ(b,h), then we know
that a cannot be on the path yielding the best value,
meaning thata is suboptimal in beliefb. Hence,
all belief-nodes reached fromb via actiona will be
pruned from the tree (Ross et al., 2008). The heuristic
function used in the experiments is

Hr(a,b) = ∑
s∈S

QMDP(s,a)b(s),

whereQMDP(s,a) is the QMDP approximation—an
upper bound on the Q-value ofa in s. According
to V∗(b) = maxaQ∗(a,b), the functionHr(b) is then
Hr(b) = maxa∈AHr(a,b).

Speeding�up�Online�POMDP�Planning�-�Unification�of�Observation�Branches�by�Belief-state�Compression�Via�Expected
Feature�Values

243

I implemented a version of Real-Time Belief
Space Search (RTBSS) first proposed by Paquet et al.
(2005). It follows the branch-and-bound strategy to
prune suboptimal states from the tree. The 0 at line 3
of Algorithm 1 is replaced byHr(b). Replaceforeach
a∈ A at line 6 byforeach a∈ Sort(b,A). Sort(b,A)
is a list of the actions in{a1,a2, . . . ,a|A|}, sorted such
that if i < j, thenHr(ai ,b) ≥ Hr(a j ,b). Actions are
sorted in this manner in an attempt to prune branches
as soon as possible (Paquet et al., 2005). And finally,
the procedure corresponding to lines 6 to 14 are exe-
cuted only ifHr(a,b)> maxVal.

3.4 Observation Unification

The OUCEF algorithm (2) is my contribution. It came
about due to the following insight. Suppose a per-
son’s beliefs about his/her current situation were com-
parable to a POMDP state. One could imagine that
in a real-time/online setting, when considering future
courses of action (including perceptions), one does
not consciously maintain different sets of belief-states
for the possible observations one could perceive af-
ter some action. Rather, one can imagine, that given
(mental) models of stochastic actions and observa-
tions, a single projected state is formed (for every ac-
tion considered). That is, only the most expected state
is considered, given a sequence of actions.

Our idea for unifying all belief-states which would
have been generated for each observation inZ =
{z1,z2, . . . ,zn} after actiona performed in belief-state
b is to select, for each feature, the feature value clos-
est to the expected value of the feature (note that
the expectedvalue may not exist). Lets(f) be the
value of featuref in states. Formally, given a set
B(a,b) = {ba

z1
,ba

z2
, . . . ,ba

zn
} of projected belief-states,

the expected value ˆv(a,b, f) of featuref is1

v̂(a,b, f) = ∑
ba

z∈B(a,b),〈s′,p〉∈ba
z

s′(f)Pr(z | a,b)p

= ∑
z∈Z,s′∈S

s′(f)Pr(z | a,b)×

O(s′,a,z)∑s∈ST(s,a,s′)b(s)
Pr(z | a,b)

(from (1))

= ∑
z∈Z,s′∈S

s′(f)O(s′,a,z)∑
s∈S

T(s,a,s′)b(s),

As mentioned in the section about the Monte Carlo
Sampling approach, computingPr(z | a,b) is in
O(|S|2), a relatively intensive computation. Notice
that it has been cancelled out of the calculation of
v̂(a,b, f).

1Recall thatPr(z|,a,b) can be viewed as the probability
of reaching belief-stateba

z from b.

Algorithm 2: OUCEF

Input : b: belief-state,h: horizon
Output : an action, the action’sQ value

1 if h= 0 then
2 return stop, 0

3 if h> 0 then
4 maxVal←−∞;
5 foreach a∈ A do
6 ,V = OUCEF({〈cef(a,b),1〉},h−1);
7 value← ρ(a,b)+ γ ·V ;
8 if value> maxValthen
9 maxVal← value;

10 bestAct← a;

11 return bestAct,maxVal;

Every states∈ S is defined by the value the state
assigns to the set of featuresF considered for the do-
main. Let{vf

1,v
f
2, . . . ,v

f
m} be the finite set of discrete

values that featuref can take. Hence, a statescan be
expressed as{(f ,vf

s) | f ∈ F,vf
s ∈ {v

f
1,v

f
2, . . . ,v

f
m}}.

I propose that the most expected states∗ = cef(a,b),
given some actiona is executed in someb, is identi-
fied by determining the feature values closest to the
expected feature values:

cef(a,b)
def
= {(f ,snapTo(v̂(a,b, f)) | f ∈ F},

where snapTo(v̂(a,b, f)) is the value in
{vf

1,v
f
2, . . . ,v

f
m} closest to ˆv(a,b, f).

If a feature fqal is qualitative, then its values
can be converted to numbers for the period of
calculation of ˆv(a,b, fqal). For instance, given a
POMDP with only a ‘direction’ featuredir with
possible values in{North,East,West,South}, one
can associate 1 withNorth, 2 with East, 3 with
Westand 4 with South. If there are two observa-
tions, then there are two possible new belief-states,
each with four states, for any action executed in
any belief-state. Assume, for example, that the
two new belief-states areb1 = {〈{(dir,1)},0.1〉,
〈{(dir,2)},0.2〉, 〈{(dir,3)},0.3〉, 〈{(dir,4)},0.4〉}
and b2 = {〈{(dir,1)},0.3〉, 〈{(dir,2)},0.3〉,
〈{(dir,3)},0.3〉, 〈{(dir,4)},0.1〉}, due to per-
forming somea′ in someb′ and perceivingz′1 with
some probability p′, respectively, perceivingz′2
with some probability 1− p′. Also assume that
the probability of reachingb1 is 0.4 and of reach-
ing b2 is 0.6.2 The expected value ofdir is thus
v̂(a′,b′,dir) = 0.4(1× 0.1+ 2× 0.2+ 3× 0.3+ 4×
0.4) + 0.6(1× 0.3+ 2× 0.3+ 3× 0.3+ 4× 0.1) =
2.52. 2.52 is the closest todir = 3 and we es-
timate that the agent should believe it is facing

2In the following calculation,Pr(z | a,b) is used to sim-
plify the example. Else, defining and using the observation
and transition functions would be necessary.

ICAART�2015�-�International�Conference�on�Agents�and�Artificial�Intelligence

244

West aftera′ performed inb′. Hence,cef(a′,b′) =
{(dir,snapTo(v̂(a′,b′,dir))} = {(dir,West)}.

Algorithm 2 summarizes the approach.

4 EXPERIMENTS

To assess the proposed algorithm, four sets of ex-
periments were performed in a six-by-six grid-world.
In this world, the agent’s task is to collect twelve
randomly scattered items. States are quadruples
(x,y,d, t), with x,y ∈ {1, · · · ,6} being the coordi-
nates of the agent’s position in the world,d ∈
{North,East,West,South} the direction it is facing,
andt ∈ {0,1}, t = 1 if an item is present in the cell
with the agent, elset = 0. The agent can perform
five actions{left, right, forward,see,collect}, mean-
ing, turn left, turn right, move one cell forward, see
whether an item is present and collect an item. The
only observation possible when executing one of the
physical actions isobsNil, the null observation, and
seehas possible observations from the set{0,1} for
whether the agent sees the presence of an item (1) or
not (0).

The same reward function is used in all cases. The
value of the reward function is essentially propor-
tional to the inverse of the Manhattan distance from
the cell in which the agent is currently located to the
nearest item to be collected. The agent also receives
rewards for executing acollect action when there is
an item in the same cell.

Next, I define the possible outcomes for each ac-
tion: When the agent turns left or right, it can get
stuck in the same direction, turn 90◦ or overshoots by
90◦. When the agent moves forward, it moves one cell
in the direction it is facing or it gets stuck and does
not move. The agent can see an item or see nothing
(no item in the cell), and collecting is deterministic
(if there is an item present, it will be collected with
certainty, if the agent executescollect). All actions
exceptcollectare designed so that (i) the correct out-
come is achieved 95% of the time and incorrect out-
comes are achieved 5% of the time or (ii) the correct
outcome is achieved 80% of the time and incorrect
outcomes are achieved 20% of the time. So that the
agent does not get lost too quickly, I have included an
automatic localization action, that is, a sensing action
returns information about the agent’s approximate lo-
cation. The action is automatic because the agent can-
not choose to perform it or not to perform it; the agent
localizes itself after every regular/chosen action is ex-
ecuted. However, just as with regular actions, the lo-
calization sensor is noisy, and it correctly reports the
agent’s location with probability 0.95 or 0.80, else the

Table 1: Results forh= 3 andsf = 0.8.

Algorithm ic/s s/a ic
MT .62 0.29 6.52

MC (c=1) .12 1.21 5.18
MC (c=2) .10 1.68 5.84
MC (c=3) .07 2.39 6.16
RTBSS .12 1.27 5.50
OUCEF 1.48 0.09 4.80

Table 2: Results forh= 4 andsf = 0.8.

Algorithm ic/s s/a ic
MT .17 1.33 7.98

MC (c=1) .02 6.67 5.06
MC (c=2) .01 12.57 5.52
MC (c=3) .01 15.22 5.56
RTBSS 0.03 4.60 4.52
OUCEF .40 0.38 5.42

Table 3: Results forh= 3 andsf = 0.95.

Algorithm ic/s s/a ic
MT .97 0.26 9.04

MC (c=1) .15 1.17 6.44
MC (c=2) .11 1.67 6.90
MC (c=3) .08 2.36 6.78
RTBSS .17 0.95 5.96
OUCEF 1.69 0.09 5.48

Table 4: Results forh= 4 andsf = 0.95.

Algorithm ic/s s/a ic
MT .20 1.26 9.04

MC (c=1) .03 6.87 6.98
MC (c=2) .02 11.11 6.96
MC (c=3) .01 15.57 6.96
RTBSS .04 3.94 5.18
OUCEF .60 0.37 7.94

sensor reports a location adjacent to the agent with
probability uniformly distributed over 0.05, resp., 0.2

For each experiment, 50 trials were run with the
agent starting in random locations and performing 36
actions per trial. The look-ahead depth is set to either
h = 3 or h = 4, and for MC, the sample size is set
to c = 1, c = 2 or c = 3. Only results forc = 1 are
reported here, because MC was most effective in this
case.

Let sf denote the stochasticity factor; it corre-
sponds to the percentage correct outcomes of actions
and observations. I thus setsf = 0.8 or sf = 0.95.
For each experiment, I measure the average number
of items collected (ic), the average time (in seconds) it
takes to plan for one action (s/a) and the average num-
ber of items collected per second (ic/s). ic/s is taken
as the performance measure in these experiments. Ar-
guably, ic could have been used as the performance
measure, however, I feel that speed of planning should
be considered when measuring performance of online
algorithms. Tables 1 thru 4 report the results.

Speeding�up�Online�POMDP�Planning�-�Unification�of�Observation�Branches�by�Belief-state�Compression�Via�Expected
Feature�Values

245

5 CONCLUDING REMARKS

I presented a novel online POMDP algorithm which
performs at least twice as good as the other algo-
rithms on a particular grid-world problem. The basic
algorithm with mean-as-threshold belief-state com-
pression always collected the most items (ic). How-
ever, because it takes more than twice (forh= 3) or
three times (forh = 4) as long as OUCEF to select
the next action, its effectiveness is significantly be-
low OUCEF’s (w.r.t. ic/s). OUCEF’s nominal perfor-
mance (ic) is comparable with that of the other algo-
rithms over the four experiment parameter combina-
tions.

The effectiveness of the OUCEF algorithm is due
to (i) unifying the branches due to nondeterministic
observations by collecting all belief-nodes at the ends
of these branches into one setB, and then (ii) selecting
the state most representative ofB, by calculating the
expected values of the features of the states inB.

The aspect of this work most in need of attention is
to validate the approach on different benchmark prob-
lems. It might be the case that the OUCEF algorithm
is well suited to the kind of grid-world problems pre-
sented here, but to few other problems. Or it might
be suited to many kinds of problems. This paper is,
however, a first step in introducing and testing the al-
gorithm. At the very least, the new ideas presented
here might lead other researchers to new insights in
their online POMDP algorithm. A theoretical analy-
sis of the optimality of OUCEF is also required and
could lead to interesting insights.

REFERENCES

He, R., Brunskill, E., and Roy, N. (2011). Efficient planning
under uncertainty with macro-actions.Journal of Ar-
tificial Intelligence Research (JAIR), 40:523–570.

Kaelbling, L., Littman, M., and Cassandra, A. (1998). Plan-
ning and acting in partially observable stochastic do-
mains.Artificial Intelligence, 101(1–2):99–134.

Koenig, S. (2001). Agent-centered search.Artificial Intelli-
gence Magazine, 22:109–131.

Kurniawati, H., Du, Y., Hsu, D., and Lee, W. (2011). Mo-
tion planning under uncertainty for robotic tasks with
long time horizons.International Journal of Robotics
Research, 30(3):308–323.

Li, X., Cheung, W., Liu, J., and Wu, Z. (2007). A
novel orthogonal NMF-based belief compression for
POMDPs. InProceedings of the Twenty-fourth In-
ternational Conference on Machine Learning (ICML-
07), pages 537–544, New York, NY, USA. ACM
Press.

Lovejoy, W. (1991). A survey of algorithmic methods for

partially observed Markov decision processes.Annals
of Operations Research, 28:47–66.

McAllester, D. and Singh, S. (1999). Approximate plan-
ning for factored POMDPs using belief state simplifi-
cation. InProceedings of the Fifteenth Conference on
Uncertainty in Artificial Intelligence (UAI-99), pages
409–416, San Francisco, CA. Morgan Kaufmann.

Monahan, G. (1982). A survey of partially observable
Markov decision processes: Theory, models, and al-
gorithms.Management Science, 28(1):1–16.

Paquet, S., Tobin, L., and Chaib-draa, B. (2005). Real-time
decision making for large POMDPs. InAdvances in
Artificial Intelligence: Proceedings of the Eighteenth
Conference of the Canadian Society for Computa-
tional Studies of Intelligence, volume 3501 ofLecture
Notes in Computer Science, pages 450–455. Springer
Verlag.

Pineau, J., Gordon, G., and Thrun, S. (2003). Point-based
value iteration: An anytime algorithm for POMDPs.
In Proceedings of the International Joint Conference
on Artificial Intelligence (IJCAI), pages 1025–1032.

Poupart, P. and Boutilier, C. (2003). Value-directed com-
pression of POMDPs. InAdvances in Neural Infor-
mation Processing Systems (NIPS 2003), pages 1547–
1554. MIT Press, Massachusetts/England.

Rens, G. and Ferrein, A. (2013). Belief-node condensa-
tion for online pomdp algorithms. InProceedings of
IEEE AFRICON 2013, pages 1270–1274, Red Hook,
NY 12571 USA. Institute of Electrical and Electronics
Engineers, Inc.

Ross, S., Pineau, J., Paquet, S., and Chaib-draa, B. (2008).
Online planning algorithms for POMDPs.Journal of
Artificial Intelligence Research (JAIR), 32:663–704.

Roy, N., Gordon, G., and Thrun, S. (2005). Finding
approximate POMDP solutions through belief com-
pressions.Journal of Artificial Intelligence Research
(JAIR), 23:1–40.

ICAART�2015�-�International�Conference�on�Agents�and�Artificial�Intelligence

246

